1MRK504116-UEN B en Application Manual RET670 1.2

814
Relion ® 670 series Transformer protection RET670 Application manual

Transcript of 1MRK504116-UEN B en Application Manual RET670 1.2

Relion 670 series

Transformer protection RET670 Application manual

Document ID: 1MRK 504 116-UEN Issued: September 2011 Revision: B Product version: 1.2

Copyright 2011 ABB. All rights reserved

CopyrightThis document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software or hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.

TrademarksABB and Relion are registered trademarks of ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

WarrantyPlease inquire about the terms of warranty from your nearest ABB representative.ABB AB Substation Automation Products SE-721 59 Vsters Sweden Telephone: +46 (0) 21 32 50 00 Facsimile: +46 (0) 21 14 69 18 http://www.abb.com/substationautomation

DisclaimerThe data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/ or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks. This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.

ConformityThis product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The IED is designed in accordance with the international standards of the IEC 60255 series.

Table of contents

Table of contentsSection 1 Introduction.....................................................................13Introduction to the application manual..............................................13 About the complete set of manuals for an IED............................13 About the application manual......................................................14 Intended audience.......................................................................14 Related documents......................................................................15 Revision notes.............................................................................15

Section 2

Requirements.................................................................17Current transformer requirements....................................................17 Current transformer classification................................................17 Conditions....................................................................................18 Fault current................................................................................19 Secondary wire resistance and additional load...........................19 General current transformer requirements..................................20 Rated equivalent secondary e.m.f. requirements........................20 Transformer differential protection.........................................20 Distance protection.................................................................21 Restricted earth fault protection (low impedance differential)..............................................................................22 Current transformer requirements for CTs according to other standards............................................................................25 Current transformers according to IEC 60044-1, class P, PR.............................................................................25 Current transformers according to IEC 60044-1, class PX, IEC 60044-6, class TPS (and old British Standard, class X).........................................25 Current transformers according to ANSI/IEEE.......................26 Voltage transformer requirements....................................................26 SNTP server requirements...............................................................27 IEC 61850-9-2LE Merging unit requirements ..................................27

Section 3

IED application...............................................................29General IED application....................................................................29 Analog inputs....................................................................................30 Introduction..................................................................................30 Setting guidelines........................................................................31 Setting of the phase reference channel..................................31 Setting parameters......................................................................56 Local human-machine interface.......................................................621

Application manual

Table of contents

Human machine interface ...........................................................62 Local HMI related functions.........................................................64 Introduction.............................................................................64 General setting parameters....................................................64 Indication LEDs...........................................................................65 Introduction.............................................................................65 Setting parameters.................................................................65 Basic IED functions..........................................................................67 Self supervision with internal event list........................................67 Application..............................................................................67 Setting parameters.................................................................68 Time synchronization...................................................................68 Application..............................................................................68 Setting guidelines...................................................................69 Setting parameters.................................................................70 Parameter setting groups............................................................73 Application..............................................................................73 Setting guidelines...................................................................74 Setting parameters.................................................................74 Test mode functionality TEST.....................................................74 Application..............................................................................74 Setting guidelines...................................................................74 Setting parameters.................................................................75 Change lock CHNGLCK..............................................................75 Application..............................................................................75 Setting parameters.................................................................76 IED identifiers..............................................................................76 Application..............................................................................76 Setting parameters.................................................................76 Product information.....................................................................77 Application..............................................................................77 Setting parameters.................................................................77 Rated system frequency PRIMVAL.............................................78 Application..............................................................................78 Setting guidelines...................................................................78 Setting parameters.................................................................78 Signal matrix for binary inputs SMBI...........................................78 Application..............................................................................78 Setting guidelines...................................................................78 Setting parameters.................................................................78 Signal matrix for binary outputs SMBO ......................................79 Application..............................................................................79 Setting guidelines...................................................................792 Application manual

Table of contents

Setting parameters.................................................................79 Signal matrix for mA inputs SMMI...............................................79 Application..............................................................................79 Setting guidelines...................................................................79 Setting parameters.................................................................79 Signal matrix for analog inputs SMAI..........................................80 Application..............................................................................80 Frequency values...................................................................80 Setting guidelines...................................................................81 Setting parameters.................................................................85 Summation block 3 phase 3PHSUM...........................................86 Application..............................................................................86 Setting guidelines...................................................................86 Setting parameters.................................................................87 Authority status ATHSTAT..........................................................87 Application..............................................................................87 Setting parameters.................................................................87 Denial of service DOS.................................................................87 Application..............................................................................88 Setting guidelines...................................................................88 Differential protection........................................................................88 Transformer differential protection T2WPDIF and T3WPDIF ....................................................................................88 Application..............................................................................88 Setting guidelines...................................................................89 Setting example......................................................................97 Setting parameters...............................................................109 Restricted earth fault protection, low impedance REFPDIF .....114 Application............................................................................114 Setting guidelines.................................................................119 Setting parameters...............................................................121 1Ph High impedance differential protection HZPDIF ................121 Identification.........................................................................121 Application............................................................................122 Connection examples for high impedance differential protection..............................................................................128 Setting guidelines.................................................................131 Setting parameters...............................................................144 Impedance protection ....................................................................144 Distance measuring zones, quadrilateral characteristic ZMQPDIS, ZMQAPDIS, ZDRDIR..............................................144 Identification.........................................................................144 Application............................................................................144 Setting guidelines.................................................................1603 Application manual

Table of contents

Setting parameters...............................................................169 Distance measuring zone, quadrilateral characteristic for series compensated lines ZMCPDIS, ZMCAPDIS, ZDSRDIR...................................................................................171 Application............................................................................171 Setting guidelines.................................................................213 Setting parameters...............................................................225 Phase selection, quadrilateral characteristic with fixed angle FDPSPDIS.......................................................................229 Identification.........................................................................229 Application............................................................................229 Setting guidelines.................................................................229 Setting parameters...............................................................236 Full-scheme distance measuring, Mho characteristic ZMHPDIS .................................................................................237 Application............................................................................237 Setting guidelines.................................................................250 Setting parameters...............................................................257 Full-scheme distance protection, quadrilateral for earth faults ZMMPDIS, ZMMAPDIS...................................................258 Application............................................................................258 Setting guidelines.................................................................273 Setting parameters...............................................................279 Additional distance protection directional function for earth faults ZDARDIR.........................................................................280 Application............................................................................280 Setting guidelines.................................................................280 Setting parameters...............................................................282 Mho impedance supervision logic ZSMGAPC...........................283 Application............................................................................283 Setting guidelines.................................................................283 Setting parameters...............................................................284 Faulty phase identification with load encroachment FMPSPDIS................................................................................285 Application............................................................................285 Setting guidelines.................................................................286 Setting parameters...............................................................288 Distance protection zone, quadrilateral characteristic, separate settings ZMRPDIS, ZMRAPDIS and ZDRDIR............289 Application............................................................................289 Setting guidelines.................................................................304 Setting parameters...............................................................311 Phase selection, quadrilateral characteristic with settable angle FRPSPDIS.......................................................................3134 Application manual

