19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

18
A 3cell = - 1 Rccc 1 Rccc 0 0 0 0 1 Rccs -( 1 Rccs + 1 Rucs + 1 Rcccs ) 0 1 Rcccs 0 0 0 0 - 1 Rccc 1 Rccc 0 0 0 1 Ru 2 cf cs + 1 Rcccs 1 Rccs -( 1 Rucs + 1 Rccs + 2 Rcccs ) 0 1 Rcccs 0 0 0 0 - 1 Rccc 1 Rccc 0 1 R2 ucf cs (1 - 1 Rucf ) 0 1 Ru 2 cf cs + 1 Rcccs 1 Rccc -( 1 Rccs + 1 Rucs + 1 Rcccs ). A 3cell = - 1 Rccc 1 Rccc 0 0 0 0 1 Rccs -( 1 Rccs + 1 Rucs + 1 Rcccs ) 0 1 Rcccs 0 0 0 0 - 1 Rccc 1 Rccc 0 0 0 1 Ru 2 cf cs + 1 Rcccs 1 Rccs -( 1 Rucs + 1 Rccs + 2 Rcccs ) 0 1 Rcccs 0 0 0 0 - 1 Rccc 1 Rccc 0 1 R2 ucf cs (1 - 1 Rucf ) 0 1 Ru 2 cf cs + 1 Rcccs 1 Rccc -( 1 Rccs + 1 Rucs In accordance with Cooperative Agreement W56HZV-04-2-0001 U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) 8:00 Welcome & Introductions Prof. Anna Stefanopoulou, ARC Director Prof. Volker Sick, Assoc. VP for Research, Natural Sciences and Engineering, University of Michigan 8:15 “Army Research Needs” Introduction by Dr. David Gorsich, Chief Scientist, U.S. Army TARDEC Dr. Paul Rogers, Director, U.S. Army TARDEC 9:00 “From Discovery to Implementation” Introductions by Ms. Jennifer Hitchcock, Executive Director, Research, Technology & Integration, U.S. Army TARDEC Industry Viewpoint Dr. Joachim Kupe, Director, Advanced Hybrid Program, Cummins Mr. Mark Pasik, CTO Engineering Design & Technology, General Dynamics Land Systems Academic Viewpoint Prof. Walter Bryzik, Wayne State University Prof. Georges Fadel, Clemson University Prof. Zissimos Mourelatos, Oakland University Prof. Panos Papalambros, University of Michigan 10:00 Break 10:30 Case Study Presentations Embedding Energy Intelligence in Robotic Mobility The Seated Soldier Study: New Data and Tools for Soldier-Centered Design of Vehicles 12:00 Lunch 13:40 Technical Sessions 1A: Hybrid Powertrain & Cooling / 1B: Chemistry of Power 15:25-16:45 Poster Session Day 1: Wednesday, June 5, 2013 8:00 Semi-keynote 2A: Ms. Sonya Zanardelli, Energy Storage Research Team Leader, TARDEC 2B: Dr. David Lamb, Senior Technical Expert, TARDEC 8:30 Technical Sessions 2A: Electrical Energy Storage / 2B: Design, Optimization, Reliability 10:10 Break 10:40 Technical Session 3B: Vehicle Dynamics and Control 12:00 Closing and Poster Award Presentation Prof. Alec Gallimore, Assoc. Dean for Research and Graduate Education, University of Michigan Dr. David Gorsich, Chief Scientist, U.S. Army TARDEC 12:30-2:00 Post Review Reception Day 2: Thursday, June 6, 2013 Organized by the Automotive Research Center A U.S. Army Center of Excellence for Modeling and Simulation of Ground Vehicles W PLQ 7 R & This event is free of charge. Register at arc.engin.umich.edu Inquiries (734) 764-6579 [email protected] Venue Chesebrough Auditorium Chrysler Center, North Campus The University of Michigan 2121 Bonisteel Ann Arbor, MI 48109 -2092

Transcript of 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

Page 1: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

A 3cell =

− 1Rccc

1Rccc

0 0 0 01

Rccs−( 1

Rccs+ 1

Rucs+ 1

Rcccs) 0 1

Rcccs0 0

0 0 − 1Rccc

1Rccc

0 00 1

Ru2c f cs

+ 1Rcccs

1Rccs

−( 1Rucs

+ 1Rccs

+ 2Rcccs

) 0 1Rcccs

0 0 0 0 − 1Rccc

1Rccc

0 1R2

uc f cs(1− 1

Ruc f) 0 1

Ru2c f cs

+ 1Rcccs

1Rccc

−( 1Rccs

+ 1Rucs

+ 1Rcccs

).

(20)

Figure 11. OBSERVABILITY OF THE SAME SENSOR LOCATIONSUNDER DIFFERENT CONDITIONS

Table 3. NUMBER OF SENSOR POSITION COMBINATIONS GIVINGFULL OBSERVABILITY FOR A STRING WITH 12 CELLS AND 4 SEN-SORS

Conditions No. of combinations

giving full observability

Full interconnection 106/495

Natural convection 52/495

No cell to cell conduction 1/495

ditions under different scenarios, and the conclusion is summa-rized in Table 3. The minimum number of sensors that gives fullobservability is 4.

As shown in Table 3, among all the 495 combinations of4 sensor locations in a cell string of 12, if there is both circu-lated coolant convection and cell to cell conduction, referred toas full interconnection in Table 3, 106 combinations will givefull observability. Under natural convection, where the coolantis not flowing between cells, only 52 combinations can satisfy

full observability condition. When the cell to cell conduction ismissing, only 1 combination yields full observability. That com-bination would be placing the sensors at the 3th, 6th, 9th and12th cells. The sensors are actually evenly distributed along thecluster, which agrees with intuition.

Of the two modeled thermal interconnections between cells,namely the cell to cell heat conduction and the heat convectionthrough the coolant flow, the former tends to have larger impacton the observability of the pack model. This may be related tothe fact that the cell to cell heat conduction is a two-way inter-action, where the two adjacent cells can transfer heat betweeneach other. But the heat convection through the coolant flow issingle directional, and only the previous cells along the coolantflow direction will affect the latter ones.

Consequently, greater cell to cell heat conduction will be fa-vored by the observability of the pack model. It is noted thatgreat cell to cell heat conduction can also reduce the temperaturegradient between cells in the pack and thus help contain the im-balance between cells induced by temperature non-uniformity.However, on the negative side, in case of a single cell thermalfailure, e.g. local overheating, the great cell to cell heat conduc-tion will facilitate the spread of such failure to other cells in thepack. This is not desirable from the safety perspective.

8 ConclusionIn this paper, an online parameterization methodology for a

lumped thermal model of a cylindrical lithium ion battery cellhas been proposed, designed and verified by simulation. By us-ing online parameterization algorithm, the lumped parameters ofthe thermal model, which cannot be easily measured or calcu-lated otherwise, can be automatically identified based on the cur-rent excitation of a real drive cycle and the resultant battery sur-face temperatures. The identified parameters and the measuredcell surface temperature are adopted by an adaptive observer toestimate the unmeasurable core temperature of the cell. The esti-mated core temperature can be used as a more useful and criticalreference for the on-board thermal management system and eventhe vehicle power management system. The next step will be tovalidate the model and the methodology with experiments. Overthe battery lifetime, such online identification scheme can be re-set on a monthly or yearly basis to track varying parameters due

A 3cell =

− 1Rccc

1Rccc

0 0 0 01

Rccs−( 1

Rccs+ 1

Rucs+ 1

Rcccs) 0 1

Rcccs0 0

0 0 − 1Rccc

1Rccc

0 00 1

Ru2c f cs

+ 1Rcccs

1Rccs

−( 1Rucs

+ 1Rccs

+ 2Rcccs

) 0 1Rcccs

0 0 0 0 − 1Rccc

1Rccc

0 1R2

uc f cs(1− 1

Ruc f) 0 1

Ru2c f cs

+ 1Rcccs

1Rccc

−( 1Rccs

+ 1Rucs

+ 1Rcccs

).

(20)

Figure 11. OBSERVABILITY OF THE SAME SENSOR LOCATIONSUNDER DIFFERENT CONDITIONS

Table 3. NUMBER OF SENSOR POSITION COMBINATIONS GIVINGFULL OBSERVABILITY FOR A STRING WITH 12 CELLS AND 4 SEN-SORS

Conditions No. of combinations

giving full observability

Full interconnection 106/495

Natural convection 52/495

No cell to cell conduction 1/495

ditions under different scenarios, and the conclusion is summa-rized in Table 3. The minimum number of sensors that gives fullobservability is 4.

As shown in Table 3, among all the 495 combinations of4 sensor locations in a cell string of 12, if there is both circu-lated coolant convection and cell to cell conduction, referred toas full interconnection in Table 3, 106 combinations will givefull observability. Under natural convection, where the coolantis not flowing between cells, only 52 combinations can satisfy

full observability condition. When the cell to cell conduction ismissing, only 1 combination yields full observability. That com-bination would be placing the sensors at the 3th, 6th, 9th and12th cells. The sensors are actually evenly distributed along thecluster, which agrees with intuition.

Of the two modeled thermal interconnections between cells,namely the cell to cell heat conduction and the heat convectionthrough the coolant flow, the former tends to have larger impacton the observability of the pack model. This may be related tothe fact that the cell to cell heat conduction is a two-way inter-action, where the two adjacent cells can transfer heat betweeneach other. But the heat convection through the coolant flow issingle directional, and only the previous cells along the coolantflow direction will affect the latter ones.

Consequently, greater cell to cell heat conduction will be fa-vored by the observability of the pack model. It is noted thatgreat cell to cell heat conduction can also reduce the temperaturegradient between cells in the pack and thus help contain the im-balance between cells induced by temperature non-uniformity.However, on the negative side, in case of a single cell thermalfailure, e.g. local overheating, the great cell to cell heat conduc-tion will facilitate the spread of such failure to other cells in thepack. This is not desirable from the safety perspective.

