1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview...

39
1 PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi to Psi September 19-22, 2011, Budker INP, Novosibirsk, Russia

Transcript of 1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview...

1PhiPsi2011 BINP, Novosibirsk

Johann Zmeskal, SMI Viennafor the PANDA collaboration

at

an overview

International Workshop on e+e- collisions from Phi to Psi

September 19-22, 2011, Budker INP, Novosibirsk, Russia

Existing facility - GSI:UNILAC < 15 MeV/uSIS < 1-2 GeV/uESR < 0.8 GeV/u

Facility for Antiproton and Ion ResearchPhiPsi2011 BINP, Novosibirsk

2

HESR

PANDA

SIS 100SIS 300

SIS 18

CR/RES

R

FLAIR

NESR

SuperRFS

FAIR @ GSIFAIR @ GSI

3PhiPsi2011 BINP, Novosibirsk

Facility for Antiproton and Ion Facility for Antiproton and Ion ResearchResearch

4PhiPsi2011 BINP, Novosibirsk

PANDA

Facility for Antiproton and Ion Facility for Antiproton and Ion Research Research

Antiproton production

• bunched mod• 50 ns bunches • cycle time: 10 s• 108 per bunch

Parallel OperationHigh duty cycleRapidly cycling magnets

SIS300

5PhiPsi2011 BINP, Novosibirsk

Five Pillars of Research at FAIRFive Pillars of Research at FAIR

Nuclear Structure Physics and Nuclear Astrophysics with RIBs

Hadron Physics with Antiproton Beams

Physics of Nuclear Matter with Relativistic Nuclear Collisions

Atomic Physics and Applied Science with Highly Charged Ions and Low Energy Antiprotons

Plasma Physics with Highly Bunched Beams

PhiPsi2011 BINP, Novosibirsk 6

Stochastic cooling

Stochastic cooling

Injection

Electroncooler

High Energy Storage Ring Up to 1011 stored antiprotons

Beam momentum: (1.5 ... 15) GeV/c Phase-space cooling

Fixed internal target

Operation modesa) High luminosity:

L = 2 · 1032 cm-2 s-1 p/p 10-4

b) High resolution: L = 1031 cm-2 s-1 p/p 4 · 10-5

PANDA @ HESRPANDA @ HESR

PhiPsi2011 BINP, Novosibirsk 7

Particle physics

Hadron physics

Nuclear physics

Study the strong interaction with antiprotons

Questions ... Mechanism of

confinement ? Inner structure of

hadrons ? Origin of mass

and spin (macroscopic properties) ?

Exotic colour neutral objects?

Physics goals of PANDAPhysics goals of PANDA

8PhiPsi2011 BINP, Novosibirsk

HadronHadron SpectroscopySpectroscopy Experimental Goals: mass, width & quantum numbers of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons to understand new XYZ states, Ds(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution

Physics goals of PANDAPhysics goals of PANDA

9PhiPsi2011 BINP, Novosibirsk

Nuclear PhysicsNuclear Physics

Charm in the MediumM

esons in nuclear matterM

asses change in nuclei D-mass lower Lower D D threshold

J/ψ absorption in nuclei

Hypernuclei3

rd dimension in nuclear chartD

ouble hypernuclei production via Ξ- capture Λ Λ interaction in nucleus

Other topicsS

hort range correlationsC

olor transparency

Physics goals of PANDAPhysics goals of PANDA

10PhiPsi2011 BINP, Novosibirsk

Physics goals of PANDAPhysics goals of PANDA

HadronHadron StructureStructure Generalized Parton Distributions

➔ Formfactors and structure functions

Timelike Nucleon Formfactors Drell-Yan Process full PWA or polarized beam/target

PANDA Physics Report www-panda.gsi.de

11PhiPsi2011 BINP, Novosibirsk

PANDA Detector @ FAIRPANDA Detector @ FAIR

13 m

12PhiPsi2011 BINP, Novosibirsk

PANDA RequirementsPANDA RequirementsPhysics benchmarks:

Hybrid charmonium: e.g. 7 photons, PWA

Charmonium decays: e.g. J/Ψ→ e+e- /µ+µ-, or with π0 and γ

Charm mesons: Weak decays in K0

S and K±

Hypernuclei: Hyperon cascades

Wide angle Compton scattering: High energy photons

Proton formfactors: Efficient e±

identification

Detector requirements:

4π acceptance

High rate capability: 2x107 s-1 interactions

Efficient event selection

Continuous acquisition

Momentum resolution ~1%

Vertex info for D, K0

S, Y (cτ = 317 µm for D±)

Good tracking

• Good PID (γ, e, µ, π, K, p)