Table of contents

Application............................................................................313 Load encroachment characteristics......................................318 Setting parameters...............................................................323 Power swing detection ZMRPSB ..............................................324 Application............................................................................325 Setting guidelines.................................................................326 Setting parameters...............................................................333 Power swing logic ZMRPSL .....................................................334 Application............................................................................334 Setting guidelines.................................................................335 Setting parameters...............................................................341 Pole slip protection PSPPPAM .................................................341 Application............................................................................341 Setting guidelines.................................................................344 Setting parameters...............................................................354 Phase preference logic PPLPHIZ..............................................355 Application............................................................................355 Setting guidelines.................................................................358 Setting parameters...............................................................359 Current protection...........................................................................360 Instantaneous phase overcurrent protection PHPIOC .............360 Application............................................................................360 Setting guidelines.................................................................361 Setting parameters...............................................................365 Four step phase overcurrent protection OC4PTOC .................365 Application............................................................................365 Setting guidelines.................................................................366 Setting parameters...............................................................377 Instantaneous residual overcurrent protection EFPIOC ...........381 Application............................................................................382 Setting guidelines.................................................................382 Setting parameters...............................................................384 Four step residual overcurrent protection EF4PTOC ...............384 Application............................................................................385 Setting guidelines.................................................................387 Setting parameters...............................................................397 Four step directional negative phase sequence overcurrent protection NS4PTOC ................................................................402 Application............................................................................402 Setting guidelines.................................................................404 Setting parameters...............................................................408 Sensitive directional residual overcurrent and power protection SDEPSDE ................................................................413 Application............................................................................4135 Application manual

Table of contents

Setting guidelines.................................................................414 Setting parameters...............................................................422 Thermal overload protection, two time constants TRPTTR ......424 Application............................................................................424 Setting guideline...................................................................425 Setting parameters...............................................................428 Breaker failure protection CCRBRF .........................................429 Application............................................................................429 Setting guidelines.................................................................429 Setting parameters...............................................................433 Pole discordance protection CCRPLD .....................................433 Application............................................................................434 Setting guidelines.................................................................434 Setting parameters...............................................................435 Directional underpower protection GUPPDUP..........................435 Application............................................................................436 Setting guidelines.................................................................438 Setting parameters...............................................................441 Directional overpower protection GOPPDOP ...........................442 Application............................................................................442 Setting guidelines.................................................................444 Setting parameters...............................................................448 Broken conductor check BRCPTOC ........................................449 Application............................................................................449 Setting guidelines.................................................................449 Setting parameters...............................................................450 Capacitor bank protection CBPGAPC.......................................450 Application............................................................................451 Setting guidelines.................................................................455 Setting parameters...............................................................457 Negativ sequence time overcurrent protection for machines NS2PTOC .................................................................................458 Application............................................................................458 Setting guidelines.................................................................462 Setting parameters...............................................................464 Voltage protection...........................................................................465 Two step undervoltage protection UV2PTUV ...........................465 Application............................................................................465 Setting guidelines.................................................................466 Setting parameters...............................................................469 Two step overvoltage protection OV2PTOV .............................471 Application............................................................................471 Setting guidelines.................................................................4726 Application manual

Table of contents

Setting parameters...............................................................475 Two step residual overvoltage protection ROV2PTOV ............477 Application............................................................................477 Setting guidelines.................................................................477 Setting parameters...............................................................482 Overexcitation protection OEXPVPH .......................................483 Application............................................................................484 Setting guidelines.................................................................486 Setting parameters...............................................................489 Voltage differential protection VDCPTOV .................................490 Application............................................................................490 Setting guidelines.................................................................492 Setting parameters...............................................................494 Loss of voltage check LOVPTUV .............................................494 Application............................................................................494 Setting guidelines.................................................................495 Setting parameters...............................................................495 Frequency protection......................................................................495 Underfrequency protection SAPTUF ........................................495 Application............................................................................496 Setting guidelines.................................................................496 Setting parameters...............................................................498 Overfrequency protection SAPTOF ..........................................498 Application............................................................................498 Setting guidelines.................................................................499 Setting parameters...............................................................500 Rate-of-change frequency protection SAPFRC ........................500 Application............................................................................500 Setting guidelines.................................................................501 Setting parameters...............................................................502 Multipurpose protection..................................................................502 General current and voltage protection CVGAPC.....................502 Application............................................................................502 Setting guidelines.................................................................508 Setting parameters...............................................................517 Secondary system supervision.......................................................524 Current circuit supervision CCSRDIF .......................................524 Application............................................................................524 Setting guidelines.................................................................525 Setting parameters...............................................................525 Fuse failure supervision SDDRFUF..........................................525 Application............................................................................525 Setting guidelines.................................................................5267 Application manual

Table of contents

Setting parameters...............................................................529 Control............................................................................................530 Synchrocheck, energizing check, and synchronizing SESRSYN.................................................................................530 Application............................................................................531 Application examples...........................................................535 Setting guidelines.................................................................542 Setting parameters...............................................................547 Apparatus control APC..............................................................549 Application............................................................................550 Interaction between modules...............................................556 Setting guidelines.................................................................558 Setting parameters...............................................................559 Interlocking ...............................................................................561 Configuration guidelines.......................................................563 Interlocking for line bay ABC_LINE .....................................563 Interlocking for bus-coupler bay ABC_BC ...........................568 Interlocking for transformer bay AB_TRAFO .......................574 Interlocking for bus-section breaker A1A2_BS.....................575 Interlocking for bus-section disconnector A1A2_DC ...........578 Interlocking for busbar earthing switch BB_ES ...................586 Interlocking for double CB bay DB ......................................592 Interlocking for 1 1/2 CB BH ................................................594 Horizontal communication via GOOSE for interlocking GOOSEINTLKRCV..............................................................595 Voltage control...........................................................................595 Application............................................................................596 Setting guidelines.................................................................628 Setting parameters...............................................................639 Logic rotating switch for function selection and LHMI presentation SLGGIO................................................................646 Application............................................................................646 Setting guidelines.................................................................647 Setting parameters...............................................................648 Selector mini switch VSGGIO....................................................648 Application............................................................................648 Setting guidelines.................................................................649 Setting parameters...............................................................649 Generic double point function block DPGGIO...........................649 Application............................................................................650 Setting guidelines.................................................................650 Single point generic control 8 signals SPC8GGIO....................650 Application............................................................................650 Setting guidelines.................................................................6508 Application manual