8 ConclusionIn this paper, an online parameterization methodology for a

lumped thermal model of a cylindrical lithium ion battery cellhas been proposed, designed and verified by simulation. By us-ing online parameterization algorithm, the lumped parameters ofthe thermal model, which cannot be easily measured or calcu-lated otherwise, can be automatically identified based on the cur-rent excitation of a real drive cycle and the resultant battery sur-face temperatures. The identified parameters and the measuredcell surface temperature are adopted by an adaptive observer toestimate the unmeasurable core temperature of the cell. The esti-mated core temperature can be used as a more useful and criticalreference for the on-board thermal management system and eventhe vehicle power management system. The next step will be tovalidate the model and the methodology with experiments. Overthe battery lifetime, such online identification scheme can be re-set on a monthly or yearly basis to track varying parameters due

In accordance with Cooperative Agreement W56HZV-04-2-0001

U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC)

8:00 Welcome & IntroductionsProf. Anna Stefanopoulou, ARC DirectorProf. Volker Sick, Assoc. VP for Research, Natural Sciences and Engineering, University of Michigan

8:15 “Army Research Needs”Introduction by Dr. David Gorsich, Chief Scientist, U.S. Army TARDECDr. Paul Rogers, Director, U.S. Army TARDEC

9:00 “From Discovery to Implementation”Introductions by Ms. Jennifer Hitchcock, Executive Director, Research,

Technology & Integration, U.S. Army TARDECIndustry Viewpoint

Dr. Joachim Kupe, Director, Advanced Hybrid Program, CumminsMr. Mark Pasik, CTO Engineering Design & Technology, General Dynamics

Land SystemsAcademic Viewpoint

Prof. Walter Bryzik, Wayne State UniversityProf. Georges Fadel, Clemson UniversityProf. Zissimos Mourelatos, Oakland UniversityProf. Panos Papalambros, University of Michigan

10:00 Break

10:30 Case Study Presentations• Embedding Energy Intelligence in Robotic Mobility• The Seated Soldier Study: New Data and Tools for Soldier-Centered

Design of Vehicles

12:00 Lunch

13:40 Technical Sessions1A: Hybrid Powertrain & Cooling / 1B: Chemistry of Power

15:25-16:45 Poster Session

Day 1: Wednesday, June 5, 2013

8:00 Semi-keynote2A: Ms. Sonya Zanardelli, Energy Storage Research Team Leader, TARDEC2B: Dr. David Lamb, Senior Technical Expert, TARDEC

8:30 Technical Sessions2A: Electrical Energy Storage / 2B: Design, Optimization, Reliability

10:10 Break

10:40 Technical Session3B: Vehicle Dynamics and Control

12:00 Closing and Poster Award PresentationProf. Alec Gallimore, Assoc. Dean for Research and Graduate Education, University of MichiganDr. David Gorsich, Chief Scientist, U.S. Army TARDEC

12:30-2:00 Post Review Reception

Day 2: Thursday, June 6, 2013

Organized by theAutomotive Research Center

A U.S. Army Center of Excellence for Modelingand Simulation of Ground Vehicles

College of Engineering

This event is free of charge. Register at

arc.engin.umich.eduInquiries

(734) [email protected]

Venue

Chesebrough AuditoriumChrysler Center, North Campus

The University of Michigan2121 Bonisteel

Ann Arbor, MI 48109 -2092

19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW June 5-6, 2013

Page 2: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW      

 

SPEAKER  INFORMATION  

PROF.  VOLKER  SICK  earned  degrees  in  Chemistry  and  Physical  Chemistry  from  the  University  of  Heidelberg  in  1988  (Diplom),  1992  (Dr.  rer.  nat),  and  1997  (Habilitation).  During  a  tenured  appointment  in  Heidelberg,  he  spent  a  one-­‐year  sabbatical  in  1994/95  at  the  Combustion  Research  Facility  at  Sandia  National  Laboratories  in  Livermore,  CA  and  SRI  International  in  Menlo  Park,  CA.  He  is  an  internationally  recognized  pioneer  in  laser-­‐based  imaging  diagnostics  and  engine  research.  The  Combustion  Institute  recognized  his  novel  ultraviolet  particle  image  velocimetry  technique  with  the  Silver  Medal.  Amongst  a  broad  variety  of  achievements  are  quantitative  diagnostic  techniques  such  as  high-­‐speed  imaging  of  fuel  concentration,  high-­‐speed  particle  velocimetry,  and  temperature  imaging  in  

engines.  He  serves  as  the  Editor  of  the  Proceedings  of  the  Combustion  Institute  and  on  the  editorial  board  of  Experiments  in  Fluids.  He  is  a  Fellow  of  SAE  International.  

At  UM,  Prof.  Sick  served  as  faculty  advisor  to  the  Formula  SAE  team  and  the  SAE  Collegiate  Student  Chapter  for  many  years.  He  also  held  a  partial  appointment  as  the  College  of  Engineering’s  Faculty  Advisor  to  International  Programs  in  Engineering  from  2007-­‐2012.  His  engagement  for  younger  students  has  earned  him  awards  at  local,  national,  and  international  levels,  including  being  named  Arthur  F.  Thurnau  Professor  in  2013.  

Prof.  Sick  holds  appointments  as  guest  professor  at  Shanghai  Jiao  Tong  University,  China  and  Friedrich-­‐Alexander-­‐Universität  Nürnberg-­‐Erlangen.  TU  Darmstadt,  Germany,  named  him  a  Fellow  at  the  Center  of  Smart  Interfaces.  

 

DR.   DAVID   GORSICH  was   selected   for   a   Scientific   and   Professional   (ST)   position   in  January  2009  and  serves  as   the  Army’s  Chief  Scientist   for  Ground  Vehicle  Systems.    His  current  research  interests  are  vehicle  dynamics  and  structural  analysis,  reliability-­‐based  design  optimization,  underbody  blast  modeling,   terrain  modeling  and  spatial  statistics.   He   is   the   primary   technical   advisor   to   the   Director   of   TARDEC   and  responsible   for   the   organization’s   science   and   technology   strategy,   as   well   as   the  review  of  TARDEC’s  basic  research  programs.    He  is  the  organization's  primary  focal  point  to  organizations  such  as  DARPA  and  Army  Research  Office  (ARO),  and  serves  as  

the  technical  expert  for  the  U.S.  Army  National  Automotive  Center.    Previously  Dr.  Gorsich  was  the  Director  of  Strategic  Plans  and  Programs  at  TARDEC,  and  the  Associate  Director  for  Modeling  and  Simulation.    As  TARDEC's  Associate   Director   for   Simulation,   he   also   was   responsible   for   the   Center's   High   Performance   Computing  program.    Before  2003,  Dr.  Gorsich  served  as  a  research  scientist  in  TARDEC's  Robotics  Lab  as  well  as  the  leader  of   the   National   Automotive   Center's   Vehicle   Intelligence   team.     He   has   held   positions   within   the   Program  Managers’  offices,  and  with   the  Army   in  Washington  D.C.    He  has  published  over  150  conference  and   journal  articles   in   the  areas  of  simulation,   reliability-­‐based  design  optimization,   terrain  modeling,  spatial  statistics  and  other  approximation  methods.    He   received  his  Ph.D.   in  applied  mathematics   from  M.I.T.   in  2000,  his  M.S.   in  applied  mathematics   from  George  Washington  University   in   1994,   and   his   B.S.   in   electrical   engineering   from  Lawrence  Technological  University  in  1990.  

 

 

 

 

 

Page 3: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

DR.  PAUL  ROGERS  serves  as  the  Director  of  TARDEC  where  he  is  responsible  for  providing  executive  management  to  deliver  advanced  technology  solutions  for  all  Department  of  Defense  ground  systems  and  combat  support  equipment.  Dr.  Rogers  is  a  member  of  the  Army  Senior  Executive  Service.    As  the  TARDEC  Director,  Dr.  Rogers  manages  a  workforce  of  more  than  1,700  engineers,  scientists,  researchers,  and  support  staff  and  sets  strategic  direction  for  a  full  range  of  investments  that  affect  more  than  270  Army  systems.  With  an  annual  budget  of  more  than  $475  million,  Dr.  Rogers  ensures  TARDEC  provides  vigilance  and  resourcefulness  to  deliver  

solutions  within  cost  and  on  schedule  so  our  Soldiers  can  dominate  on  the  battlefield.  

Dr.  Rogers  previously  served  as  the  Deputy  Program  Executive  Officer  for  Ground  Combat  Systems  where  he  managed  the  development,  systems  integration,  acquisition,  testing,  fielding,  sustainment  and  improvement  of  ground  combat  systems  in  accordance  with  the  Army's  transformation  campaign  plan.  The  Ground  Combat  Systems  Program  has  an  annual  budget  of  over  $2.9  billion  with  a  total  program  cost  of  over  $18.46  billion  (POM  FY14-­‐18).    Dr.  Rogers’  responsibilities  included  ensuring  that  all  of  the  coordination  and  communication  is  achieved  for  a  complex  and  diverse  organization  with  two  Pre-­‐MDAP  programs  (Armored  Multi-­‐Purpose  Vehicle  and  Ground  Combat  Vehicle)  and  four  ACAT  I  programs,  including  the  Paladin  Integrated  Management,  Abrams  Tank  Upgrade,  the  Bradley  Fighting  Vehicle  Upgrade  and  the  Stryker  Armored  Vehicle  System.  Additionally,  he  oversaw  four  ACAT  II  programs  as  well  as  approximately  100  other  weapons  system  programs.    