Cherenkov, ToF, dE/dx

γ-detection 1 MeV – 10 GeV

Crystal Calorimeter

13PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

TargetTarget SpectrometerForward Spectrometer

14PhiPsi2011 BINP, Novosibirsk

PANDA - detection conceptPANDA - detection concept

PhiPsi2011 BINP, Novosibirsk 15

TARGET SPECTROMETER FORWARD

SPECTROMETERDipole

Muon

ID

RICHVertex

Central Tracker

Electromag. Calorimeters

MuonRange System

Drift

ChambersSolenoid Target

DIRC

The PANDA SpectrometerThe PANDA Spectrometer

16PhiPsi2011 BINP, Novosibirsk

Beam pipeBeam pipe

The PANDA SpectrometerThe PANDA Spectrometer

Micro Vertex DetectorMicro Vertex Detector

17PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

Central trackerCentral tracker

Forward GEM Forward GEM trackertracker

18PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

Cherenkov detectorsCherenkov detectors

19PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

Electromagnetic crystal Electromagnetic crystal calorimeterscalorimeters

20PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

Instrumented Instrumented yokeyoke

Solenoid Solenoid magnetmagnet

21PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

MuoMuonn

filterfilterTargTarg

etet LuminosiLuminosityty

monitormonitor

Dipole Dipole magnmagn

etet

22PhiPsi2011 BINP, Novosibirsk

The PANDA SpectrometerThe PANDA Spectrometer

DriftDriftchambechambe

rsrs

Muon Muon range range systemsystem

DIRCDIRC

23PhiPsi2011 BINP, Novosibirsk

Superconducting magnet Central field: |B| = Bz = 2 T High field homogeneity:

2% Dimensions inner bore:

1.9 m / length: 2.7 m

Coil and cryostate

z beam

axis

Target pipewarm hole

Outer yoke dimension: 2.3 m / length: 4.9 m

Total weight: ~ 300 t

Iron flux

return yoke

Laminated layers for

muon range system

PANDA - SolenoidPANDA - Solenoid

24PhiPsi2011 BINP, Novosibirsk

Superconducting magnet Field integral

(bending power): 2 Tm

Deflection of antiprotons with p =15 GeV/c: 2.2°

Bending variation: 15% Vertical acceptance: 5° Horizontal acceptance: 10° Total weight: 200 t

Forward tracking detectors partly integrated

PANDA – Dipole magnetPANDA – Dipole magnet

25PhiPsi2011 BINP, Novosibirsk

Beam pipe

Target pipe

Target dumping

system

Target production

Vacuum pumps(VP)

(VP)

(VP)

(VP)

~ 2

m

Injection point

• Primary target setup Appropriate cut-outs

in solenoid magnet Beam-target cross Design compatible

with all different options

PANDA – Target systemPANDA – Target system

26PhiPsi2011 BINP, Novosibirsk

Cluster-jet target Well adjustable density Constant luminosity Cluster size:

100 ... 1000 atoms

PANDA – Cluster-jet target systemPANDA – Cluster-jet target system

Full-size prototype Achieved density:

max. 8 1014 atoms / cm2

Stable operation Further density increase:

New nozzle design

27PhiPsi2011 BINP, Novosibirsk

Pellet target Higher density Better vertex definition

Pellet tracking system Pellet size: 30 m Pellet frequency: 10 kHz Problem:

Luminosity variations Smaller pellet sizes Higher frequency

Dedicated prototypes Achieved density:

4 1015

atoms / cm2

Pellet stream: 3 mm

Hydrogen droplets: < 10 m, 144 kHz

PANDA – Pellet target systemPANDA – Pellet target system

28PhiPsi2011 BINP, Novosibirsk

Forward spectrometer

Forward spectrometer

Target spectrometerTarget spectrometer

Micro-VertexDetector

Micro-VertexDetector

Central tracking (Helix fit)

Central tracking (Helix fit)

Forward tracking(Straight lines)

Forward tracking(Straight lines)

Straw-tubelayers

Straw-tubelayers

Outer trackerOuter

trackerGEM

stationsGEM

stations

PANDA – TrackingPANDA – Tracking

29PhiPsi2011 BINP, Novosibirsk

Design of the MVD4

barrels and 6 disksC

ontinuous readoutI

nner layers: hybrid pixels (100x100 µm2)

Outer layers: double sided strips:

Rectangles & trapezoids

NXYTER readout

Mixed forward disks (pixel/strips) Challenges

Low mass supports

Cooling in a small volume

Radiation tolerance

PANDA – Micro Vertex DetectorPANDA – Micro Vertex Detector

30

Central Tracker σrφ~150µm , σz~1mm δp/p~1% (with MVD) Material budget ~1% X0

Straw Tube Tracker

27 µm thin mylar tubes, 1 cm Ø

Stability due to 1 bar overpressure

GEM Time Projection Chamber

Continuous sampling

GEMs to reduce ion feedback

Online track finding

Forward GEM Tracker Large area GEM foils Ultra thin coating

PANDA – Central trackerPANDA – Central tracker

PhiPsi2011 BINP, Novosibirsk

31PhiPsi2011 BINP, Novosibirsk

Detector Layout 4500 straws in 20-26 layers Tube made of 27 µm thin Al-mylar, Ø=1cm Rin= 150 mm, Rout= 420 mm l=1500 mm Self-supporting straw double layers at ~1 bar overp.(Ar/CO2)