Table of contents

Setting parameters...............................................................651 AutomationBits, command function for DNP3.0 AUTOBITS.....651 Application............................................................................651 Setting guidelines.................................................................652 Setting parameters...............................................................652 Single command, 16 signals SINGLECMD...............................666 Application............................................................................666 Setting guidelines.................................................................668 Setting parameters...............................................................668 Scheme communication.................................................................669 Scheme communication logic for residual overcurrent protection ECPSCH ..................................................................669 Application............................................................................669 Setting guidelines.................................................................670 Setting parameters...............................................................670 Current reversal and weak-end infeed logic for residual overcurrent protection ECRWPSCH..........................................671 Application............................................................................671 Setting guidelines.................................................................672 Setting parameters...............................................................674 Logic...............................................................................................674 Tripping logic SMPPTRC ..........................................................674 Application............................................................................674 Setting guidelines.................................................................678 Setting parameters...............................................................679 Trip matrix logic TMAGGIO.......................................................679 Application............................................................................679 Setting guidelines.................................................................679 Setting parameters...............................................................680 Configurable logic blocks...........................................................680 Application............................................................................680 Setting parameters...............................................................681 Fixed signal function block FXDSIGN.......................................682 Application............................................................................682 Setting parameters...............................................................683 Boolean 16 to Integer conversion B16I.....................................683 Application............................................................................683 Setting guidelines.................................................................684 Boolean 16 to Integer conversion with logic node representation B16IFCVI...........................................................684 Application............................................................................684 Setting guidelines.................................................................684 Integer to Boolean 16 conversion IB16.....................................684 Application............................................................................6849 Application manual

Table of contents

Setting parameters...............................................................685 Integer to Boolean 16 conversion with logic node representation IB16FCVB..........................................................685 Application............................................................................685 Setting parameters...............................................................685 Monitoring.......................................................................................685 Measurement.............................................................................685 Application............................................................................686 Zero clamping.......................................................................688 Setting guidelines.................................................................688 Setting parameters...............................................................698 Event counter CNTGGIO...........................................................711 Identification.........................................................................711 Application............................................................................711 Setting parameters...............................................................711 Event function EVENT...............................................................711 Introduction...........................................................................711 Setting guidelines.................................................................711 Setting parameters...............................................................712 Logical signal status report BINSTATREP................................714 Application............................................................................714 Setting guidelines.................................................................715 Setting parameters...............................................................715 Measured value expander block RANGE_XP...........................715 Application............................................................................715 Setting guidelines.................................................................716 Disturbance report DRPRDRE..................................................716 Application............................................................................716 Setting guidelines.................................................................717 Setting parameters...............................................................722 Event list....................................................................................732 Application............................................................................732 Setting guidelines.................................................................732 Indications.................................................................................732 Application............................................................................732 Setting guidelines.................................................................733 Event recorder ..........................................................................733 Application............................................................................733 Setting guidelines.................................................................734 Trip value recorder....................................................................734 Application............................................................................734 Setting guidelines.................................................................734 Disturbance recorder.................................................................73510 Application manual

Table of contents

Application............................................................................735 Setting guidelines.................................................................735 Metering..........................................................................................736 Pulse-counter logic PCGGIO.....................................................736 Application............................................................................736 Setting guidelines.................................................................736 Setting parameters...............................................................737 Function for energy calculation and demand handling ETPMMTR.................................................................................737 Application............................................................................738 Setting guidelines.................................................................738 Setting parameters...............................................................739

Section 4

Station communication.................................................741Overview.........................................................................................741 IEC 61850-8-1 communication protocol.........................................741 Application IEC 61850-8-1.........................................................741 Setting guidelines......................................................................743 Setting parameters....................................................................743 IEC 61850 generic communication I/O functions SPGGIO, SP16GGIO................................................................................744 Application............................................................................744 Setting guidelines.................................................................744 Setting parameters...............................................................744 IEC 61850 generic communication I/O functions MVGGIO.......744 Application............................................................................744 Setting guidelines.................................................................744 Setting parameters...............................................................745 IEC 61850-8-1 redundant station bus communication..............745 Application............................................................................745 Setting guidelines.................................................................746 Setting parameters...............................................................748 IEC 61850-9-2LE communication protocol.....................................748 Introduction................................................................................748 Setting guidelines......................................................................750 Specific settings related to the IEC 61850-9-2LE communication.....................................................................751 Consequence on accuracy for power measurement functions when using signals from IEC 61850-9-2LE communication.....................................................................751 Loss of communication.........................................................752 Setting examples for IEC 61850-9-2LE and time synchronization....................................................................754 Setting parameters....................................................................75911

Application manual

Table of contents

LON communication protocol.........................................................760 Application.................................................................................760 Setting parameters....................................................................761 SPA communication protocol.........................................................762 Application.................................................................................762 Setting guidelines......................................................................764 Setting parameters....................................................................765 IEC 60870-5-103 communication protocol.....................................765 Application.................................................................................765 Setting parameters....................................................................771 Multiple command and transmit MULTICMDRCV, MULTICMDSND.............................................................................774 Application.................................................................................774 Setting guidelines......................................................................774 Settings................................................................................774 Setting parameters....................................................................774

Section 5

Remote communication................................................775Binary signal transfer......................................................................775 Application.................................................................................775 Communication hardware solutions.....................................775 Setting guidelines......................................................................776 Setting parameters....................................................................779

Section 6

Configuration................................................................783Introduction.....................................................................................783 Description of configuration RET670..............................................784 Introduction................................................................................784 Description of configuration A30..........................................784 Description of configuration B30..........................................787 Description of configuration A40..........................................789 Description of configuration B40..........................................791 Description of configuration A10..........................................793 Description of configuration A25..........................................795

Section 7

Glossary.......................................................................799

12 Application manual

1MRK 504 116-UEN B

Section 1 Introduction

Section 1

Introduction

About this chapterThis chapter introduces the user to the manual as such.