Prior  to  accepting  his  responsibilities  as  Deputy  PEO  GCS,  Dr.  Rogers  served  as  the  TARDEC  Executive  Director  for  Research  and  Technical  Integration.  In  this  capacity,  Dr.  Rogers  led  the  organization  in  providing  Army  research  and  development  in  Ground  Vehicle  Power  and  Mobility,  Survivability,  Intelligent  Systems,  Vehicle  Electronic  and  Architecture  Systems,  and  Platform  Concept,  Analysis,  and  System  Simulation.    Dr.  Rogers  served  as  the  key  executive  responsible  for  the  center’s  science  and  technology  strategic  planning,  program  selection,  funding  allocation,  execution  and  transition  to  acquisition  programs.  He  managed  the  technology  base  investments  and  led  a  500-­‐person  workforce  through  six  technical  business  area  associate  directors.  

As  a  member  of  the  Michigan  National  Guard,  Dr.  Rogers  was  activated  and  served  in  Iraq  as  the  Battalion  Commander  for  the  507th  Engineer  Battalion.    His  command  included  twelve  separate  companies/detachments  at  Balad,  Iraq  in  support  of  Operation  Iraqi  Freedom  04-­‐06.  The  507th  Eng  Bn  was  a  joint  force  consisting  of  deployed  forces  from  the  Active  Army  and  Air  Force,  Army  National  Guard,  Army  Reserve,  and  Marines.    He  commanded  a  total  of  823  soldiers,  139  marines,  and  114  airmen  in  combat  operations  during  the  deployment.    His  mission  responsibilities  included  military  fixed  bridging,  offensive  assault  float  bridging,  rafting  operations,  riverine  operations,  vertical  and  horizontal  construction,  well  drilling,  and  asphalt  production/paving.    He  also  organized,  trained,  and  deployed  an  armored  D9  dozer  task  force  in  support  of  division  offensive  operations.    The  507th  Eng  Bn  served  in  Iraq  from  1  January  2005  to  6  December  2005.    Dr.  Rogers’  military  awards  and  decorations  include  the  Bronze  Star,  Army  Meritorious  Service  Medal,  Army  Achievement  Medal,  Iraqi  Campaign  Medal,  Airborne  Badge  and  the  Bronze  Order  of  the  de  Fleury  Medal.      His  previous  military  assignments  include,  Brigade  and  Battalion  Operations  Officer,  Company  Commander,  and  Platoon  Leader.  He  currently  serves  as  the  Commander  of  the  177th  Regiment,  Regional  Training  Institute,  MIARNG.  

Dr.  Rogers  holds  a  Ph.D.  in  Mechanical  Engineering-­‐Engineering  Mechanics  from  Michigan  Technological  University  (MTU),  a  Masters  of  Strategic  Studies  from  the  U.S.  Army  War  College,  a  Master’s  of  Science  in  Engineering  –  Mechanical  Engineering  from  the  University  of  Michigan  –  Dearborn,  and  a  Bachelors  of  Science  in  Mechanical  Engineering  from  MTU.    He  is  a  graduate  of  the  Army  Engineer  Officer  Basic  Course,  Engineer  Officer  Advance  Course,  Combined  Arms  Services  Staff  School,  Army  Command  and  General  Staff  College  and  the  U.S.  Army  War  College.  Dr.  Rogers  is  currently  serving  the  External  Advisory  Boards  for  the  Mechanical  Engineering  Departments  at  Michigan  Technological  University,  Lawrence  Technological  University  and  the  University  of  Michigan.  He  has  previously  served  as  an  Adjunct  Professor  of  Mechanical  Engineering  at  LTU.                                                                    

Page 4: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

MS.  JENNIFER  HITCHCOCK  was  appointed  to  the  Senior  Executive  Service  in  January  2011  as  the  Executive  Director  for  Research  and  Technology  Integration  (RTI)  at  the  U.S.  Army  Research  Development  and  Engineering  Command  (RDECOM)  Tank  Automotive  Research  Development  and  Engineering  Center  (TARDEC).    TARDEC  is  located  at  the  Detroit  Arsenal  in  Warren,  MI,  and  is  recognized  as  the  premier  laboratory  for  advanced  military  automotive  technology  for  ground  vehicle  systems  and  logistics  support  equipment  within  the  Department  of  Defense  (DOD).    Ms.  Hitchcock  brings  more  than  21  years  of  technical  leadership  and  managerial  experience  in  mobility  and  power  and  energy  technologies,  system  engineering,  acquisition  

and  program  management.    Ms.  Hitchcock  has  served  as  the  Acting  Director  of  RTI  since  April  2010,  and  is  responsible  for  leading  the  research  and  integration  of  Army  ground  vehicle  mobility,  power  and  energy,  survivability,  robotic  and  vehicle  electronic  architecture  technologies.    She  is  responsible  for  ensuring  concepts,  analytics,  analysis  and  system  simulation  are  completed  for  all  ground  vehicle  technology  integration  to  drive  system  integration  solutions  to  meet  emerging  Army  battlefield  challenges.    She  leads  more  than  500  associates  in  five  technical  business  areas,  and  is  the  executive  responsible  for  the  planning,  execution,  funding  and  selection  of  technology  programs  the  Army  will  pursue  to  align  and  transition  to  acquisition  programs.      

Ms.  Hitchcock’s  previous  assignments  include:  TARDEC  Chief  of  Staff  where  she  developed  a  staff  organization,  and  as  the  Program  Manager  for  the  Army’s  Electromagnetic  Gun  Program.    She  also  served  as  the  Associate  Director  for  TARDEC’s  Power  and  Mobility  Organization  from  2005  to  2008,  and  was  responsible  for  the  research,  development,  engineering  and  testing  of  engines,  hybrid-­‐electric  drive  technologies,  transmissions,  propulsion  system  components,  fuel  cells,  track  and  suspension  systems,  and  auxiliary  power  units  for  both  tactical  and  combat  military  ground  vehicles.    In  her  three  years  in  this  position,  she  led  organization  transformation  by  improving  and  increasing  workforce  capacity,  improving  facilities,  developing  tools  and  capabilities  for  more  efficient  technology  analysis  and  development,  realigning  technologies  to  Army  Programs  of  Record  and  developing  a  long-­‐term  investment  strategy  for  ground  vehicle  power  and  mobility  technologies.      

Ms.  Hitchcock  was  selected  in  2005  to  Chair  the  RDECOM  Power  and  Engineering  Integrated  Product  Team  (IPT).    In  that  role,  she  led  a  panel  of  power  and  energy  experts  from  all  Army  Research  and  Development  Labs,  DOD,  Department  of  Energy,  U.S.  Army  Training  and  Doctrine  Command,  other  government  organizations,  industry  and  academia  to  advise  

Senior  Army  Leaders  on  power  and  energy  technologies,  issues  and  initiatives,  and  establish  baseline  Army  technology  roadmaps  for  several  technology  portfolios.      

Ms.  Hitchcock  earned  her  Bachelor  of  Science  degree  in  Mechanical  Engineering  from  Lawrence  Technological  University  and  her  Master  of  Science  degree  in  Mechanical  Engineering  from  Oakland  University.    In  2008,  she  attended  the  Army’s  

Senior  Service  College  Fellowship  program  and  graduated  with  a  Master’s  degree  in  Leadership  and  Globalization.    She  is  currently  pursuing  her  Doctorate  in  Organization  Development  at  Lawrence  Technological  University.    In  2006,  Ms.  Hitchcock  received  the  Commanders  Award  for  Civilian  Service.    In  2005,  she  was  awarded  the  Leaders  and  Innovators  

Award  from  Lawrence  Technological  University.    That  same  year,  Lawrence  Technological  University  honored  her  with  an  Alumni  Achievement  Award,  and  is  only  the  second  women  to  ever  receive  this  award.    She  has  been  a  leader  for  

many  government-­‐industry-­‐academia  IPTs,  and  has  participated  in  many  boards,  workshops  and  symposiums  as  a  military  mobility  and  propulsion  authority.    She  is  a  member  of  the  National  Society  of  Leadership  and  Success.    

 

 

 

Page 5: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

DR.  JOACHIM  KUPE  has  25  years  of  experience  in  engine  management  systems,  exhaust  aftertreatment,  sensors,  valvetrain  products,  electric  motors,  power  electronics,  hybrid  powertrains,  and  automotive  component  and  systems  development.    He  started  his  career  1988  at  the  GM  Technical  Center  in  Luxembourg  (Europe),  where  he  worked  for  almost  10  years  prior  to  moving  to  the  US  in  1997.  He  has  held  multiple  leadership  positions  both  at  GM  and  later  at  Delphi,  after  the  Delphi  spin  off  from  GM.  He  was  Chief  Engineer-­‐Advanced  Powertrain  Technology  at  Delphi  when  he  joined  Cummins  Inc.    in  October  2011  as  Director  –Advanced  Systems  Engineering.  He  is  leading  the  efforts  in  advanced  hybrid  and  

electrification  technologies.    Dr.  Kupe  has  a  Doctorate  Degree  (Dr.-­‐Ing.)  in  Electro-­‐Mechanical  Engineering  from  the  RWTH  Technical  University  Aachen,  Germany.  He  has  been  invited  more  than  10  times  as  key  notes  lecturer  on  powertrain  and  exhaust  aftertreatment.  He  has  more  than  20  papers  published,  23  patents  awarded,  with  several  pending,  and  one  defensive  publication.    He  is  an  inductee  of  the  Delphi  Hall  of  Fame  and  received  the  “National  Black  Engineer  of  the  Year  Award  for  Outstanding  Technical  Contribution”  in  2009.  He  is  fluent  in  English,  German  and  French.      