Material Budget

Max. 26 layers,

0.05 % X/X0 per layer

Total 1.3% X/X0

Detector performance r/ resolution: 130 µm z resolution: ~ 1 mm Prototype test at COSY-TOF

PANDA – Straw tubesPANDA – Straw tubes

32PhiPsi2011 BINP, Novosibirsk

PANDA PID Requirements:Particle identification essential

Momentum range 200 MeV/c – 10 GeV/c

Different processes for PID needed

PID Processes: Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C4F10

Energy loss: below 1 GeV Best accuracy with TPC Time of flight Problem: no start detector Electromagnetic showers: EMC for e and γ

PANDA – Particle IDentificationPANDA – Particle IDentification

33PhiPsi2011 BINP, Novosibirsk

Forward spectrometerForward spectrometerTarget spectrometerTarget spectrometer

Barrel DIRCBarrel DIRC RICHRICH

D etection of I nternally R eflected C herenkov light

Radiator material: Fused silica 3 /K separation

0.8 GeV/c p 5 GeV/cC

Radiator materials: Aerogel / C14F10

/K separation2 GeV/c p 15 GeV/c

R ing I maging CH erenkov detector

Disc DIRCDisc DIRC

PANDA – Cherenkov detectorsPANDA – Cherenkov detectors

34PhiPsi2011 BINP, Novosibirsk

Forward spectrometerForward spectrometerTarget spectrometerTarget spectrometer

Barrel EMCBarrel EMC Shashlyk calorimeterShashlyk

calorimeter

Endcap structures

Endcap structures

Operated at -25°C

Cristal: PbWO4

~ 15,000 cristals

Lead-scintillator sandwiches351 modules

(13 rows / 27 columns)

PANDA – CalorimeterPANDA – Calorimeter

35PhiPsi2011 BINP, Novosibirsk

Barrel Calorimeter 11000 PWO Crystals LA-SiPM readout, 2x1cm2

σ(E)/E~1.5%/√E + const.

End cap 4000 PWO crystals High occupancy in center LA-SiPM or VPT

PANDA PWO Crystals PWO is dense and fast Low γ threshold Increase light yield: - operation at -25°C (4xCMS) Challenges: - temperature stable to 0.1°C - control radiation damage - low noise electronics Delivery of crystals started

PANDA – CalorimeterPANDA – Calorimeter

36PhiPsi2011 BINP, Novosibirsk

Forward spectrometerForward spectrometerTarget spectrometerTarget spectrometer

Barrel tile hodoscope Barrel tile hodoscope

Time resolution: (50...100) psScintillator slabs or

pads of multigap resistive plate chambers (RPC)

Scintillator wallScintillator wall

Scintillator slabsTime resolution: ~ 50 ps

Quad module

Scintillator

SiPM

PANDA – Time-of-flight systemsPANDA – Time-of-flight systems

37PhiPsi2011 BINP, Novosibirsk

PANDA – DAQPANDA – DAQ

Self triggered readoutComponents:Time distribution systemIntelligent frontendsPowerful compute nodesHigh speed network

Data Flow:Data reductionLocal feature extractionData burst buildingEvent selectionData logging after online reconstruction

Programmable Physics Machine

38PhiPsi2011 BINP, Novosibirsk

• FAIR will offer unique opportunities for nuclear and hadron physics, plasma and

atomic physics

• PANDA is THE DETECTOR to access the physics in the charm quark sector Nearly 4 acceptance High momentum resolution ~1% Precise vertex resolution ~ 100 m Good particle identification ( , e, , , p ) Photon detection in a wide range ( 1 MeV ... 10 GeV) High energy resolution ~ few % (or better)

Technical design finished 2011 Installation in 2016

SummarySummary

39PhiPsi2011 BINP, Novosibirsk

U BaselIHEP BeijingU BochumIIT BombayU BonnIFIN-HH BucharestU & INFN BresciaU & INFN CataniaJU CracowTU CracowIFJ PAN CracowGSI DarmstadtTU DresdenJINR Dubna (LIT,LPP,VBLHE)U EdinburghU ErlangenNWU Evanston

U & INFN FerraraU FrankfurtLNF-INFN FrascatiU & INFN GenovaU GlasgowU GießenKVI GroningenIKP Jülich I + IIU KatowiceIMP LanzhouU LundU MainzU MinskITEP MoscowMPEI MoscowTU MünchenU MünsterBINP Novosibirsk

IPN OrsayU & INFN PaviaIHEP ProtvinoPNPI GatchinaU of SilesiaU StockholmKTH StockholmU & INFN TorinoPolitechnico di TorinoU & INFN TriesteU TübingenTSL UppsalaU UppsalaU ValenciaSMI ViennaSINS WarsawTU Warsaw

more than 400 physicists from 53 institutions in 16 countries

Thank you!