1.11.1.1

Introduction to the application manualAbout the complete set of manuals for an IEDThe users manual (UM) is a complete set of five different manuals:Decommissioning deinstalling & disposalIEC09000744-1-en.vsdIEC09000744 V1 EN

Planning & purchase

Commissioning

Engineering

Engineeringmanual Installation and Commissioning manual Operators manual Application manual Technical reference manual

The Application Manual (AM) contains application descriptions, setting guidelines and setting parameters sorted per function. The application manual should be used to find out when and for what purpose a typical protection function could be used. The manual should also be used when calculating settings. The Technical Reference Manual (TRM) contains application and functionality descriptions and it lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The technical reference

Operation

Installing

Maintenance

13 Application manual

Section 1 Introduction

1MRK 504 116-UEN B

manual should be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service. The Installation and Commissioning Manual (ICM) contains instructions on how to install and commission the protection IED. The manual can also be used as a reference during periodic testing. The manual covers procedures for mechanical and electrical installation, energizing and checking of external circuitry, setting and configuration as well as verifying settings and performing directional tests. The chapters are organized in the chronological order (indicated by chapter/section numbers) in which the protection IED should be installed and commissioned. The Operators Manual (OM) contains instructions on how to operate the protection IED during normal service once it has been commissioned. The operators manual can be used to find out how to handle disturbances or how to view calculated and measured network data in order to determine the cause of a fault. The Engineering Manual (EM) contains instructions on how to engineer the IEDs using the different tools in PCM600. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 61850 and DNP3.

1.1.2

About the application manualThe application manual contains the following chapters: The chapter Requirements describes current and voltage transformer requirements. The chapter IED application describes the use of the included software functions in the IED. The chapter discusses application possibilities and gives guidelines for calculating settings for a particular application. The chapter Station communication describes the communication possibilities in a SA-system. The chapter Remote communication describes the remote end data communication possibilities through binary signal transferring. The chapter Configuration describes the preconfiguration of the IED and its complements. The chapter Glossary is a list of terms, acronyms and abbreviations used in ABB technical documentation.

1.1.3

Intended audienceGeneralThe application manual is addressing the system engineer/technical responsible that is responsible for specifying the application of the IED.

14 Application manual

1MRK 504 116-UEN B

Section 1 IntroductionRequirementsThe system engineer/technical responsible must have a good knowledge about protection systems, protection equipment, protection functions and the configured functional logics in the protection.

1.1.4Documents related to RET670 Operators manual

Related documentsIdentity number 1MRK 504 114-UEN 1MRK 504 115-UEN 1MRK 504 113-UEN 1MRK 504 116-UEN 1MRK 504 117-BEN 1MRK 504 118-BEN 1MRK 504 104-BEN SA2005-001283

Installation and commissioning manual Technical reference manual Application manual Product guide customized Product guide pre-configured Product guide IEC 61850-9-2 Sample specification

Connection and Installation components Test system, COMBITEST Accessories for 670 series IEDs 670 series SPA and signal list IEC 61850 Data objects list for 670 series Engineering manual 670 series Communication set-up for Relion 670 series

1MRK 513 003-BEN 1MRK 512 001-BEN 1MRK 514 012-BEN 1MRK 500 092-WEN 1MRK 500 091-WEN 1MRK 511 240-UEN 1MRK 505 260-UEN

More information can be found on www.abb.com/substationautomation.

1.1.5

Revision notesRevision A B Description Minor corrections made Minor corrections made

15 Application manual

16

1MRK 504 116-UEN B

Section 2 Requirements

Section 2

Requirements

About this chapterThis chapter describes current and voltage transformer requirements.

2.1

Current transformer requirementsThe performance of a protection function will depend on the quality of the measured current signal. Saturation of the current transformer (CT) will cause distortion of the current signal and can result in a failure to operate or cause unwanted operations of some functions. Consequently CT saturation can have an influence on both the dependability and the security of the protection. This protection IED has been designed to permit heavy CT saturation with maintained correct operation.

2.1.1

Current transformer classificationTo guarantee correct operation, the current transformers (CTs) must be able to correctly reproduce the current for a minimum time before the CT will begin to saturate. To fulfill the requirement on a specified time to saturation the CTs must fulfill the requirements of a minimum secondary e.m.f. that is specified below. There are several different ways to specify CTs. Conventional magnetic core CTs are usually specified and manufactured according to some international or national standards, which specify different protection classes as well. There are many different standards and a lot of classes but fundamentally there are three different types of CTs: High remanence type CT Low remanence type CT Non remanence type CT

The high remanence type has no limit for the remanent flux. This CT has a magnetic core without any airgap and a remanent flux might remain almost infinite time. In this type of transformers the remanence can be up to around 80% of the saturation flux. Typical examples of high remanence type CT are class P, PX, TPS, TPX according to IEC, class P, X according to BS (old British Standard) and non gapped class C, K according to ANSI/IEEE. The low remanence type has a specified limit for the remanent flux. This CT is made with a small air gap to reduce the remanence to a level that does not exceed 10% of the saturation flux. The small air gap has only very limited influences on17 Application manual

Section 2 Requirements

1MRK 504 116-UEN B

the other properties of the CT. Class PR, TPY according to IEC are low remanence type CTs. The non remanence type CT has practically negligible level of remanent flux. This type of CT has relatively big air gaps in order to reduce the remanence to practically zero level. In the same time, these air gaps reduce the influence of the DCcomponent from the primary fault current. The air gaps will also decrease the measuring accuracy in the non-saturated region of operation. Class TPZ according to IEC is a non remanence type CT. Different standards and classes specify the saturation e.m.f. in different ways but it is possible to approximately compare values from different classes. The rated equivalent limiting secondary e.m.f. Eal according to the IEC 60044 6 standard is used to specify the CT requirements for the IED. The requirements are also specified according to other standards.

2.1.2

ConditionsThe requirements are a result of investigations performed in our network simulator. The current transformer models are representative for current transformers of high remanence and low remanence type. The results may not always be valid for non remanence type CTs (TPZ). The performances of the protection functions have been checked in the range from symmetrical to fully asymmetrical fault currents. Primary time constants of at least 120 ms have been considered at the tests. The current requirements below are thus applicable both for symmetrical and asymmetrical fault currents. Depending on the protection function phase-to-earth, phase-to-phase and threephase faults have been tested for different relevant fault positions for example, close in forward and reverse faults, zone 1 reach faults, internal and external faults. The dependability and security of the protection was verified by checking for example, time delays, unwanted operations, directionality, overreach and stability. The remanence in the current transformer core can cause unwanted operations or minor additional time delays for some protection functions. As unwanted operations are not acceptable at all maximum remanence has been considered for fault cases critical for the security, for example, faults in reverse direction and external faults. Because of the almost negligible risk of additional time delays and the non-existent risk of failure to operate the remanence have not been considered for the dependability cases. The requirements below are therefore fully valid for all normal applications. It is difficult to give general recommendations for additional margins for remanence to avoid the minor risk of an additional time delay. They depend on the performance and economy requirements. When current transformers of low remanence type (for example, TPY, PR) are used, normally no additional margin is needed. For current transformers of high remanence type (for example, P, PX, TPS, TPX) the small probability of fully asymmetrical faults, together with high

18 Application manual

1MRK 504 116-UEN B

Section 2 Requirements

remanence in the same direction as the flux generated by the fault, has to be kept in mind at the decision of an additional margin. Fully asymmetrical fault current will be achieved when the fault occurs at approximately zero voltage (0). Investigations have shown that 95% of the faults in the network will occur when the voltage is between 40 and 90. In addition fully asymmetrical fault current will not exist in all phases at the same time.