 

MR.  MARK  PASIK  is  the  Chief  Technology  Officer  within  Engineering  Design  &  Technology  at  General   Dynamics   Land   Systems,   where   he   is   instrumental   in   leadership   of   the   design,  development   and   integration   of   technologies   for   current   and   future   ground   combat  vehicles.   His   background   encompasses   30   years   in   Department   of   Defense   programs,  including   work   on   the   design/development   of   manned   and   unmanned   ground   vehicles,  unmanned   aerial   vehicles   (UAV’s),   helicopters,   naval   ships   and   fighter   aircraft.   His  experience   includes  management  of  programs  valued  at  over  $1B,   leading   large  program  teams   of   multi-­‐function   organizations,   including   multinational   procurements   and  

integrated  system  development.  His  technical  background  includes  technology  design,  development,  integration  and  test  of  advanced  technologies  for  future  military  systems.  Mr.  Pasik  is  a  Senior  Member  of  the  Institute  of  Electrical  and  Electronic  Engineers  and  holds  a  BSEE  from  the  University  of  Wisconsin,  has  advanced  studies  in  Electrical  Engineering   from  Washington  University,  Business  Administration   from  the  University  of  New  Haven  and  Advanced  Program  Management  from  the  Defense  Systems  Management  College.  

 

PROF.  WALTER  BRYZIK  has  been  serving  as  DeVlieg  Chairman  and  Professor,  Mechanical  

Engineering  at  Wayne  State  University,  College  of  Engineering,  Detroit,  Michigan  since  Feb  2008.  Dr.  Bryzik  was  Chief  Scientist  of  the  U.S.  Army  Tank-­‐Automotive  Research,  Development,  and  Engineering  Center  (TARDEC)  in  Warren,  Michigan,  encompassing  all  

aspects  of  ground  vehicle  technology.      He  represented  the  Army  worldwide  within  government,  industry,  and  academia  as  its  senior  technical  leader  in  ground  vehicle  technology.    In  1997,  Dr.  Bryzik  was  promoted  to  the  Army’s  highest  Scientific/Technical  

Rank  .  Promotion  to  this  rank  was  competitively  made  at  Secretary  of  the  Army  Level  in  recognition  of  his  numerous  pioneering  technical  achievements  as  an  internationally  recognized  world  class  leader  in  the  area  of  advanced  ground  vehicle  technology.      

 

 

Page 6: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

Dr.  Bryzik  has  authored  and  co-­‐authored  over  250  peer  reviewed  publications  and  has  contributed  to  over  20  separate  book  issues  through  editing  and  individual  technical  paper  contributions.    He  has  chaired  and/or  

organized  numerous  technical  international  and  inter-­‐government  conferences  responsible  for  dealing  with  worldwide  advanced  automotive  technology,  and  was  technical  chair  of  various  senior  level  government  committees,  particularly  with  Japan,  Germany,  and  France.      Dr.  Bryzik  was  the  founder  and    President  of  the  

national  Army  ST  chapter  of  the  Senior  Executive  Association(SEA),    is  a  member  of    the  SEA  national  Board  of  Directors,  and  has  acted  as  the  national  co-­‐chair  of  the  Department  of  Defense  Senior  Level  Scientists  organization.    He  has  served  at  TARDEC  in  various  capacities  of  increasing  responsibility  since  1968.    Dr.  Bryzik  is  

a  Fellow  Grade  member  of  the  Society  of  Automotive  Engineers  (SAE),  member  of  the  SAE  National  Powerplant  Committee,  and  an  editorial  reviewer  for  SAE,  the  American  Society  of  Mechanical  Engineers  and  the  Combustion  Institute.    He  had  been  an  Adjunct  Professor  and  Graduate  Faculty  Member  of  Mechanical  

Engineering  at  Wayne  State  University  from  1978  to  2007,  both  continuously  teaching  graduate  courses  and  performing  world  class  research.    He  is  currently  on  the  Board  of  Visitors  of  the  University  of  Michigan’s  Mechanical  Engineering  Department,  and  has  served  as  a  member  of  numerous  significant  National  Academy  of  

Engineering  (NAE)  panels  on  national  advanced  automotive  technology  policy.    Dr.  Bryzik  was  the  recipient  of  the  Distinguished  Presidential  Rank  Award  in  2004,  with  the  award  personally  presented  by    President  Bush  in  the  White  House  Rose  Garden,  Washington  D.  C.    This  is  the  highest  award  given  by  the  US  Government  for  

exceptional  science  and  technology  and  its  impact  on  society,  and  included  an  honorarium  of  35%  of  yearly  salary.      He  received  a  bachelors(highest  honors),  masters,  and  doctorate  in  mechanical  engineering  from  the  University  of  Detroit,  and  a  masters  degree  in  business  administration  and  management  from  Central  Michigan  

University.  

 

PROF.  GEORGES  FADEL  is  Professor  of  Mechanical  Engineering  and  holds  the  ExxonMobil  

Employees  Chair  in  Engineering  at  Clemson  University.  He  obtained  a  Ph.D.  in  Mechanical  Engineering  and  an  MS  in  Computer  Science  from  Georgia  Tech.,  and  a  Diploma  in  

Mechanical  Engineering  from  the  ETH,  in  Zurich,  Switzerland.    Dr.  Fadel  teaches  design  related  courses  and  researches  methods  and  tools  to  help  designers  deal  with  complexity  (representation,  coordination,  and  optimization)  and  globalization  issues  (collaboration  and  

networked  virtual  environments).  He  deals  particularly  with  topics  in  packaging  optimization  (under-­‐hood  and  underbody  layout,  component  placement,  and  structural  and  vehicle  dynamic  performance  optimization),  multi-­‐material  design  and  manufacturing,  and  design  methodology  (especially  Affordance  Based  

Design).  He  has  published  over  two  hundred  research  articles.  He  is  member  and  fellow  of  the  ASME,  and  past  chair  of  its  Technical  Committee  on  Design  Automation.    He  is  member  of  AIAA,  SAE,  ISSMO,  MCDM,  the  Design  Society,  Designers  Accord  and  Sigma  Xi.    Dr.  Fadel  is  on  the  editorial  boards  of  the  Structural  and  

Multidisciplinary  Optimization  Journal,  the  journal  of  Research  in  Engineering  Design  and  the  International  Journal  of  Interactive  Design  and  Manufacturing.    

 

 

 

Page 7: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

PROF.  ZISSIMOS  MOURELATOS  is  the  John  F.  Dodge  Professor  of  Engineering  and  the  Chair  

of  Mechanical  Engineering  Department  at  Oakland  University  in  Rochester,  MI.  Before  joining  Oakland  University,  he  spent  18  years  at  the  General  Motors  Research  and  Development  Center.  He  conducts  research  in  the  areas  of  design  under  uncertainty,  

structural  reliability  methods,  reliability  analysis  with  insufficient  data,  Reliability-­‐Based  Design  Optimization  (RBDO),  vibrations  and  dynamics,  and  NVH  (Noise,  Vibration  and  Harshness).  Dr.  Mourelatos  has  published  over  150  journal  and  conference  publications  

and  a  book  entitled,  “Decision  Making  under  Uncertainty  using  Limited  Information.”  He  is  the  Editor-­‐in-­‐Chief  of  the  International  Journal  of  Reliability  and  Safety,  an  Associate  Editor  of  the  SAE  International  Journal  of  Materials  and  Manufacturing,  and  a  SAE  Fellow.  He  has  also  served  as  an  Associate  Editor  and  Guest  Co-­‐Editor  of  

the  ASME  Journal  of  Mechanical  Design.  

 

PROF.  PANOS  PAPALAMBROS  is  the  Donald  C.  Graham  Professor  of  Engineering  and  a  

Professor  of  Mechanical  Engineering  at  the  University  of  Michigan.  He  is  also  Professor  of  Architecture  and  Professor  of  Art  and  Design  and  serves  as  Executive  Director  of  

Integrative  Systems  &  Design  in  the  College  of  Engineering.  He  has  earned  a  diploma  in  Mechanical  and  Electrical  Engineering  from  the  National  Technical  University  of  Athens  (1974),  and  M.S.  (1976)  and  PhD  (1979)  degrees  in  Mechanical  Engineering  from  Stanford  

University.    

He  has  been  a  faculty  member  at  Michigan  since  1979.    During  his  tenure  at  Michigan  he  served  as  department  chair  (1992-­‐98  and  2007-­‐2008)  and  was  the  founding  director  of  several  laboratories  and  centers:  The  Optimal  

Design  (ODE)  Laboratory  (1980  -­‐);  the  Design  Laboratory  (1990-­‐92);  the  Ford  Durability  Simulation  Center  (1992-­‐94);   the   US   Army   Automotive   Research   Center   (1994-­‐2003);   the   General   Motors   Collaborative   Research  Laboratory  (1998-­‐2002);  the  Antilium  Project  (2003-­‐2006);  and  the  Ford  BlockM  Sustainability  Laboratory  (2006-­‐

2009).    In   2006   he   became   the   founding   chair   of   the   University   of  Michigan   interdisciplinary   Design   Science  Doctoral  Program.    

His   research   interests   include   design   science   and   optimization,   with   applications   to   product   design   and  development,  automotive  systems,  such  as  hybrid  and  electric  vehicles,  architectural  design,  and  design  of  large  

complex   engineered   systems.   With   D.   J.   Wilde,   he   co-­‐authored   the   textbook  Principles   of   Optimal   Design:  Modeling  and  Computation  (1988,  2000).  He  has  published  over  320  articles  in  journals,  conference  proceedings,  and  books.      

