1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From...

49
1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel BRUNEAU Laboratoire d'Acoustique de l'Université du Maine (LAUM), UMR CNRS 6613, Le Mans - France

Transcript of 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From...

Page 1: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

1868-2008 : 150 years of

Acoustic propagation inViscous / Thermal conducting fluids at

rest

From Fundamentals of AcousticsTo Current applications

Michel BRUNEAULaboratoire d'Acoustique de l'Université du Maine (LAUM), UMR CNRS 6613, Le Mans - France

Page 2: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

2

Recent short history 1810, J.J. Fourier : heat diffusion

1850, G.G. Stokes then C.L. Navier : viscosity

1868, G. Kirchhoff :

Basic equations Inertia, bulk and shear viscosity: Newton's law Compressibility: mass conservation law Thermal diffusion: heat conduction equation

Wave motion Infinite medium (plane and spherical waves) Guided plane wave (boundary layers effects)

1948, L. Cremer : impedance-like boundary layers

Applications: Small acoustic elements (1908), thermoacoustics (1978), acoustic gyrometry (1988), Boltzmann's constant measurement (1988), non-linear propagation from loudspeaker (1998), among others...

Jean-Baptiste Joseph Fourier

french, (1768-1830)

Claude-Louis Navier french, (1785-1836)

George Gabriel Stokesenglish, (1819-1903)

Gustav Kirchhoff german, (1824 - 1887 )

Page 3: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

3

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Content

Page 4: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

4

Inviscid fluid at rest

1) Inertia

3) Adiabatic behaviour

Euler équation

relationship between p et '

div v 0: conservation of mass equation

Acoustic wave motion: basic equations

Fpgradt

v00

qvdivt

'00

Nature of the compressibility

2) Compressibility

v

dx

P (x) P (x+dx)F(x)

0dPdˆT

CSd

T00

v

dPdT0

'

T0

pP

P

0

0

0

0

dPd

20c

q dV

dV'

v(x) v(x+dx)

dthSdT

' 20cp

h

Page 5: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

5

W = 0

Ea = 0

0V~ 0P

~ 0~

0~ ~

0P 0V

~

Adiabatic behaviour

P

V

0Pdˆ1

TdT

CSd

0

p

Pdˆ1

Td

pP

P

T

T

0

0

0

0

Pdˆ1

Td

pˆ1

maxmin= -max

max

min

/2

Page 6: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

6

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Content

Page 7: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

7

Viscous fluid Navier-Stokes equation

Fc

1vrotrot'vdivgradpgrad

c

1

t

v

c

1

0vv

000

00v c'

00

v c34

with and

: shear viscosity coefficient : bulk viscosity coefficient

compressional - extentional acoustic wave :

2 equations

Shear wave :

Fvdivgrad3

pgradt

v00

vv

0 vrotrott

v

v

v v

Fvvdivgrad3

pgradt

v00

Fvrotrotvdivgrad3

4pgrad

t

v00

rotrotdivgrad

i.e.

with

vvvv

Now

Page 8: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

8

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Content

Page 9: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

9

Non adiabatic behaviour

P

W > 0

Heat transfer between the particle considered and its neighbouring particles

Ea < 0

V

0V~ 0P

~ 0~

0~ ~

0P 0V

~

Page 10: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

10

Thermal conduction Thermal conduction equation

ht

sT 000

: thermal conduction coefficients : entropy variationh : heat source

Pdˆ1

TdT

CSd

0

p

pP

P

T

T0

psS

S

0

0

0

0

0

0

Pdˆ1

TdT

CSd

pˆ1

T

Cs

0

p

Now

p00h

0 C

h

t

p

c

1ˆ1

tc

1

withp00

h Cc

(meter)

Conservation of mass equation

qvdivt

'00

ˆp

c'

20

qcˆptc

1vdivc 00

000

Page 11: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

11

Summary Inviscid fluid (outside sources)

Thermoviscous fluid (with operation of sources)

pˆ1

0pgradc

1

t

v

c

1

000

0t

p

c

1vdivc

000

Euler equation

Conservation of mass equation

Adiabatic law (thermodynamic behaviour)

Stokes-Navier equation

Conservation of mass eq.