2.1.3

Fault currentThe current transformer requirements are based on the maximum fault current for faults in different positions. Maximum fault current will occur for three-phase faults or single phase-to-earth faults. The current for a single phase-to-earth fault will exceed the current for a three-phase fault when the zero sequence impedance in the total fault loop is less than the positive sequence impedance. When calculating the current transformer requirements, maximum fault current for the relevant fault position should be used and therefore both fault types have to be considered.

2.1.4

Secondary wire resistance and additional loadThe voltage at the current transformer secondary terminals directly affects the current transformer saturation. This voltage is developed in a loop containing the secondary wires and the burden of all relays in the circuit. For earth faults the loop includes the phase and neutral wire, normally twice the resistance of the single secondary wire. For three-phase faults the neutral current is zero and it is just necessary to consider the resistance up to the point where the phase wires are connected to the common neutral wire. The most common practice is to use four wires secondary cables so it normally is sufficient to consider just a single secondary wire for the three-phase case. The conclusion is that the loop resistance, twice the resistance of the single secondary wire, must be used in the calculation for phase-to-earth faults and the phase resistance, the resistance of a single secondary wire, may normally be used in the calculation for three-phase faults. As the burden can be considerable different for three-phase faults and phase-toearth faults it is important to consider both cases. Even in a case where the phase-toearth fault current is smaller than the three-phase fault current the phase-to-earth fault can be dimensioning for the CT depending on the higher burden. In isolated or high impedance earthed systems the phase-to-earth fault is not the dimensioning case and therefore the resistance of the single secondary wire always can be used in the calculation, for this case.

19 Application manual

Section 2 Requirements 2.1.5 General current transformer requirements

1MRK 504 116-UEN B

The current transformer ratio is mainly selected based on power system data for example, maximum load. However, it should be verified that the current to the protection is higher than the minimum operating value for all faults that are to be detected with the selected CT ratio. The minimum operating current is different for different functions and normally settable so each function should be checked. The current error of the current transformer can limit the possibility to use a very sensitive setting of a sensitive residual overcurrent protection. If a very sensitive setting of this function will be used it is recommended that the current transformer should have an accuracy class which have an current error at rated primary current that is less than 1% (for example, 5P). If current transformers with less accuracy are used it is advisable to check the actual unwanted residual current during the commissioning.

2.1.6

Rated equivalent secondary e.m.f. requirementsWith regard to saturation of the current transformer all current transformers of high remanence and low remanence type that fulfill the requirements on the rated equivalent secondary e.m.f. Eal below can be used. The characteristic of the non remanence type CT (TPZ) is not well defined as far as the phase angle error is concerned. If no explicit recommendation is given for a specific function we therefore recommend contacting ABB to confirm that the non remanence type can be used. The CT requirements for the different functions below are specified as a rated equivalent limiting secondary e.m.f. Eal according to the IEC 60044-6 standard. Requirements for CTs specified in different ways are given at the end of this section.

2.1.6.1

Transformer differential protectionThe current transformers must have a rated equivalent secondary e.m.f. Eal that is larger than the maximum of the required secondary e.m.f. Ealreq below:

E al E alreq = 30 I nt EQUATION1412 V1 EN

Isn I pn

S R CT + R L + R I2 r (Equation 1)

E al E alreq = 2 I tf EQUATION1413 V1 EN

Isn S R CT + R L + R I pn I2 r(Equation 2)

20 Application manual

1MRK 504 116-UEN B

Section 2 Requirements

where: Int Itf Ipn Isn Ir RCT RL The rated primary current of the power transformer (A) Maximum primary fundamental frequency current that passes two main CTs and the power transformer (A) The rated primary CT current (A) The rated secondary CT current (A) The rated current of the protection IED (A) The secondary resistance of the CT (W) The resistance of the secondary wire and additional load (W). The loop resistance containing the phase and neutral wires must be used for faults in solidly earthed systems. The resistance of a single secondary wire should be used for faults in high impedance earthed systems. The burden of an IED current input channel (VA). SR=0.020 VA/channel for Ir=1 A and Sr=0.150 VA/channel for Ir=5 A

SR

In substations with breaker-and-a-half or double-busbar double-breaker arrangement, the fault current may pass two main CTs for the transformer differential protection without passing the power transformer. In such cases and if both main CTs have equal ratios and magnetization characteristics the CTs must satisfy equation 1 and equation 3.

E al E alreq = If EQUATION1414 V1 EN

Isn S R CT + R L + R I pn I2 r(Equation 3)

where: If Maximum primary fundamental frequency current that passes two main CTs without passing the power transformer (A)

2.1.6.2

Distance protectionThe current transformers must have a rated equivalent secondary e.m.f. Eal that is larger than the maximum of the required secondary e.m.f. Ealreq below:

E al E alreq =EQUATION1080 V1 EN

I k max Isn S a R CT + R L + R I pn I2 r(Equation 4)

E al E alreq =EQUATION1081 V1 EN

I kzone1 Isn S k R CT + R L + R I pn I2 r(Equation 5)

21 Application manual

Section 2 Requirements

1MRK 504 116-UEN B

where: Ikmax Ikzone1 Ipn Isn Ir RCT RL Maximum primary fundamental frequency current for close-in forward and reverse faults (A) Maximum primary fundamental frequency current for faults at the end of zone 1 reach (A) The rated primary CT current (A) The rated secondary CT current (A) The rated current of the protection IED (A) The secondary resistance of the CT (W) The resistance of the secondary wire and additional load (W). In solidly earthed systems the loop resistance containing the phase and neutral wires should be used for phase-to-earth faults and the resistance of the phase wire should be used for three-phase faults. In isolated or high impedance earthed systems the resistance of the single secondary wire always can be used. The burden of an IED current input channel (VA). SR=0.020 VA/channel for Ir=1 A and Sr=0.150 VA/channel for Ir=5 A This factor is a function of the primary time constant for the dc component in the fault current. a= 2 for the primary time constant Tp 50 ms a = 3 for the primary time constant Tp> 50 ms A factor of the primary time constant for the dc component in the fault current for a three-phase fault at the set reach of zone 1. k = 4 for the primary time constant Tp 30 ms k = 6 for the primary time constant Tp> 30 ms

SR a

k

2.1.6.3

Restricted earth fault protection (low impedance differential)The requirements are specified separately for solidly earthed and impedance earthed transformers. For impedance earthed transformers the requirements for the phase CTs are depending whether it is three individual CTs connected in parallel or it is a cable CT enclosing all three phases.