He   serves   on   the   Board   of   Management   of   the   Design   Society,   and   on   the   editorial   boards   of   the  

journals  Artificial   Intelligence   in   Engineering   Design   and   Manufacturing,   Engineering   Design,   Engineering  Optimization,   Structural   and  Multidisciplinary  Optimization.  He   served   as   Chief   Editor   of   the   ASME   Journal   of  Mechanical   Design   (2008-­‐2012).   He   is   a   Fellow   of   ASME   and   SAE,   and   the   recipient   of   the   ASME   Design  

Automation  Award   (1998),   ASME  Machine  Design   Award   (1999),   and   JSME  Design   and   Systems  Achievement  Award   (2004),   and   the  ASME   Joel   and  Ruth   Spira  Outstanding  Design   Educator  Award   (2007).   Since   2000,   he  holds   the  Donald  C.  Graham  Endowed  Chair   in   Engineering,   and   in  2009  he   received   the   Stephen  S.  Attwood  

Award,  the  highest  honor  in  the  College  of  Engineering  at  the  University  of  Michigan.    

Page 8: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

MS.  SONYA  ZANARDELLI  received  her  B.S.  from  Wayne  State  University  and  M.S.  degree  in  Electrical  Engineering  from  University  of  Michigan  -­‐  Dearborn,  in  2002  and  2005,  respectively.    She  is  currently  working  at  US  Army  Tank  Automotive  Research  Development  Engineering  Center  (TARDEC)  in  Warren,  MI  and  holds  the  position  of  Energy  Storage  Team  Leader  in  the  Research  Business  Group  in  the  Ground  Vehicle  Power  &  Mobility  Directorate  and  has  worked  at  TARDEC  for  12  years.    Her  research  fields  of  interest  include  bidirectional  converters  and  control  and  advanced  energy  storage  research  for  military  ground  vehicle  applications.  

 

DR.  DAVID  LAMB  is  an  applied  mathematician  and  computer  scientist  working  for  the  U.S.  Army.  He  is  the  Senior  Technical  Expert  for  military  ground  vehicle  modeling  and  simulation  (M&S),  and  his  personal  research  is  in  optimization,  especially  optimization  under  uncertainty.  He  has  a  B.S.  with  honors  from  George  Mason  University  in  1985,  where  he  majored  in  mathematics.  He  earned  a  Ph.D.  from  the  University  of  Wisconsin-­‐Madison  in  1992,  under  the  direction  of  Prof.  Ken  Kunen,  with  a  major  in  mathematics  and  a  minor  in  computer  sciences.  He  is  active  with  SAE,  where  he  is  currently  the  chairman  of  the  Ground  Vehicle  Reliability  committee,  and  also  with  SIAM,  where  he  is  the  co-­‐

President  of  the  Great  Lakes  Section.  He  has  worked  for  the  U.S.  Army  Tank-­‐automotive  Research,  Development,  and  Engineering  Center  (TARDEC)  since  1994.  

 

PROF.  ALEC  GALLIMORE  is  an  Arthur  F.  Thurnau  Professor  and  is  a  Professor  of  Aerospace  Engineering  at  the  University  of  Michigan  where  he  directs  the  Plasmadynamics  and  Electric  Propulsion  Laboratory.  Professor  Gallimore  is  also  an  Associate  Dean  for  Research  and  Graduate  Education  in  Michigan’s  College  of  Engineering.    Professor  Gallimore  is  on  the  faculty  of  the  Applied  Physics  program  and  directs  a  number  of  multi-­‐institution  centers  including  the  NASA-­‐funded  Michigan  Space  Grant  Consortium  and  the  Michigan/Air  Force  Center  of  Excellence  in  Electric  Propulsion.    He  received  his  B.S.  in  Aeronautical  Engineering  from  Rensselaer,  and  his  M.A.  and  Ph.D.  degrees  in  Aerospace  

Engineering  from  Princeton.  His  primary  research  interests  include  advanced  spacecraft  propulsion,  plasma  physics  and  nanoparticle  energetics.  Professor  Gallimore  has  graduated  35  Ph.D.  students  and  12  master’s  students,  and  has  written  300  journal  articles  and  conference  papers  on  electric  propulsion  and  plasma  physics.  Professor  Gallimore  serves  on  the  American  Institute  of  Aeronautics  and  Astronautics  (AIAA)  Electric  Propulsion  Technical  Committee  and  is  a  Fellow  of  AIAA.  Professor  Gallimore  is  an  Associate  Editor  for  the  Journal  of  Propulsion  and  Power  and  for  the  JANNAF  (propulsion)  Journal,  and  has  served  on  a  number  of  advisory  boards  for  NASA  and  the  Department  of  Defense  including  the  United  States  Air  Force  Scientific  Advisor  Board  (AFSAB).  He  was  awarded  the  Decoration  for  Meritorious  Civilian  Service  in  2005  for  his  work  on  the  AFSAB.  He  is  co-­‐founder  of  ElectroDynamic  Applications,  Inc.  (EDA),  a  high-­‐tech  aerospace  firm  in  Ann  Arbor,  MI  that  specializes  in  plasma  device  engineering.      

 

Page 9: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW        

POSTER  COMMITTEE    

DR.   THOMAS   MEITZLER   received   his   B.S.   and   M.S.   in   Physics   from   Eastern   Michigan  University,   completed   graduate   coursework   at   the   Univ.   of  Michigan,   and   received   a  Ph.D.   in  Electrical  Engineering  from  Wayne  State  University   in  Detroit.      He  has  taught  Physics,   Astronomy   and   Engineering   courses   at   The   University   of   Michigan-­‐Dearborn  and   Henry   Ford   Community   College.     From   1988   to   present   he   has   been   a   research  engineer   at   the   U.S.   Army   RDECOM   TARDEC   in   Warren   in   the   department   of  Survivability.       Dr.   Meitzler   is   currently   developing   and   integrating   technologies   for  embedded  armor  health  monitoring,   armor  NDE  and  embedded   signal   detection.    His  

research   interests   include   infrared   sensor   characterization,   non-­‐destructive   testing,   nanoelectronics,   and  spintronics.     Dr.   Meitzler   proposed   a   method   for   embedded   armor   plate   health   assessment   that   involves  piezoelectric  transducers  and  nanoelectronics  and  has  built  a  laboratory  around  that  idea.      

 DR.  DAWN  TILBURY  received  the  B.S.  degree  in  Electrical  Engineering,  summa  cum  laude,  from  the  University  of  Minnesota   in  1989,  and  the  M.S.  and  Ph.D.  degrees   in  Electrical  Engineering  and  Computer  Sciences  from  the  University  of  California,  Berkeley,  in  1992  and  1994,  respectively.     In  1995,  she  joined  the  Mechanical  Engineering  Department  at  the   University   of  Michigan,   Ann   Arbor,   where   she   is   currently   Professor,   with   a   joint  appointment   as   Professor   of   EECS.   She   is   Deputy   Director   of   the   US-­‐Army   TARDEC  Automotive   Research   Center.     She   won   the   EDUCOM   Medal   (jointly   with   Professor  William  Messner)  in  1997  for  her  work  on  the  Control  Tutorials  for  Matlab.  An  updated  

version   was   recently   re-­‐issued   at   the   website   http://ctms.engin.umich.edu.     She   is   co-­‐author   (with   Joseph  Hellerstein,  Yixin  Diao,  and  Sujay  Parekh)  of  the  textbook  Feedback  Control  of  Computing  Systems.    She  received  an   NSF   CAREER   award   in   1999,   and   is   the   2001   recipient   of   the   Donald   P.   Eckman   Award   of   the   American  Automatic  Control  Council.  She  is  the  2012  recipient  of  the  SWE  Distinguished  Engineering  Educator  Award.    She  was   a   member   of   the   2004-­‐2005   class   of   the   Defense   Science   Study   Group   (DSSG),   and   was   a   member   of  DARPA's   Information   Science   and   Technology   Study   Group   (ISAT)   from   2005–2008.   Her   research   interests  include  distributed  control  of  mechanical  systems  with  network  communication,  logic  control  of  manufacturing  systems,   reliability   of   ground   robotics,   and   dynamic   systems   modeling   of   physiological   systems.     She   was   a  member  of  the  IEEE  Control  Systems  Society  Board  of  Governors  from  2005–2008,  and  is  currently  Past  Chair  of  the   ASME   Dynamic   Systems   and   Control   Division.   She   was   Program   Chair   for   the   2012   American   Control  Conference  and  will  be  General  Chair  for  the  2014  ACC.  She  was  elected  Fellow  of  the  IEEE  in  2008  and  Fellow  of  the  ASME  in  2012.    

DR.  LAURENCE  TOOMEY  received  his  B.S.  in  Chemistry  from  State  University  of  New  York,  College  at  Fredonia  in  1992  and  Ph.D.  in  Chemistry  from  State  University  of  New  York,  University  at  Buffalo  in  1997.    He  joined  US  Army,  Tank  Automotive  Research  Development  Engineering  Center  (TARDEC)  in  Warren,  Michigan  in  January  2010  where  he  works  as  an  engineer  on  the  Energy  Storage  team  in  the  Ground  Vehicle  Power  &  Mobility  Directorate.    He  currently  manages  multiple  programs  focusing  on  the  development  of  advanced  battery  systems  for  military  vehicle  platforms.    Prior  to  TARDEC,  he  held  the  position  of  R&D  Manager  at  Cobasys,  Inc./SB  LiMotive  in  Orion,  

Michigan  developing  NiMH  and  Li-­‐ion  battery  systems  for  hybrid  automotive  applications.    He  also  held  a  position  of  Senior  Scientist  at  Lithium  Energy  Associates,  Inc.    in  Waltham,  MA  developing  advance  Li  metal  batteries  for  military  applications.    His  research  interests  include  materials  research  to  improve  energy  density,  performance  and  safety  characteristics  of  advanced  energy  storage  technologies.  

