1_Basic Protection Principles

download 1_Basic Protection Principles

of 15

Transcript of 1_Basic Protection Principles

  • 8/17/2019 1_Basic Protection Principles

    1/15

    The year of Profitable Growth

    Basic ProtectionPrinciples

  • 8/17/2019 1_Basic Protection Principles

    2/15

    2

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    Overcurrent-time protection

    Definite-time

    overcurrent-

    protection

    Inverse-timeovercurrent-protection

    t

     I  I 

    N I

    > I

    >>

    t2

    t1

    t

     I  I N

    t

     I  I N

  • 8/17/2019 1_Basic Protection Principles

    3/15

    3

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    Differential protection

    Load condition

    Fault condition

    Load condition

    Fault condition

     I A I B

     I C

     I A  I B

     I C

    Line

    Busbar

    Istart - Iend = 0   ∆I = 0

    Istart - Iend≠ 0   ∆I ≠ 0

    IA + IB + IC ≠ 0   ΣI ≠ 0

    IA + IB + IC = 0   ΣI = 0

  • 8/17/2019 1_Basic Protection Principles

    4/15

    4

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    Overvoltage - Undervoltage

    U >

    UN

    U <

    Overvoltage

    Undervoltage

  • 8/17/2019 1_Basic Protection Principles

    5/15

    5

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    Time grading

    t = 700 ms

    t = 400 ms

    t = 100 ms

     I>

     I>

     I>

     I >  I >  I >

  • 8/17/2019 1_Basic Protection Principles

    6/15

    6

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    t

    t

    t

    t

    I>>

    I>

    OFF

    IE>>

    IE>

    IL1

    IL2

    IL3

    IE

    Valid for all devices with 4 input transformers

    OFF

    Function definite-time-protection

  • 8/17/2019 1_Basic Protection Principles

    7/15

    7

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    IL1

    IL2

    IL3

    (IE)

    OFF

    I>> t

    I>   t

    suitable for all types of neutral-point connection

    I>>

    I>

    I>>

    I>

    IL1

    IL2

    IL3

    IE

    IE is calcuated,

    (min. 0.1 x IN)and equipped with

    timer

    Function definite-time-protection (three current inputs)

  • 8/17/2019 1_Basic Protection Principles

    8/15

    8

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    Function definite-time protection (three current inputs)

    I>> t

    I>   t OFF

    OFF

    t

    t

    L2 is calculated

    I>>

    I>

    I>>

    I>

    IL1

    IL2

    IL3

    IE

    IL2

    IL1

    IL3

    (IE)

  • 8/17/2019 1_Basic Protection Principles

    9/15

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    t [sec]

    0.5

    1.0

    1.5

    2.0

    x IN0.5 1.0 1.5 2.0 2.5

    I> I>>

    Tripping area

    Tripping characteristic curve of a two-step definite-time protection

    Definite-time protection, Characteristic curves

  • 8/17/2019 1_Basic Protection Principles

    10/15

    10

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    x IN0.5 1.0 1.5 2.0 2.5

    t [sec]

    0.5

    1.0

    1.5

    2.0

    Tripping characteristic curve of an inverse-time protection

    Characteristic curves:

    IECANSI British Standard

    Inverse-time protection, Characteristic curves

  • 8/17/2019 1_Basic Protection Principles

    11/15

    11

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    IL1

    UL1

    OFF&

    I>> t

    Direction

    I>   t

    Instantaneous zone (I>>) directional

    Back-up zone (I>) non-directional

    Directional definite-time-protection

  • 8/17/2019 1_Basic Protection Principles

    12/15

    12

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    I1

    I2

    I3

    I4

    I5

    Measuring principle of differential protection devices

    Kirchhoff law: I1 + I2 + I3 + I4 + I5 = 0

    Current direction definition , .

  • 8/17/2019 1_Basic Protection Principles

    13/15

    13

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple. 1 (1) 2 (2)

    Setting of the differential protection at a line / cable

    1 + 2 - - 0

    0, 1 + 2 - /

    2.5.. 4  ≥ 0.15..0.2 , ( )

    1 500 , 2 -300 , , 500 , 50

    2,5 / , 0.25

    /, 500 / 500 + (-300 / 500) 1.0 - 0.6 0.4

    / , -

    I2

    CT2

    IDiff

    Voltage

    source U1

    CT1 Voltage

    source U2IC

    I1

  • 8/17/2019 1_Basic Protection Principles

    14/15

    14

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    IS = |I

    1| + |I

    2|

    Restraint current

    IDiff = | I1+I2|

    Differential current

    Tripping area ->

    trip

    Restraint area -> No tripIDiff 

    >

    Differential current due to line

    capacity / cable capacity

    Differential current due to linear 

    errors of the primary current transformers

    Differential current due to non-linear 

    errors of the primary current transformers

    k1=0.25

    I1   I2

    IDiff 

    k2=0.5

    Possible differential

    currentdue to errors

    Tripping characteristic

    Line differential protection: Resulting tripping characteristic

  • 8/17/2019 1_Basic Protection Principles

    15/15

    15

    Power Transmission and Distribution

    Power AutomationProgress. It‘s that simple.

    Summed up currents: I M1 = 5•I 1 + 3•I 2 + 4•I 3   I M2 = 5•I 1 + 3•I 2 + 4•I 3

    U1 = Rb • Ib1 U2 = Rb•Ib2

    Measuring principle of the two pilot-wire differential protection

    ⇒ Voltage comparision:

    Side 1 Side 2

    7SD600 7SD600

    Device 1 Device 2Twisted pair pilot wire

     I 1

      I 2   I 3   I 3   I 2   I 1

    L1

    L2

    L3

     I M1

      I a

     I a

      I  M2

     I b2 I b1

    Rb   Rb

    Ra

      Ra

    R/2

    R/2

    U1

      U2

    transformer

    Summation Summation

    transformer