Neutral CTs and phase CTs for solidly earthed transformers

The neutral CT and the phase CTs must have a rated equivalent secondary e.m.f. Eal that is larger than or equal to the maximum of the required secondary e.m.f. Ealreq below:

Eal Ealreq = 30 I nt EQUATION2237 V1 EN

I sn S RCT + RL + R 2 I pn Ir (Equation 6)

Eal Ealreq = 2 I etf EQUATION2238 V1 EN

I sn S RCT + RL + R 2 I pn Ir (Equation 6)

22 Application manual

1MRK 504 116-UEN B

Section 2 Requirements

Where: Int Ietf Ipn Isn Ir RCT RL SR The rated primary current of the power transformer (A) Maximum primary fundamental frequency phase-to-earth fault current that passes the CTs and the power transformer neutral (A) The rated primary CT current (A) The rated secondary CT current (A) The rated current of the protection IED (A) The secondary resistance of the CT () The resistance of the secondary wire and additional load (). The loop resistance containing the phase and neutral wires shall be used. The burden of a REx670 current input channel (VA). SR=0,020 VA / channel for IR = 1 A and SR = 0,150 VA / channel for IR = 5 A

In substations with breaker-and-a-half or double-busbar double-breaker arrangement, the fault current may pass two main phase CTs for the restricted earth fault protection without passing the power transformer. In such cases and if both main CTs have equal ratios and magnetization characteristics the CTs must satisfy Requirement (12) and the Requirement (14) below:

Eal Ealreq = I ef EQUATION2239 V1 EN

I sn I pn

RCT + RL +

SR2

Ir (Equation 7)

Where: Ief Maximum primary fundamental frequency phase-to-earth fault current that passes two main CTs without passing the power transformer neutral (A)

Neutral CTs and phase CTs for impedance earthed transformers

The neutral CT and phase CTs must have a rated equivalent secondary e.m.f. Eal that is larger than or equal to the required secondary e.m.f. Ealreq below:

Eal Ealreq = 3 I etf EQUATION2240 V1 EN

I sn I pn

RCT + RL +

SR2

Ir (Equation 8)

Where: Ietf Ipn Isn Ir Maximum primary fundamental frequency phase-to-earth fault current that passes the CTs and the power transformer neutral (A) The rated primary CT current (A) The rated secondary CT current (A) The rated current of the protection IED (A)

Table continues on next page 23 Application manual

Section 2 Requirements

1MRK 504 116-UEN B

RCT RL SR

The secondary resistance of the CT () The resistance of the secondary wire and additional load (). The loop resistance containing the phase and neutral wires shall be used. The burden of a REx670 current input channel (VA). SR = 0,020 VA / channel for Ir = 1 A and SR = 0,150 VA / channel for Ir = 5 A

In case of three individual CTs connected in parallel (Holmgren connection) on the phase side the following additional requirements must also be fulfilled. The three individual phase CTs must have a rated equivalent secondary e.m.f. Eal that is larger than or equal to the maximum of the required secondary e.m.f. Ealreq below:

Eal Ealreq = 2 I tf EQUATION2241 V1 EN

I sn S RCT + RL + R 2 I pn Ir (Equation 9)

Where: Itf RLsw Maximum primary fundamental frequency three-phase fault current that passes the CTs and the power transformer (A). The resistance of the single secondary wire and additional load ().

In impedance earthed systems the phase-to-earth fault currents often are relatively small and the requirements might result in small CTs. However, in applications where the zero sequence current from the phase side of the transformer is a summation of currents from more than one CT (cable CTs or groups of individual CTs in Holmgren connection) for example, in substations with breaker-and-a-half or double-busbar double-breaker arrangement or if the transformer has a Tconnection to different busbars, there is a risk that the CTs can be exposed for higher fault currents than the considered phase-to-earth fault currents above. Examples of such cases can be cross-country faults or phase-to-phase faults with high fault currents and unsymmetrical distribution of the phase currents between the CTs. The zero sequence fault current level can differ much and is often difficult to calculate or estimate for different cases. To cover these cases, with summation of zero sequence currents from more than one CT, the phase side CTs must fulfill the Requirement (17) below:

Eal Ealreq = I f EQUATION2242 V1 EN

I sn I pn

RCT + RL +

SR2

Ir (Equation 10)

24 Application manual

1MRK 504 116-UEN B

Section 2 Requirements

Where: If RL Maximum primary fundamental frequency three-phase fault current that passes the CTs (A) The resistance of the secondary wire and additional load (). The loop resistance containing the phase and neutral wires shall be used.

2.1.7

Current transformer requirements for CTs according to other standardsAll kinds of conventional magnetic core CTs are possible to use with the IEDs if they fulfill the requirements corresponding to the above specified expressed as the rated equivalent secondary e.m.f. Eal according to the IEC 60044-6 standard. From different standards and available data for relaying applications it is possible to approximately calculate a secondary e.m.f. of the CT comparable with Eal. By comparing this with the required secondary e.m.f. Ealreq it is possible to judge if the CT fulfills the requirements. The requirements according to some other standards are specified below.

2.1.7.1

Current transformers according to IEC 60044-1, class P, PRA CT according to IEC 60044-1 is specified by the secondary limiting e.m.f. E2max. The value of the E2max is approximately equal to the corresponding Eal according to IEC 60044-6. Therefore, the CTs according to class P and PR must have a secondary limiting e.m.f. E2max that fulfills the following:E 2 max > max imum of E alreqEQUATION1383 V1 EN

(Equation 11)

2.1.7.2

Current transformers according to IEC 60044-1, class PX, IEC 60044-6, class TPS (and old British Standard, class X)CTs according to these classes are specified approximately in the same way by a rated knee-point e.m.f. Eknee (Ek for class PX, EkneeBS for class X and the limiting secondary voltage Ual for TPS). The value of the Eknee is lower than the corresponding Eal according to IEC 60044-6. It is not possible to give a general relation between the Eknee and the Eal but normally the Eknee is approximately 80 % of the Eal. Therefore, the CTs according to class PX, X and TPS must have a rated knee-point e.m.f. Eknee that fulfills the following:Eknee Ek EkneeBS Ual > 0.8 (maximum of Ealreq)EQUATION2100 V1 EN

(Equation 12)

25 Application manual

Section 2 Requirements2.1.7.3 Current transformers according to ANSI/IEEE

1MRK 504 116-UEN B

Current transformers according to ANSI/IEEE are partly specified in different ways. A rated secondary terminal voltage UANSI is specified for a CT of class C. UANSI is the secondary terminal voltage the CT will deliver to a standard burden at 20 times rated secondary current without exceeding 10 % ratio correction. There are a number of standardized UANSI values for example, UANSI is 400 V for a C400 CT. A corresponding rated equivalent limiting secondary e.m.f. EalANSI can be estimated as follows:E a lANSI = 20 I s n R C T + U A NSI = 20 I s n R C T + 20 Is n Z b ANSIEQUATION971 V1 EN