Thermal conduction eq.

'cp 20 ou

ˆptc

1vdivc

000

0 c0 q

t

p

c

1ˆ1

tc

1

0h

0

0 Cp

h

vrotrot'vdivgradpgradc

1

t

v

c

1vv

000

F

c0

1

Page 12: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

12

Content

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Page 13: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

13

Wave equation in thermo-viscous fluidDissipation phenomena

Outside harmonic sources - angular frequency (Kirchhoff, 1868)

0t

p

c

1

tc

111p

2

2

200

hv

0

0 ck

with

i k0 pk20

t,r,0pki1kk hv020

2a

hv00a k

2

i1kk complex

wavenumber

t

h

Ct

qFdiv

t

p

c

1

tc

111p

p02

2

200

hv

pk2a2

ak

it

Wave equation with sources (lower order of the thermo-viscous terms)

Remark : SST1

represents the gap between the isothermal compressibility and the adiabatic compressibility ("amplitude" of the thermal effect)

hv020

2a ki1kk dispersion

equation

vh

10-8 m

0pk 2a

Page 14: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

14

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Content

Page 15: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

15

Boundary conditions, boundary layersParticle behaviour (1/5)

Without viscosity and without thermal conduction (inviscid fluid)

v = 0p = 0

v = 0p = 0

max / minv max / minp max / min

In the bulk

On the wall

Progressive plane wave: pressure and particle displacement in quadrature

Stationary wave : pressure and particle displacement in phase

In the bulk

On the wall

maxv = 0p max

minv = 0p min

v max / minp = 0

Page 16: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

16

Boundary conditions, boundary layersParticle behaviour (2/5)

Without viscosity and with thermal conduction (stationary wave)

Thermal boundary layer

thickness

Displacement

Quasiisothermal

Polytropic

Quasiadiabatic

vn = van+vhn = 0

vn = vanvn = van

vn = van+vhnvn = van+vhn

van+vhn = 0

> 0 < 0= 0

local heat flux Temperature of the wall = constant =0 on the wall The normal component van of the acoustic velocity compensate on the wall

the «entropic» velocity vhn (linked to the heat flux) vn , van , vhn depend on the distance between the particle and the wall

Page 17: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

17

Boundary conditions, boundary layersParticle behaviour (3/5)

Without viscosity and with thermal conduction (stationary wave)

Thermal boundary

layer thickness

Displacement

Quasiisothermal

Polytropic

Quasiadiabatic

> 0 < 0= 0

local heat flux Temperature of the wall = constant t =0 on the wall

Heat transfer

Page 18: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

18

Boundary conditions, boundary layersParticle behaviour (5/5)

With viscosity and with thermal conduction (stationary wave)

- Si s < refrigerator

- Si s > temperature gradient is maintained in the wall, heat exchanges are inverted acoustic generator

Thermaland viscous boundary

layer thickness

Tm + (

Tm + (

Tm + (

Tm + s

(sTm + s

(sTm + s

(s

Displacement

Heat transfer

Page 19: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

19

Boundary conditions - boundary layersBasic equations (1/2)

Summary of the basic equations (thermo-viscous fluid with operation of sources)

Stokes-Navier equation

Conservation of mass eq.

Thermal conduction eq.