Page 10: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW

CASE STUDY ABSTRACTS

CASE STUDY 1

Embedding Energy Intelligence in Robotic Mobility Case Study Lead - Tulga Ersal, The University of Michigan with Matt Castanier, U.S. Army TARDEC

Ground robots have proven to be an invaluable technology for the Army, globally supporting missions that range from detecting and disarming explosives to search and rescue operations. This case study will highlight an integrated simulation framework for modeling, predicting, and controlling the energy and power during both planning and execution of a mission. To create such a framework, this case study brings together four ARC projects that span (1) algorithms for coverage planning with minimal energy, (2) battery electrothermal models for managing the power source limits, (3) physics-based simulations of terramechanics for predicting the power requirements of versatile terrains, and (4) online prognostics of remaining mission energy.

The benefits of having such an integrated simulation framework reach beyond improving the mobility of a robot for a given mission through increased intelligence. The physics based nature of the models included in this framework also allows for optimizing the system performance through trade space analyses as dictated by the Interoperability Profiles effort of the Robotic Systems Joint Project Office (RS JPO), an effort to promote modular design. The framework also enables studying the impact of communication latencies on the performance of the robot during a remote teleoperation and developing new solutions to compensate for latencies.

CASE STUDY 2

The Seated Soldier Study: New Data and Tools for Soldier-Centered Design of Vehicles Contributors: The University of Michigan - Matthew Reed U.S. Army TARDEC - Katrina Harris, Hollie Pietsch, Gale Zielinski, Harry Zywiol

The ARC is leading an effort to improve the methods used to assess the physical accommodation and safety of Warfighters in vehicles. Detailed three-dimensional measurements of 310 soldiers in a range of vehicle seating configurations were gathered to create a suite of new tools to represent the posture, body shape, and space claim of encumbered soldiers. This presentation will introduce the Seated Soldier Study and highlight some of the ways the new data and tools are being used in TARDEC programs.

Page 11: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH AUTOMOTIVE RESEARCH CENTER ANNUAL PROGRAM REVIEW

TECHNICAL SYMPOSIUM DAY 1

June 5 1A: Hybrid Powertrain & Cooling Session Co-Chairs: Denise Rizzo, Wesley Zanardelli 165 Chrysler Center

1B: Chemistry of Power Session Co-Chairs: Peter Schihl, Eric Sattler Chesebrough Auditorium

1:40 Optimization of the Series-HEV system with Consideration of the Traction Motor Design and the Impact of Cooling Auxiliary Losses, PI: Zoran Filipi

Simulation and Control of Combustion in Military Diesel Engines, PI: Naeim Henein

2:05 Powertrain Thermal Management – Integration and Control of a Hybrid Electric Vehicle Battery Pack, E-Motor Drive, and Internal Combustion Engine Multiple Loop Cooling System, PI: John Wagner

A Surrogate For Emulating the Physical and Chemical Properties of Jet Fuel, PI: Angela Violi

2:30 Advanced Models for Electric Machines, PI: Heath Hofmann Validation of JP-8 Surrogates in an Optical Engine, PI: Marcis Jansons

2:55 – 3:20

Improved Power Density and Temperature Range of In-vehicle Power Converters: High Frequency Power Supplies for High Temperature Environments, PI: Juan Rivas

High Energy Density Asymmetric Capacitors, PI: Levi Thompson

TECHNICAL SYMPOSIUM DAY 2

June 6 2A: Electrical Energy Storage & Thermal Studies Session Co-Chairs: James Mainero, Larry Toomey 165 Chrysler Center

2B: Design, Optimization, Reliability Session Co-Chairs: David Lamb, Matthew Castanier Chesebrough Auditorium

8:00 Semi-keynote Ms. Sonya Zanardelli, Energy Storage Research Team Leader Ground Vehicle Power & Mobility Group, U.S. Army TARDEC

Semi-keynote Dr. David Lamb, Senior Technical Expert (STE) in Modeling and Simulation U.S. Army TARDEC

8:30 Ultracapacitor Energy Storage for Improving Fuel Economy and Extending Battery Life in Heavy Vehicles, PI: Ardalan Vahidi

Optimal Crowdsourcing Framework for Engineering Design, PI: Panos Papalambros

8:55 Accomplishments and future challenges for high resolution neutron imaging as an in situ measurement and validation technique for meso-scale models of lithium ion batteries, PI: Anna Stefanopoulou

An Accelerated Life Testing Methodology for Vehicle Systems using Time-Dependent Reliability Principles, PI: Zissimos Mourelatos

9:20 Electro-Thermal modeling of large-format Prismatic Cells, PI: Charles Monroe

An Efficient Variable Screening Method for Effective Surrogate Models for Reliability-Based Design Optimization, PI: K.K. Choi

9:45 – 10:10

Combined Experimental and Computational Study of Battery Cooling in Hybrid Electric Vehicles, PI: Lin Ma

MultiObjective Decomposition Algorithm for the Battery Thermal Packaging Design, Co-PIs: Margaret Wiecek, Georges Fadel

June 6 - 3B: Vehicle Dynamics and Control

Session Co-Chairs: Paramsothy Jayakumar, Denise Rizzo Chesebrough Auditorium

10:40 - Vehicle-Dynamics-Conscious Real-Time Hazard Avoidance in Autonomous Ground Vehicles, PI: Jeffrey Stein

11:05 - Off-Road Soft Soil Tire Model Development, Validation, and Interface to Commercial Multibody Dynamics Software, PI: Corina Sandu

11:30 – 11:55

- Flexible Multibody Dynamics Approach for Tire Dynamics Simulation, PI: Hiroyuki Sugiyama

Page 12: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW TECHNICAL SESSION ABSTRACTS

Day 1 Technical Session 1.A – Hybrid Powertrain & Cooling Session Co-Chairs: Ms. Denise Rizzo, Dr. Wesley Zanardelli

1A1: Optimization of the Series-HEV system with Consideration of the Traction Motor Design and the Impact of Cooling Auxiliary Losses; Xueyu Zhang, Andrej Ivanco, and Zoran Filipi (Clemson U.)

The fidelity of the military hybrid electric vehicle simulation has been increased with the integration of the finite element electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because their duty cycles differ significantly from commercial HEV applications. Optimization framework was setup by coupling the vehicle simulation with the constrained optimization solver. The results guide design changes of the e-machine to achieve best vehicle fuel economy. In addition, the battery cooling system is integrated with the powertrain to enable analysis of the auxiliary parasitic loses, and their impact on optimal control strategy. Dynamic programming algorithm is extended to consider two states, and the results are processed to extract the implementable strategy for maximizing fuel economy. This is a part of the cross-cutting study in collaboration with ARC members working on thermal management and e-machine modeling.

1A2: Powertrain Thermal Management – Integration and Control of a Hybrid Electric Vehicle Battery Pack, E-Motor Drive, and IC Engine Multiple Loop Cooling System; William Tao and John Wagner (Clemson U.)

Hybrid electric vehicles combine an internal combustion engine with electric motors and battery pack to propel the vehicle. This project investigates control strategies for thermal management systems to stabilize the battery package, e-motor(s), and engine temperatures while minimizing the cooling power consumption. Mathematical models and controllers have been developed for this integrated vehicle subsystem. A three-state battery model, with Kalman observer, describes the battery surface and core temperatures plus the cooling air flowing around the cells. A model predictive controller regulates the refrigerant compressor speed and achieves the ideal cooling air temperature. Numerical results show reduced compressor power consumption while maintaining desired battery core temperature can be realized. Finally, e-motor and ICE temperatures must be controlled to desired ranges.

1A3: Advanced Models for Electric Machines; Heath Hofmann (PI) Kan Zhou (U. of Michigan), Wesley Zanardelli, Matthew Castanier, Denise Kramer (TARDEC), Lei Hao (GM)

The thermal limitations of electric machines in powertrain applications make knowledge of internal temperatures in the machine critical. In previous work we developed a thermal model of electric machines using an eigenmode-based model-order-reduction technique. The result is a thermal model with the accuracy of finite element models but orders of magnitude faster. Recent efforts have involved the development of a computationally-efficient loss model for electric machines. The loss and thermal models have been designed so that their results can be easily and quickly scaled, both in size and in the number of turns, allowing a variety of machine designs to be quickly generated and simulated. The models above are being used in collaboration with Prof. Zoran Fillipi’s and Prof. John Wagner’s research groups to conduct an HEV powertrain-level design and optimization study.

1A4: Improved Density and Temperature Range of In-vehicle Power Converters: High Frequency Power Supplies for High Temperature Environments; Juan Rivas, Wei Liang (U. of Michigan), M. Abul Masrur (TARDEC), John Glaser (GE Global Research)

This work presents the design and implementation of a high density 150 V-200 V to 28 V, 200 W-400 W resonant dc-dc converter with embedded inductors. The converter switches at 13.56 MHz and uses air–core toroidal inductors fabricated with printed circuit board (PCB) technology. Implementing the inductors with the PCB eliminates inductance variation, minimizes unwanted stray magnetic fields and parasitics, and reduces undesired coupling. Hence, the tuning and implementation of the converter are simplified while achieving high levels of performance and power density. The inductors also maintain stable values over a wide temperature range without magnetic cores. We describe the advantages of resonant power converter topologies in applications requiring high density and high performance in demanding environments.

Page 13: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW Day 1 Technical Session 1.B – Chemistry of Power

Session Co-Chairs: Dr. Peter Schihl, Mr. Eric Sattler

1B1: Simulation and Control of Combustion in Military Diesel Engines; N. A. Henein, A. Shrestha, Z. Zheng, U. Johsi, R. George and S. Mekhael (Wayne State U.)