(Equation 13)

where: ZbANSI UANSI The impedance (that is, complex quantity) of the standard ANSI burden for the specific C class (W) The secondary terminal voltage for the specific C class (V)

The CTs according to class C must have a calculated rated equivalent limiting secondary e.m.f. EalANSI that fulfills the following:E alANSI > max imum of E alreqEQUATION1384 V1 EN

(Equation 14)

A CT according to ANSI/IEEE is also specified by the knee-point voltage UkneeANSI that is graphically defined from an excitation curve. The knee-point voltage UkneeANSI normally has a lower value than the knee-point e.m.f. according to IEC and BS. UkneeANSI can approximately be estimated to 75 % of the corresponding Eal according to IEC 60044 6. Therefore, the CTs according to ANSI/ IEEE must have a knee-point voltage UkneeANSI that fulfills the following:EkneeANSI > 0.75 (maximum of Ealreq)EQUATION2101 V1 EN

(Equation 15)

2.2

Voltage transformer requirementsThe performance of a protection function will depend on the quality of the measured input signal. Transients caused by capacitive voltage transformers (CVTs) can affect some protection functions. Magnetic or capacitive voltage transformers can be used.

26 Application manual

1MRK 504 116-UEN B

Section 2 Requirements

The capacitive voltage transformers (CVTs) should fulfill the requirements according to the IEC 600445 standard regarding ferro-resonance and transients. The ferro-resonance requirements of the CVTs are specified in chapter 7.4 of the standard. The transient responses for three different standard transient response classes, T1, T2 and T3 are specified in chapter 15.5 of the standard. CVTs according to all classes can be used. The protection IED has effective filters for these transients, which gives secure and correct operation with CVTs.

2.3

SNTP server requirementsThe SNTP server to be used is connected to the local network, that is not more than 4-5 switches or routers away from the IED. The SNTP server is dedicated for its task, or at least equipped with a real-time operating system, that is not a PC with SNTP server software. The SNTP server should be stable, that is, either synchronized from a stable source like GPS, or local without synchronization. Using a local SNTP server without synchronization as primary or secondary server in a redundant configuration is not recommended.

2.4

IEC 61850-9-2LE Merging unit requirementsThe merging units that supply the IED with measured values via the process bus must fulfill the IEC61850-9-2LE standard. This part of the IEC61850 is specifying Communication Service Mapping (SCSM) Sampled values over ISO/IEC 8802, in other words sampled data over Ethernet. The 9-2 part of the IEC61850 protocol uses also definitions from 7-2, Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI). The set of functionality implemented in the IED (IEC61850-9-2LE) is a subset of the IEC61850-9-2. For example the IED covers the client part of the standard, not the server part. The standard does not define the sample rate for data, but in the UCA users group recommendations there are indicated sample rates that are adopted, by consensus, in the industry. There are two sample rates defined: 80 samples/cycle (4000 samples/sec. at 50Hz or 4800 samples/sec. at 60 Hz) for a merging unit type1 and 256 samples/cycle for a merging unit type2. The IED can receive data rates of 80 samples/cycle. Note that the IEC 61850-9-2 LE standard does not specify the quality of the sampled values, only the transportation. Thus, the accuracy of the current and

27 Application manual

Section 2 Requirements

1MRK 504 116-UEN B

voltage inputs to the merging unit and the inaccuracy added by the merging unit must be coordinated with the requirement for actual type of protection function. Factors influencing the accuracy of the sampled values from the merging unit are for example anti aliasing filters, frequency range, step response, truncating, A/D conversion inaccuracy, time tagging accuracy etc. In principle shall the accuracy of the current and voltage transformers, together with the merging unit, have the same quality as direct input of currents and voltages.

28 Application manual

1MRK 504 116-UEN B

Section 3 IED application

Section 3

IED application

About this chapterThis chapter describes the use of the included software functions in the IED. The chapter discusses application possibilities and gives guidelines for calculating settings for a particular application.

3.1

General IED applicationRET670 provides fast and selective protection, monitoring and control for two- and three-winding transformers, autotransformers, generator-transformer units, phase shifting transformers, special railway transformers and shunt reactors. The transformer IED is designed to operate correctly over a wide frequency range in order to accommodate power system frequency variations during disturbances and generator start-up and shut-down. A very fast differential protection function, with automatic CT ratio matching and vector group compensation, makes this IED the ideal solution even for the most demanding applications. Since RET670 has very low requirements on the main CTs, no interposing CTs are required.It is suitable for differential applications with multi-breaker arrangements with up to six restraint CT inputs. The differential protection function is provided with 2nd harmonic and wave-block restraint features to avoid tripping for magnetizing inrush current, and 5th harmonic restraint to avoid tripping for overexcitation. The differential function offers a high sensitivity for low-level internal faults. The unique and innovative sensitive differential protection feature of the RET670 provides the best possible coverage for winding internal turn-to-turn faults, based on well-known theory of symmetrical components . Low impedance restricted earth-fault protection functions are available as complimentary sensitive and fast main protection against winding earth faults. This function includes a directional zero-sequence current criterion for additional security. Additionally a high impedance differential function is available. It can be used as restricted earth fault or, as three functions are included, also as differential protection on autotransformers, as differential protection for a tertiary connected reactor, as T-differential protection for the transformer feeder in a mesh-corner or ring arrangement, as tertiary bus protection and so on. Tripping from Pressure relief/Buchholz and temperature devices can be done through the transformer IED where pulsing, lock-out contact output and so on, is performed. The binary inputs are heavily stabilized against disturbance to prevent29

Application manual

Section 3 IED application

1MRK 504 116-UEN B

incorrect operations at for example, dc system capacitive discharges or DC earth faults. Distance protection functionality for phase-to-phase and/or phase-to-earth faults is available as back-up protection for faults within the transformer and in the connected power system. Versatile phase, earth, positive, negative and zero sequence overcurrent functions, which can optionally be made directional and/or voltage controlled, provide further alternative backup protection. Thermal overload with two time-constants, volts per hertz, over/under voltage and over/under frequency protection functions are also available. A built-in disturbance and event recorder provides valuable data to the user about status and operation for post-fault disturbance analysis. Breaker failure protection for each transformer breaker allows high speed back-up tripping of surrounding breakers. The transformer IED can also be provided with a full control and interlocking functionality including Synchrocheck function to allow integration of the main and/ or a local back-up control. Out of Step function is available to separate power system sections close to electrical centre at occurring out of step. RET670 can be used in applications with the IEC 61850-9-2LE process bus with up to two Merging Units (MU). Each MU has eight analogue channels, normally four current and four voltages. Conventional and Merging Unit channels can be mixed freely in your application. The advanced logic capability, where user logic is prepared with a graphical tool, allows special applications such as automatic opening of disconnectors in multibreaker arrangements, closing of breaker rings, load transfer logic and so on. The graphical configuration tool ensures simple and fast testing and commissioning. Serial data communication is via optical connections to ensure immunity against disturbances. The wide application flexibility makes this product an excellent choice for both new installations and the refurbishment of existing installations.