ˆptc

1vdivc

000

0 c0 q

t

p

c

1ˆ1

tc

1

0h

0

0 Cp

h

Components of the 1st equation: normal velocity

tangent velocityvvu

v w

v w1v w2

u

w

Boundary (u=s) localy plane

perfectly rigid

v

vu

v w

vrotrot'vdivgradpgradc

1

t

v

c

1vv

000

F

c0

1

Page 20: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

20

Boundary conditions - boundary layersBasic equations (2/2)

u

p

c

1vvdiv

u'vdiv

u

v

uv

c

i

00uwwwvww

uvu

0

i00

wuwi

wuwvww

uwvw

0 w

p

c

1v

w

v

u

vgrad'vdiv

u

vgradv

c

iii

i

iii

p00h

0 Cc

hp

c

1

c

i

qˆpc

i

cvdiv

u

v

000ww

u

Stokes-Navier equation

Conservation of mass equation

Heat conduction equation

Equations in the frame (u, w1, w2), harmonic oscillations 00ckit

Boundary conditions (on a wall at u = s)

0sviw pgrad

1uvi

ii w0

vw

0s pˆ

1u h

;

;

0pkp 2a p : champ source

spc

vsv00

0u

Z/1c00

withBoundary (u=s) localy plane

Impédance Z

u

w

v

vu

v w

withh0hh k2k2

v0vv k2k'2

Page 21: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

21

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Content

Page 22: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

22

v

0v

k

2

i1k

h

0h

k

2

i1k

Tubes, slits, acoustic transmission lines (1/3)

Plane wave, uww vvandgraduiihypotheses near the wall:

wpgradi

1v

uk

11 w

0w2

2

2v

1u h

p2

2

2h Ci

hp

ˆ1

uk

11

0svw

; pgrad1

uviii w

0vw

sk

uk1pgrad

i

1v

vv

vvw

0w

general solution of the homogeneous equation

0s ;

sk

uk1

Ci

hp

ˆ1

hh

hh

p

qˆpc

i

cvdiv

u

v

000ww

u

Stokes-Navier (Poiseuille) equation + boundary conditions

Conservation of mass equation

Heat conduction equation + boundary conditions

Boundary(u=s)

uw

v w

u v

uw

u h

Shear movement inside the boundary layer

Page 23: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

23

Tubes, slits, acoustic transmission lines (2/3)

Wave equation (mean value over the section), (Kirchhoff, 1868)

q

C

hip

sk

uk11

cp

sk

uk1

u

vi

p0

hh

hh20

2

wvv

vvu0

0 KvKh

q

C

hipK11kpK1

p0h

20wv

Outside the sources:

0pK1

K11k

v

h20w

Elementary wave equation with a complex wavenumber

Boundary(u=s)

uw

v w

u v

uw

u h

p

Page 24: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

24

Tubes, slits, acoustic transmission lines (3/3) Acoustic transmission lines: mean value over the section

Tubes and slits (z-axis), outside the sources

sk

uk1

Ci

hp

ˆ1

hh

hh

p

qˆpc

i

cvdiv

u

v

000ww

u

Stokes-Navier (Poiseuille) equation + boundary conditions

Conservation of mass equation

Heat conduction equation + boundary conditions

z

vz = < vw >

v

p

Kh

sk

uk1pgrad

i

1v

vv

vvw

0w

Kv

vz

z

v

000 vK1

cki

z

zp

0vz

zpK11c

ki

z

vh

00

0z

Page 25: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

25

The dynamics of fluid motion

Basic equations (inviscid fluid at rest) Viscosity effects Thermal conduction effects Wave motion in thermo-viscous fluid: dissipation

Thermo-viscous boundary layers

Boundary conditions: boundary layers Tubes and slits, acoustic transmission lines Field/wall interaction: damping and delay

Content

Page 26: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

26

,pc

skiukik

1skiuki

k

1

k

ksvuv

200

hhhhh

vvvvv

20

2w0

uu

Field/wall interaction Thermo-viscous admittance-like of the wall

Wave equation inside the thermo-viscous boundary layers (outside the sources)

qC

hp

c

i

sk

uk1

sk

uk

ku

p

i

1

u

v

p200hh

hh

vv

vv20

w2

2

0

u

u

sdu

u

s

du

0u

p

i

1u

s0

usuv

with

pc

sv00

u

for (u-s)v,h pcc

uv00

v

00u

hv20

2w

000

v

k

11

k

1

k

kk

cwith

Specific admittance-like effects of the thermoviscous boundary layers on the reflection of the acoustic field (Cremer, 1948)