The goal of this project is to develop combustion control strategies for military diesel engines to operate properly on alternate fuels including low-cetane JP-8. Operation on low-CN JP-8 causes power loss, increased fuel consumption, soot and white smoke which affect survivability, mobility and mission readiness in the field. The approach is interactive between computer simulations, analytical and experimental investigations. The investigations utilize IQT constant volume vessel, PNGV single cylinder engine and two production diesel engines. The developed control strategies include, combustion phasing, pilot injection, split injection, injection rate shaping, and operation at higher temperatures and pressures.

1B2: A Surrogate For Emulating the Physical and Chemical Properties of Jet Fuel; Angela Violi, Jason Martz, Doohyun Kim (U of Michigan)

The use of jet fuel in ground vehicles with diesel engines is mandated by the Army’s single battlefield fuel policy. To model the jet fuel combustion process with CFD, two four-component surrogates, UM1 and UM2, were formulated to emulate both the physical and chemical properties of a representative real jet fuel. The surrogate target properties include cetane number, lower heating value, hydrogen to carbon ratio, molecular weight and temperature dependent density, viscosity, surface tension and distillation characteristics. Properties of the newly developed surrogates and existing surrogates obtained from the literature were compared to real jet fuel properties. Simulations of non-reacting jet fuel sprays within a constant volume bomb were performed with the newly developed and existing surrogates and compared to experimental liquid and vapor spray penetration data.

1B3: Validation of JP-8 Surrogates in an Optical Engine; PI: Marcis Jansons (Wayne State U.) Validation of JP-8 surrogates is a requirement to establish the fidelity of predictive numerical simulations

used in the design and analysis of combustion systems. In an optical engine, physical and kinetic behaviors of surrogates are evaluated and compared against the target JP-8 fuel under temperature and pressure history conditions representative of a combustion cycle. Optical diagnostics are applied to quantify parameters key to the various phases of the engine combustion process for both target fuels and surrogates. Numerical combustion simulations using the surrogates are compared against experimentally determined values of liquid lengths, obtained from laser-induced Mie-scattering images, low temperature reactivity measured by HCHO chemiluminescence intensity, ignition location determined by laser-induced OH fluorescence, cylinder pressure, and heat release rate. .

1B4: High Energy Density Asymmetric Capacitors; Levi Thompson (PI), Paul Rasmussen, Abdoulaye Djire, Priyanka Pande (U. of Michigan)

Batteries are the principal devices used for military and commercial energy storage applications. While these devices can have energy densities exceeding 100 Wh/kg, this energy is difficult to fully access in pulsed and high power applications due to the relatively slow kinetics associated with their redox processes. Supercapacitors offer much higher power densities and could complement batteries in pulsed power applications, however, their low energy densities are only sufficient for relatively short pulses (a few seconds). Our research is exploring the feasibility the using asymmetric cell designs and new, high capacity materials to produce asymmetric supercapacitors with energy densities that out-perform currently available devices and enable applications with longer pulses. This paper will describe our progress during current funding year including initial results on the temperature dependence of equivalent series resistance (ESR) for pouch cells, as well as a summary of solution based chemistries for facile synthesis of VN with high surface areas.

Page 14: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW Day 2 Technical Session 2.A – Electrical Energy Storage

Session Co-Chairs: Mr. James Mainero, Mr. Larry Toomey

2A1: Ultracapacitor Energy Storage for Improving Fuel Economy and Extending Battery Life in Heavy Vehicles; Ardalan Vahidi, Yasha Parvini (Clemson U.), Aric Haynes (TARDEC), Vasilios Tsourapas (Eaton)

In this presentation, an electro-thermal model consisting of an equivalent-circuit electrical model and a lumped thermal model is proposed and parameterized for cylindrical double layer ultracapacitors. The electrical and the thermal sub-models are coupled through heat generation and temperature dependency of the electrical parameters. The electrical and the thermal models are parameterized by pulse-relaxation and drive cycle tests separately, where the electrical parameters are identified as dependent on temperatures ranging from -40C to 60C, SOC and current direction. In the next step using the validated battery and ultracapacitor models the sizing of hybrid energy storage for a hybrid electric heavy duty military vehicle will be addressed..

2A2: Accomplishments and Future Challenges for High Resolution Neutron Imaging as an In Situ Measurement and Validation Technique for Meso-scale Models of Lithium ion Batteries; Jason Siegel, Anna Stefanopoulou (U. of Michigan), Yi Ding (TARDEC), Patrick Hagans (Navitas)

Neutron imaging is an in situ measurement technique, similar to X-ray imaging, which is sensitive to hydrogen and lithium. The changes in intensity of the detected image during cycling of the battery are related to changes in the local lithium concentration along the beam path. The measurement noise is governed by neutron counting, which can be modeled as a Poisson random process, allowing us to calculate the measurement uncertainty as a function of the image exposure time. To improve the signal to noise ratio of the intra-battery snapshots, spatial averaging over uniform regions of the cell is combined with a novel stroboscopic averaging of periodically acquired images. Finally techniques to address the challenges of extracting quantitative data to locate edges in the image with a sub-pixel resolution, and to detect small changes in lithium concentration have been developed and applied within the last 3 years to a variety of battery cells and duty cycles for validating the dual-foil model.

2A3: Electrochemical-thermal Modeling of Large-format Prismatic Cells; Charles Monroe, Sun Ung Kim, Lynn Secondo, Anna Stefanopoulou, Jason Siegel (U. of Michigan), Yi Ding (TARDEC), Dyche Anderson (Ford)

Large-format prismatic Li-ion cells exhibit significant in-plane temperature variation during operation at high power, which may impact performance and battery life. We will present both experimental data and analytical theory to illustrate how thermal response is determined by the characteristic properties of materials within the battery cell. A theory that uses three key parameters (rather than the tens of parameters other models use) predicts the steady-state temperature distribution in an A123 prismatic cell at various C-rates. The effect of ambient temperature on thermal response will be investigated in detail. Also we will touch on coupling between the temperature and interfacial charge-transfer resistance, which may lead to situations in which the in-plane temperature distribution in a prismatic cell is unstable, causing thermal runaway.

2A4: Combined Experimental and Computational Study of Battery Cooling in Hybrid Electric Vehicles; Frank He, Yi Ding, Lin Ma (Virginia Tech)

This project studied the thermal management of lithium ion batteries both numerically and experimentally. Numerically, a high fidelity CFD (computational fluid dynamics) model has been developed to simulate the detailed dynamics within a battery pack. Experimentally, systematic tests were performed in a wind tunnel to validate the CFD model. The major contributions from this combined numerical-experimental study are threefold. First, the CFD model has been shown to capture the dynamics of battery modules consisting of multiple cells, including temperature non-uniformity. Second, the CFD simulations have been compared directly against experimental data to quantify its accuracy and validity. Third, the CFD and test data were used in collaborative efforts to develop reduced-order models for in situ monitoring and control purposes.

Page 15: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW Day 2 Technical Session 2.B – Design, Optimization, Reliability

Session Co-Chairs: Dr. David Lamb, Dr. Matthew Castanier

2B1: Optimal Crowdsourcing Framework for Engineering Design; Panos Papalambros (U. of Michigan)

Crowdsourced evaluation is a promising method for evaluating attributes of design concepts that require human input. One obstacle to obtaining both accurate and comprehensive design evaluations is the signal to noise ratio of high ability to low ability participants within the crowd. In this paper we introduce a Bayesian network capable of finding participants with high design evaluation ability, so that their evaluations may be weighted more than those of the rest of the crowd. The Bayesian network also estimates a score of how well each design concept performs on each required attribute. Monte Carlo simulation studies were conducted to test the quality of the Bayesian network on a variety of crowds consisting of participants with different evaluation ability. The results suggest that the Bayesian network estimates design attribute performance scores much closer to their value than simply weighting the evaluations from all participants in the crowd equally. This finding holds true even when the subgroup of high ability participants is a small percentage of the entire crowd..

2B2: An Accelerated Life Testing Methodology for Vehicle Systems using Time-Dependent Reliability Principles; Zissimos P. Mourelatos1, Igor Baseski2,3, Monica Majcher1,2, Jing Li1, Amandeep Singh3; 1Oakland U., 2PhD Candidate, Oakland U., 3TARDEC

Reliability usually degrades with time, increasing the product lifecycle cost. It is desirable to use accelerated testing to predict vehicle reliability using a few tests of short duration. Because vehicle parameters and excitation are random, many vehicles must be tested which is impractical. To address this challenge, we are developing an accelerated testing approach based on both experiments and analysis. Our approach uses available tests to calibrate an approximate simulation model which is then used to determine the failure rate of the vehicle fleet. We will present an overview of our approach including recently developed methods to estimate failure rates over a long time using information from tests of short duration, and a subset simulation technique with splitting. Our goal is to institutionalize our methodology at the TARDEC Physical simulation lab.

2B3: An Efficient Variable Screening Method for Effective Surrogate Models for Reliability-Based Design Optimization; Hyunkyoo Cho, Sangjune Bae, K.K. Choi (U. of Iowa), David Lamb (TARDEC), Ren-Jye Yang (Ford)

Surrogate models are often utilized to perform the reliability-based design optimization (RBDO) in affordable time and cost. However, the dimension of the RBDO problem has to be limited to obtain accurate surrogate models. Thus, an efficient and effective variable screening method has been developed to identify important variables in the RBDO process. For variable screening, output variance is calculated efficiently based on univariate dimension reduction method (DRM); and the variables that induce larger output variance are selected as important variables using hypothesis testing. Moreover, a quadratic interpolation method is studied in detail to calculate output variance more efficiently. Using a 44-dimensional example, it is shown that the proposed method finds important variables efficiently and effectively.

2B4: MultiObjective Decomposition Algorithm for the Battery Thermal Packaging Design; Brian Dandurand, Paolo Guarneri, Georges Fadel and Margaret M. Wiecek (Clemson U.)

