1D Full Wave Analysis of Parametric Decay Instability (PDI ... · 1D Full Wave Analysis of...

21
/21 1D Full Wave Analysis of Parametric Decay Instability (PDI) in Alcator C‐Mod and NSTX Guangye Chen, Frederick Jaeger, Lee Berry (ORNL) Jim Myra (Lodestar) Phillip Ryan, John Wilgen, Theodore Biewer, Greg Hanson (ORNL) RF Sic‐Dac Group, PPPL RF Group US‐Japan RF Physics WorkshopGA, 03/09/2010 1

Transcript of 1D Full Wave Analysis of Parametric Decay Instability (PDI ... · 1D Full Wave Analysis of...

/21

1DFullWaveAnalysisofParametricDecayInstability(PDI)inAlcator

C‐ModandNSTXGuangyeChen,FrederickJaeger,LeeBerry(ORNL)

JimMyra(Lodestar)PhillipRyan,JohnWilgen,TheodoreBiewer,GregHanson(ORNL)

RFSic‐DacGroup,PPPLRFGroupUS‐JapanRFPhysicsWorkshop,GA,

03/09/2010

1

/21

PDIandedgeionheaRnginIBWandICRFexperiments

Rost2002,CMOD

Pinsker1993,DIII‐D

Biewer2005,NSTX

antenna freq.

LangmuirProbe Magne/cProbeNBAERD

2G. Chen US-Japan Workshop 03/09/2010

Thomas1995,ToreSupra

/21

MoRvaRon

•  PDIhasbeenwidelyobservedintokamakICRFandIBWheaRngexperiments(NSTX,ALCATORC‐MOD,DIII‐D,TORESUPRA,TST‐2,HT‐7,etc.).

•  PDIinthescrape‐off‐layer(SOL)canleadtosignificantpowerloss,degradingtherfheaRngefficiencyinthebulkplasma(eg.directIBW).

•  AquanRtaRveunderstandingofPDIisneeded.

3G. Chen US-Japan Workshop 03/09/2010

/21

Outline

•  AORSAcode,PDImodelequaRons.•  PDIsimulaRonsforAlcatorC‐ModandNSTX.

•  AfullwavesimulaRonofedgereflectometryonNSTX.

•  Summary.

4G. Chen US-Japan Workshop 03/09/2010

/21

OuranalysisisbasedonAll‐ORdersSpectralAlgorithm(AORSA)•  AORSAsolvesMaxwell’sequaRonsusingalinearizedplasma

response.

•  Theplasmacurrentisgivenby

•  WeuseaspectralmethodwithFourierbasisfuncRons.•  IntegralequaRonleadstoadensesetoflinearequaRonswith~500k

linearcomplexequaRons.

5G. Chen US-Japan Workshop 03/09/2010

jp (r,t) = dt ' dr'σ (r − r',t − t') ⋅ E(r',t')∫−∞

t

/21

Anexample:HighHarmonicFastWaveheaRngonNSTX

6G. Chen US-Japan Workshop 03/09/2010

•  An antenna excites fast waves.

•  Linear theory predicts that fast waves mainly heat electrons via Landau damping.

•  To explain the observed edge ion heating, we may have to apply a non-linear theory.

x (R)

y Φ

/21

C1(E0,E1,E2) = −µ*

2(σ1 −σ 2) ⋅

species∑ E2(x) +

µ2

4(σ1 −σ 2) ⋅E1(x)]

species∑

•  Thepumpwaveissolvedindependently,andisassumedconstantintheedge

•  Daughterwavesaresolvedby

•  ParametricCouplinggivenadipole‐pump:

•  Withthepumpgiven,thesystemofequaRonsislinearandcanbesolvedbyadirectsolver.

PDImodelequaRons

−c 2

ω02 ∇ ×∇ ×E0( ) + K0 ⋅E0 = −

iε0ω0

Jantenna

−c 2

ω12 ∇ ×∇ ×E1( ) + K1 ⋅E1 = C1(E0,E1,E2) −

iε0ω1

Jnoise,1

−c 2

ω22 ∇ ×∇ ×E2( ) + K2 ⋅E2 = C2(E0,E1,E2) −

iε0ω2

Jnoise,2€

ω0 =ω1 +ω2

k0 = k1 + k2

7G. Chen US-Japan Workshop 03/09/2010

Slection rules:

/21

PDIsimulaRonsforAlcatorC‐Mod

f2 53.4 MHz f3 26.6 MHz Te 15 eV Ti 3 eV ne 1 x 1019 m-3 B0 5.3 T rt 0.9 m ky 2000 m-1

40

ExponenRalgrowthofthedaughterfield

Pumpfield(A.U.)

E(IBW)

8G. Chen US-Japan Workshop 03/09/2010

An example.