p0000

20

2w

0v Cc1

ck

kk

2

i1and

and2ww k uki

h,vh,veu

(extinction of the shear and the entropic modes for (u-s) v,h )

with

u

w

boundary layers

v

vu

v w

s

Page 27: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Small Acoustic elementsThermo-viscous boundary layer

effects

LAUM - LNE

Page 28: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

28

Results

• An Annular slitThickness: 71.2 µm ± 6 µmLength: 3.8E3 ± 6 µm

Page 29: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

29

• 4 open tubesØ: 449 ±1µmLength: 3.80 ±0.01mm

New results

Page 30: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

MicrophonesThermo-viscous boundary layer

effects

LAUM - LNE

Page 31: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

31

Page 32: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

32

Page 33: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Acoustic gyrometerInertial viscous boundary layer

effect

Michel BRUNEAU Henri LEBLONLAUM SEXTANT-AVIONIQUE

Page 34: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

34

Acoustic gyrometer

Demonstrator

Page 35: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

35

Introduction

Applications :

- Transportation, Navigation

- Guidance

- Robotics ...

Advantages of the acoustic gyros :

- Lower manufacturing cost

- Lower power consumption

- Smaller dimension, even miniaturisation

- Higher reliability

- Improved lifetime

- Short transient response

- High dynamic range

Page 36: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

36

Device, mechanisms involved

1000

(°/s)

-10000.1

0.2

0.3

0.4

-0.1-0.2

-0.3

-0.4AS /AC

[Herzog et al.]

100 200 500 1000

-1

dB

(°/s)

AC

[Herzog et al.]

C = AC J1(k10r) cos

S = AS J1(k10r) sin

Page 37: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

37

qp)c1( t0

2tt2

0

prc

2r

220

p)( t0c220

.0

The wave equation

Flow induced perturbation

Radial density variation effect

tor.v)v(tor.)v(div v

Angular acceleration

)v( 1te

Coriolis acceleration

Centrifugal acceleration

v2c

v1tta

0 0.2 0.4 0.6 0.8 10.992

0.994

0.996

0.998

1

r/R

=0°/s

=20000°/s

=40000°/s

=60000°/s=80000°/s

)R(P/)r(P 00

Page 38: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

38

Acoustic gyrometer

Experimental gyrometer

Gyrometer

Rotating table

Page 39: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

39

Miniaturised acoustic gyrometer

Loudspeaker and microphones

on silicon chips

Page 40: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

40

Conclusion

Transient regime

- Short transient response (less than 50 ms).

- Much shorter than the stabilization time of the unsteady circular flow (several seconds)

- Linear response (output as function of the rotation rate)

High rotation rates

- Non linear behaviour of the phenomena involved

- Linear response

- High dynamic range (from 10-2 °/s up to 105 °/s)

Page 41: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Boltzmann constant measurementThermo-viscous boundary layer

effectsLAUM/GDF

INM/LNE/CNAM

Page 42: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

42

Page 43: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

43

Page 44: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Machines thermoacoustiquesModélisation analytique

Machines thermoacoustiques (Roth, ..........) : systèmes multiphysiques (acoustique, vibratoires, thermique...), systèmes multi-échelles (=, L=dimensions guide d'onde), systèmes sièges de processus physiques couplés et complexes.

=> modélisation numérique d'une machine complète : non envisageable pour l'heure=> modélisation analytique : complémentaire de la modélisation numérique

Au LAUM, depuis 1995, approche essentiellement analytique et expérimentale

Intérêt

linéaire et non linéaire

régimes transitoires et stationnaires

aide au dimensionnement

estimation des performances (par la classification des principaux effets non-linéaires qui contrôlent le comportement de ces machines).