Battery design requires the optimization of cell layout inside the pack while considering thermal aspects. Simultaneously optimizing the battery shape and position in the vehicle subject to geometric constraints would result in better overall designs. Since the vehicle and battery design problems are typically addressed by separate teams and each design is driven by multiple performance criteria, a MultiObjective Decomposition Algorithm (MODA), coordinating computations based on level-specific information, is developed for computing the Pareto set of this bilevel problem. A quadratic scalarization, adapted for solving multidisciplinary, multiobjective design problems, addresses the nonconvexity of the packaging subproblem. Convergence of MODA to Pareto designs representing tradeoffs within and between the subproblems and the effect of MODA parameters are examined through numerical runs.

Page 16: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM REVIEW Day 2 Technical Session 3.B – Vehicle Dynamics and Control

Session Co-Chairs: Dr. Paramsothy Jayakumar, Ms. Denise Rizzo

3B1: Vehicle-Dynamics-Conscious Real-Time Hazard Avoidance in Autonomous Ground Vehicles; Jiechao Liu, Tulga Ersal, Jeffrey L. Stein (PI) (U. of Michigan), Paramsothy Jayakumar (TARDEC), James Overholt (AFRL), Steve Rohde, Mitchell Rohde (Quantum Signal

Unmanned ground vehicles (UGVs) are gaining importance and finding increased utility in both military and commercial applications. Historically, UGVs have often been small and teleoperated but current interest is in much larger fully autonomous vehicles. Due to their size, higher operating speed and ability to navigate more complicated terrain, these larger size vehicles have significantly different dynamic and, therefore, require significantly different approach to hazard avoidance algorithms. This talk will present the development of a model predictive control (MPC) based hazard avoidance algorithm that is aware of the dynamic limitations of the vehicle and can thus push the vehicle to its limits to maximize its performance. To achieve this, higher fidelity models are needed to accurately predict the dynamic limitations of the vehicle as previous work by Jayakumar, et al. at TARDEC shows. The developed MPC obstacle avoidance algorithm is evaluated as a function of the incorporated model fidelity. Results indicate that mixed fidelity models can potentially be used to achieve good obstacle avoidance behavior while simultaneously reducing the computation required. A discussion of future research work will be outlined.

3B2: Off-Road Soft Soil Tire Model Development, Validation, and Interface to Commercial Multibody Dynamics Software; Shahyar Taheri, Scott Naranjo, Corina Sandu, Saied Taheri (Virginia Tech), Paramsothy Jayakumar (TARDEC), Brant Ross (MotionPort), Daniel Christ (Michelin)

The dynamics of tire-terrain interaction plays a significant role in studying off-road vehicle performance. Tire dynamics is influenced by tire structure and tire-terrain interaction. The proposed model consists of three layers, each containing discrete masses connected with springs and dampers in various combinations. The interaction with the terrain is obtained using an innovative dynamic ground contact model, with adaptive boundary conditions based on tire elements dynamics. Experimental testing has been done to supply data for model validation. The work was performed using the indoor terramechanics test rig at AVDL that can control slip and normal load applied to an instrumented tire driving over a deformable soil bed. The tests provided data for tire deflection, sinkage, drawbar pull, other forces, and moments caused by the tire-soil interaction under various conditions.

3B3: Flexible Multibody Dynamics Approach for Tire Dynamics Simulation; Hiroyuki Sugiyama (U. of Iowa), Paramsothy Jayakumar (TARDEC), Ryoji Hanada (Yokohama Rubber)

The structural deformation of tires causes significant changes in the normal and tangential contact pressure distribution under severe braking and maneuvering conditions, thus the evaluation of the limit performance of tires requires a comprehensive tire model that accurately accounts for the dynamic coupling between the structural deformation and the transient tire forces. For this purpose, a nonlinear flexible tire model was developed using the finite element absolute nodal coordinate formulation (ANCF) that is suited for the large deformation analysis of flexible multibody systems and the dynamic tire friction model is integrated into this model. Several numerical examples are presented along with the comparison with experimental results in order to demonstrate the use of the ANCF tire model. Future research potential of expanding the use of ANCF tire model for offroad mobility use is also outlined along with its high performance compute potential.

Page 17: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

Key  

For  your  internet  needs  on  campus  • Connect  to  MGuest  WiFi  network  • Open  your  web  browser;  the  MGuest  login  page  will  appear  • Enter  your  email  address  and  agree  to  the  terms  to  gain  access  

North  Campus  Map  

19TH    ANNUAL  AUTOMOTIVE  RESEARCH  CENTER  PROGRAM  REVIEW  

Page 18: 19th ANNUAL AUTOMOTIVE RESEARCH CENTER PROGRAM ...

19TH    ANNUAL  AUTOMOTIVE  RESEARCH  CENTER  PROGRAM  REVIEW  

Poster  Session  LocaGon:  Chrysler  Center  Gallery  

#   Poster  Title   PI  

1.2   Internet-­‐Distributed  Hardware-­‐in-­‐the-­‐Loop  SimulaGon   Ersal  1.6   Neutron  Imaging  (NI)  for  In  Situ  ValidaGon  of  Meso-­‐Scale  Models  

for  Lithium  Ion  BaYeries  Stefanopoulou  

1.8   Control  and  System  IntegraGon  of  SOFC/GT-­‐based  APUs     Sun  1.9   Off-­‐Road  Sod  Soil  Tire  Model  Development,  ValidaGon,  and  

Interface  to  Commercial  MulGbody  Dynamics  Sodware  Sandu  

1.10   Electro-­‐Thermal  Modeling  of  Double  Layer  Ultracapacitors   Vahidi  1.12   Vehicle-­‐Terrain  InteracGon  Model  for  SUGV  Design  and  Control   Peng  1.13   Reconfigurable  Control  for  Failure  PrevenGon  and  Recovery   Tilbury  1.15   Vehicle-­‐Dynamics-­‐Conscious  Real-­‐Time  Hazard  Avoidance  in  

Autonomous  Ground  Vehicles  Stein  

1.16   Flexible  MulGbody  Dynamics  Approach  for  Tire  Dynamics  SimulaGon  

Sugiyama  

2.4   EvaluaGon  and  Performance  Modeling  of  User  Interfaces  for  UGVs   Tilbury  3.1   MigraGon  of  Reliability  Sodware  I-­‐RBDO  to  TARDEC’s  HPC  System     Choi  3.2   Variable  Screening  Method  for  RBDO  &    

Accuracy  Improvement  Strategies  for  the  Dynamic  Kriging  Choi  

#   Poster  Title   PI  

3.7   Advanced  Models  for  FaGgue  Life  PredicGons  of  Hybrid  Electric  Vehicle  BaYeries   Epureanu  3.8   Light  weight  vehicle  structures  that  absorb  and  direct  destrucGve  energy  away  

from  the  occupant  Vlahopoulos  

3.9   Meta-­‐material  design  for  tank  track  pads   Fadel  

4.3   Oil  Film  Rupture,  ReformaGon,  and  Hydrodynamic  Pressure  Induced  by  the  InteracGon  of  the  Piston-­‐Assembly  with  the  Liner  LubricaGng  Oil  film  in  Internal  

CombusGon  Engines  

Chalhoub  

4.4   OpGmizaGon  of  the  Series-­‐HEV  system  with  ConsideraGon  of  the  TracGon  Motor  Design  and  the  Impact  of  Cooling  Auxiliary  Losses  

Filipi  

4.6   A  surrogate  for  emulaGng  the  physical  and  chemical  properGes  of  jet  fuel   Violi  4.8   Powertrain  Thermal  Management-­‐  IntegraGon  and  Control  of  a  Hybrid  Electric  

Vehicle  BaYery  Pack,  E-­‐motor  Drive  and  Internal  CombusGon  Thompson  

4.9   Engine  MulGple  Loop  Cooling  System   Wagner  

4.12   Advanced  Models  for  Electric  Machines  and  Drives   Hofmann  4.13   Combined  Experimental  and  ComputaGonal  Study  of  BaYery  Cooling  in  Hybrid  

Electric  Vehicles  Ma  

4.14   Improved  power  density  and  temperature  range  of  in-­‐vehicle  power  converters:  High  frequency  power  supplies  for  high  temperature  environments  

Rivas  

4.15   Electro-­‐Thermal  Planar  Dynamics  and  Control  of  PrismaGc  Li-­‐ion  Cells   Monroe  4.17   ReacGon  Pathway  and  Elementary  IgniGon  Behavior  of  Surrogates  for  JP-­‐8  and  

AlternaGve  JP-­‐8  Fuels  Boehman  

4.18   SimulaGon  and  control  of  combusGon  in  military  diesel  engines   Henein  4.19   ValidaGon  of  JP-­‐8  Surrogates  in  an  OpGcal  Engine   Jansons  4.A7   Scalable  BaYery  Model  for  Military  Robot  Pack   Thompson  

4.A11   Fault  Tolerant  Hydraulic  Hybrid  Systems   Filipi  

5.3   Development  and  Laboratory  ImplementaGon  of  an  Accelerated  TesGng  Method  for  Vehicle  Systems  using  Time-­‐Dependent  Reliability/Durability  

Principles  

Mourelatos  

5.5   BaYery  Thermal  Packaging  Design   Wiecek/Fadel  5.6   Mission  energy  predicGon  for  unmanned  ground  vehicles  using  prior  knowledge  

and  real-­‐Gme  measurements  Jin/Ulsoy  

5.7   Reliability,  Maintenance  and  OpGmal  OperaGon  of  Repairable  Systems  with  ApplicaGon  to  a  Smart  Charging  Microgrid  

Mourelatos  

5.8   A  SimulaGon  Based  EsGmaGon  of  Crowd  Ability  and  its  Influence  on  Crowdsourced  EvaluaGon  of  Design  Concepts  

Papalambros