3.23.2.1

Analog inputsIntroductionAnalog input channels must be configured and set properly to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be

30 Application manual

1MRK 504 116-UEN B

Section 3 IED application

defined properly. Measuring and protection algorithms in the IED use primary system quantities. Set values are done in primary quantities as well and it is important to set the data about the connected current and voltage transformers properly. A reference PhaseAngleRef can be defined to facilitate service values reading. This analog channels phase angle will always be fixed to zero degree and all other angle information will be shown in relation to this analog input. During testing and commissioning of the IED the reference channel can be changed to facilitate testing and service values reading. The IED has the ability to receive analog values from primary equipment, that are sampled by Merging units (MU) connected to a process bus, via the IEC 61850-9-2 LE protocol.

The availability of VT inputs depends on the ordered transformer input module (TRM) type.

3.2.2

Setting guidelinesThe available setting parameters related to analog inputs are depending on the actual hardware (TRM) and the logic configuration made in PCM600.

3.2.2.1

Setting of the phase reference channelAll phase angles are calculated in relation to a defined reference. An appropriate analog input channel is selected and used as phase reference. The parameter PhaseAngleRef defines the analog channel that is used as phase angle reference.

Example

The setting PhaseAngleRef=10 shall be used if a phase-to-earth voltage (usually the L1 phase-to-earth voltage connected to VT channel number 10 of the analog card) is selected to be the phase reference.

Setting of current channels

The direction of a current to the IED is depending on the connection of the CT. Unless indicated otherwise, the main CTs are supposed to be star connected and can be connected with the earthing point to the object or from the object. This information must be set in the IED. The convention of the directionality is defined as follows: A positive value of current, power, and so on means that the quantity has the direction into the object and a negative value means direction out from the

31 Application manual

Section 3 IED application

1MRK 504 116-UEN B

object. For directional functions the direction into the object is defined as Forward and the direction out from the object is defined as Reverse. See figure 1Definition of direction for directional functions Reverse Forward Definition of direction for directional functions Forward Reverse

Protected Object Line, transformer, etce.g. P, Q, I Measured quantity is positive when flowing towards the object Set parameter CTStarPoint Correct Setting is "ToObject" e.g. P, Q, I Measured quantity is positive when flowing towards the object Set parameter CTStarPoint Correct Setting is "FromObject" en05000456.vsdIEC05000456 V1 EN

Figure 1:

Internal convention of the directionality in the IED

With correct setting of the primary CT direction, CTStarPoint set to FromObject or ToObject, a positive quantities always flowing towards the object and a direction defined as Forward always is looking towards the object. The following examples show the principle.

Example 1

Two IEDs used for protection of two objects.

32 Application manual

1MRK 504 116-UEN B

Section 3 IED application

LineIp

Transformer

Ip

Ip

LineReverse Forward

Is

Transformer protection

Definition of direction for directional functions Is

Line protection

Setting of current input: Set parameter CTStarPoint with Transformer as reference object. Correct setting is "ToObject"

Setting of current input: Set parameter CTStarPoint with Transformer as reference object. Correct setting is "ToObject"

Setting of current input: Set parameter CTStarPoint with Line as reference object. Correct setting is "FromObject"en05000753.vsd

IEC05000753 V1 EN

Figure 2:

Example how to set CTStarPoint parameters in the IED

The figure 2 shows the most normal case where the objects have their own CTs. The settings for CT direction shall be done according to the figure. To protect the line the direction of the directional functions of the line protection shall be set to Forward. This means that the protection is looking towards the line.

Example 2

Two IEDs used for protection of two objects and sharing a CT.

33 Application manual

Section 3 IED application

1MRK 504 116-UEN B

Transformer LineReverse Forward

Transformer protection

Definition of direction for directional functions

Line protection

Setting of current input: Set parameter CTStarPoint with Transformer as reference object. Correct setting is "ToObject"

Setting of current input: Set parameter CTStarPoint with Transformer as reference object. Correct setting is "ToObject"

Setting of current input: Set parameter CTStarPoint with Line as reference object. Correct setting is "FromObject"en05000460.vsd

IEC05000460 V1 EN

Figure 3:

Example how to set CTStarPoint parameters in the IED

This example is similar to example 1 but the transformer is feeding just one line and the line protection uses the same CT as the transformer protection does. The CT direction is set with different reference objects for the two IEDs though it is the same current from the same CT that is feeding two IEDs. With these settings the directional functions of the line protection shall be set to Forward to look towards the line.

Example 3

One IED used to protect two objects.

34 Application manual

1MRK 504 116-UEN B

Section 3 IED application

Transformer LineForward Reverse

Transformer and Line protection

Definition of direction for directional line functions

Setting of current input: Set parameter CTStarPoint with Transformer as reference object. Correct setting is "ToObject"

Setting of current input: Set parameter CTStarPoint with Transformer as reference object. Correct setting is "ToObject"en05000461.vsd

IEC05000461 V1 EN

Figure 4:

Example how to set CTStarPoint parameters in the IED

In this example one IED includes both transformer and line protection and the line protection uses the same CT as the transformer protection does. For both current input channels the CT direction is set with the transformer as reference object. This means that the direction Forward for the line protection is towards the transformer. To look towards the line the direction of the directional functions of the line protection must be set to Reverse. The direction Forward/Reverse is related to the reference object that is the transformer in this case. When a function is set to Reverse and shall protect an object in reverse direction it shall be noted that some directional functions are not symmetrical regarding the reach in forward and reverse direction. It is in first hand the reach of the directional criteria that can differ. Normally it is not any limitation but it is advisable to have it in mind and check if it is acceptable for the application in question. If the IED has a sufficient number of analog current inputs an alternative solution is shown in figure 5. The same currents are fed to two separate groups of inputs and the line and transformer protection functions are configured to the different inputs. The CT direction for the current channels to the line protection is set with the line as reference object and the directional functions of the line protection shall be set to Forward to protect the line.

35 Application manual

Section 3 IED application

1MRK 504 116-UEN B

Transformer LineReverse Forward

Transformer and Line protection

Definition of direction for directional line functions

Setting of current input for transformer functions: Set