/21

Whichwavestosimulate?DaughterwavessaRsfyingthefollowingcondiRonsaretobeexcited:

1.selecRonrules

2.oneofthedaughterwavesisalinearplasmawave.IntheICRFrange,fastwave‐‐>IBW+quasimode(Porkolab,1990).? €

ω0 =ω1 +ω2

k0 = k1 + k2

9G. Chen US-Japan Workshop 03/09/2010

/21

SpaRalevoluRonofIBW’sintheSOL

•  –  Slow convergence of simulation for large –  larger coupling for large

•  Damping(left)<<damping(right) -> Ion cyclotron heating

k⊥

k⊥ (left) << k⊥ (right)

10G. Chen US-Japan Workshop 03/09/2010

Ion harmonic

k⊥

/21

LocalIBWdispersionrelaRon&decaychannels

FAST WAVE

QM IBW

IBW QM

QM IBW

CMODMinorityhea/ngregime

11G. Chen US-Japan Workshop 03/09/2010

/21

PDIdispersioncalculaRons

12G. Chen US-Japan Workshop 03/09/2010

ω/ωcD ω/ωcD

n ϕ

E⊥ = 9kV /m

E⊥ = 27kV /m

Growth rate (s-1) Growth rate (s-1)

pump

CMODMinorityhea/ngregime

/21

PDIthresholdisconsistentwithexperiment

 Linear3DAORSAsimulaRonspredicttypicalfastwaveedgeamplitude=kV/[email protected]. ScalingtrendsforthePDIthresholdbehaviorwithdensity,temperatureareconsistentwithRef.[Rost2002].

ExponenRalgrowth

FastwaveIBW+QM

noise

13G. Chen US-Japan Workshop 03/09/2010

(5,12)

CMODMinorityhea/ngregime

/21

PDIsimulaRonsforNSTX

•  DaughterIBWamplitudesvs.frequencyatafixedpointintheedge.

•  BothweakandstrongPDIaresimulated.

•  Peaksareseparatedbythecyclotronfrequencyattheprobe().

•  Simulation parameters: –  Te = Ti = 50 eV, –  ne = 2 × 1018 m-3, –  Bϕ = 0.45 T –  ky = 7000 m-1, nϕ = 15

Antennafrequency

Logscale

probemeasurements[Diem,APS04]

Ωi

Ωi

14G. Chen US-Japan Workshop 03/09/2010

/21

PDIdispersioncalculaRonsforNSTXGrowthrate(s‐1)

MOST UNSTABLE MODES

15G. Chen US-Japan Workshop 03/09/2010

pump ω/ωcD

n ϕ

/21

PDIkϕdependenceisconsistentwithedgeionheaRngandreflectometermeasurements

RelaRveAmplitu

deofP

DI

Gen

erated

IBW

PRF=1.2‐1.3MW

Bφ = 0.5 T

  Poloidal ion temperature increases with toroidal wave length (Talyor 2010).   Predicted power threshold is consistent with previous reflectometer

measurements (100 to 300kW), (Wilgen 2005).

16G. Chen US-Japan Workshop 03/09/2010

/21

Reflectometer and Langmiur probe show similar spectra on NSTX

G. Chen US-Japan Workshop 03/09/2010 17

Reflectometer RF Spectrum RF Langmuir Probe Spectrum

/21

FullwavecoldplasmasimulaRonofXmodereflectometry

G. Chen US-Japan Workshop 03/09/2010 18

Typical NSTX wave numbers: FAST WAVE: 50-100 m-1 IBW: 1000-10000 m-1

Matching condition*: k_pertrub = 2 (k_x)

ˆ n =1+ 0.001e(r−rp )2 /Δ2

sin(−ω pt + kp (r − rp ))

*N. Bretz, Phys. Fluids B 4, 2414 (1992) Reflecting layer

/21

FullwavesimulaRonofXmodereflectometry

G. Chen US-Japan Workshop 03/09/2010 19

Matching condition*: k_pertrub = 2 (k_x)

ˆ n =1+ 0.001e(r−rp )2 /Δ2

sin(−ω pt + kp (r − rp ))

*N. Bretz, Phys. Fluids B 4, 2414 (1992)

Higher order Bragg condition n (k_pertrub) = 2 (k_x) n = 1, 2

Reflectometor seems insensitive to very short wave length signals.

/21

TheplasmaresponsesoffastwaveandIBWaredifferent•  PlasmadensityfluctuaRonscausedbyrfwavesisevaluatedby

•  AssumenoiselevelIBWdensityfluctuaRonis

•  DensityfluctuaRonofIBWabovethethresholdisabout1000Rmeslargerthanthatcausedbyfastwave.

•  GiventhesameleveloffluctuaRons,thereflectometersignaloffastwaveisabout10,000RmeslowerthanthatofIBW.

Daughterwavesignal≈0.1fastwavesignal.

G. Chen US-Japan Workshop 03/09/2010 20

˜ n p = ˜ f (ω,n0,B0,E∫ )dv

0.1%n0PDIstrength DensityfluctuaLon(1/m3)

Pumpwave DaughterIBW

Belowthreshold 8e13 3e15

Abovethreshold 4e14 2e17

/21

Summary•  WesuccessfullysimulatedFastwave‐>IBW+QMusingtheAORSA

code.•  Themostunstablemodesarefoundtobethewavesexcitedjust

aboveancyclotronharmonic.•  PDIsimulaRonsagreewith

–  the threshold in a minority heating experiment on Cmod, –  the edge ion heating measurements on the kϕ dependence in

NSTX, –  the threshold measurement by reflectometer in NSTX.

•  FullwavereflectometrysimulaRonsshowthatthemeasurementforshort‐wave‐lengthdaughterwavesisnon‐local.

•  FutureworksincludeNSTXreflectormetorandprobedataanalysis,apredicRonforNSTXupgrade,andthecalculaRonofPDIpowerdeposiRon(1Dto2Dand3D).

21G. Chen US-Japan Workshop 03/09/2010