44

Page 45: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Exemples de résultats

Contrôle actif des non linéarités

Réfrigérateur thermoacoustique « classique »

- Gusev V., Bailliet H., Lotton P., Job S., Bruneau M., J. Acoust. Soc. Am., 103(6), 1998Références

- H. Bailliet, doctorat, Univ. du Maine, 1998

Génération d’harmoniques (en résonateur sans stack) : modèle de Burgers généralisé

Contrôle actif : signal HP en source d'énergie) et 2(opposition aux effets NL)

=> augmentation de l’amplitude de pression jusqu'à 50% (résultat expérimental)

45

Page 46: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Exemples de résultats

Régime transitoire d'établissement du champ de température dans un réfrigérateur thermoacoustique (coll. LMFA)

ThotTcold

0 xc

x

Description analytique du régime transitoire - flux de chaleur dû à l’effet thermoacoustique, - conduction thermique retour dans l’empilement, - chaleur générée par effets visqueux dans l’empilement, - fuites thermiques en parois du résonateur et aux extrémités de l’empilement

Référence P. Lotton, P. Blanc-Benon , M. Bruneau , V. Gusev , S. Duffourd , M. Mironov , G. Poignand, International Journal of Heat and Mass Transfer, 52, 4986-4996, 2009 46

Page 47: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

Exemples de résultats

Nouvelle architecture de réfrigérateur thermoacoustique (miniaturisation)

Champ acoustique optimal pour le flux de chaleur thermo-ac. (modélisation analytique). Réfrigérateur compact à 2 sources : maquette à champ acoustique optimal

Proto. (échelle centimétrique)

Stack (plaques Kapton©)

Plaque avec jonctions thermo-élect.

(mesure du champ de températures)

Références

- G.Poignand, B. Lihoreau, P. Lotton, E. Gaviot, M. Bruneau, V. Gusev, Appl. Ac., 68(6):642-659, 2007.- B. Lihoreau, doctorat, Univ. du Maine, 2002.- G. Poignand, doctorat, Univ. du Maine, 2006.

- M. Bruneau, P. Lotton, Ph. Blanc-Benon, V. Gusev, E. Gaviot, S. Durand, Brevet FR 03 05982 (Univ. du Maine et CNRS) juin 2003 (étendu PCT WO2004402084).

47

Page 48: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

48

Exemples de résultats

Extrémité stack / échangeur de chaleur : effets de bords thermiques (coll. LMFA)

Modélisation analytique des transferts thermiques (harmoniques de température) Réflexions sur la distance optimale stack-échangeurs .....

stack échangeur

adiaba

tiq

uepo

lytro

piq

uepo

lytro

piq

ue

Variation brusque de la nature des échanges thermiques

=> génération d'effets non linéaires thermiques

- Gusev V., Bailliet H., Lotton P., Job S., Bruneau M., J. Acoust. Soc. Am., 109(1), 2001.Références

- Gusev V., Lotton P., Bailliet H., Job S., Bruneau M., J. Sound Vib., 235(5), 711-726, 2000.

Page 49: 1868-2008 : 150 years of Acoustic propagation in Viscous / Thermal conducting fluids at rest From Fundamentals of Acoustics To Current applications Michel.

49

Exemples de résultats

Générateurs d'ondes thermoacoustiques : déclenchement et effets NL de saturation

DéclenchementModélisation : solution analytique exacte de l'équation de la thermoacoustique linéaire prise sous forme d'une équation intégrale de Volterra de seconde espèceSaturation

expérience modèleRéférences- Gusev V., Job S., Bailliet H., P. Lotton, M. Bruneau, J. Acoust. Soc. Am.,

110, p.1808, 2001- S. Job, doctorat, Univ. du Maine, 2001- G. Penelet, V. Gusev, P. Lotton, M. Bruneau, Phys. Let. A, 351, 268-273, 2006

- G. Penelet, doctorat, Univ. du Maine, 2004

Régime transitoire : modélisation analytique (déclenchement saturation NL) :

- vent acoustique - génération d'harmoniques- pompage thermoacoustique - pertes de charges singulières