18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring...

78
18. March 2009 Mitglied der Helmholtz- Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer

Transcript of 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring...

Page 1: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Quantum Computing with Quantum DotsIFF Spring School

| Carola Meyer

Page 2: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 2

Why a quantum computer?

Page 3: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 3

Quantum computing

calculationpreparation read-outtime

classical bit

1 ON 3.2 – 5.5 V

0 OFF -0.5 – 0.8 V

exponentially faster for Fourier transformation (Shor algorithm)

quantum-bit (qubit)

0 1

a10 + a21 =a1a2

H H-1U |A|

time

decoherence

Page 4: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 4

„DiVincenzo“ Criteria

DiVincenzo: Fortschr. Phys. 48 (2000) 9-11, pp. 771-783

A scalable system with well characterized qubits

A qubit-specific measurement capability A („read-out“)

The ability to initialize the state of the qubits to a simple fiducial state, e.g. |00...0>

A „universal“ set of quantum gates U

Long relevant decoherence times, much longer than the gate operation time

Page 5: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 5

Outline

Part I Brief introduction to quantum dots and transport

How can this be used to build a quantum computer?

Measurement of spin states Fast charge measurement Spin to charge conversion

Part II Manipulation of single qubits

SWAP: implementation of a two-qubit gate

Relaxation

Page 6: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 6

Quantum dots

single molecule

metallic (superconducting) nanoparticle

self-assembled QD nanotube

nanowire

1 nm 10 nm 1m

vertical QD

lateral QD

100 nm

Page 7: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 7

Confining Electrons in a Semiconductor

Page 8: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 8

From 3D to 0D

E

D(E)

EFEF

D(E)

E

3D

2D

1D

0D

Page 9: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 9

Gate fabrication

Page 10: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 10

Real Quantum Dot structures

• Ohmic contacts by RTA of Ni/Au/Ge (diffusion from surface to 2DEG)

• Electrical control of dot potential and tunnel barriers

• Electron spins can be polarized with large B and low T

Tel = 150 mK, B = 7 T, g = 0.44| P = 99.9%

Page 11: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 11

transport measurements

source drain

Vg

source drain

Vg

source drain

Vg

Kouwenhoven et al., Science 278, 1788 (`97)

Page 12: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 12

Loss & DiVincenzo Proposal

Loss & DiVincenzo, Phys. Rev. A 57, 120 (1998)

2DEG

gates

• Quantum dots defined in 2DEG by gates

• Coulomb blockade used to fix number of electrons at one per dot

e e e e

• Electron spin used as Qubit

Page 13: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 13

Loss & DiVincenzo: Qubit Manipulation

2DEG

gates

e e e e

high-g layer

B

• Addressing of single qubits by manipulation of g-factor

Loss & DiVincenzo, Phys. Rev. A 57, 120 (1998)

back gates

• Qubit manipulation using spin resonance

Bac

• 2 Qubit operations using J coupling

J-gates

A-gates

Page 14: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 14

„DiVincenzo“ Criteria

DiVincenzo: Fortschr. Phys. 48 (2000) 9-11, pp. 771-783

A scalable system with well characterized qubits

A qubit-specific measurement capability A („read-out“)

The ability to initialize the state of the qubits to a simple fiducial state, e.g. |00...0>

A „universal“ set of quantum gates U

Long relevant decoherence times, much longer than the gate operation time

( )

Page 15: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 15

Read-Out of Electron Spin

Requirements

• Read-out has to be fast enough→ Shorter than T1 (spin energy relaxation)

• Charges are measured→ Spin to charge conversion

• Back-action on qubit system should be small→ decouple read-out from qubit system

Page 16: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 16

QPC as charge detector

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M R

Q

T

P

• Define QPC by negative voltage on R and Q

• Tune S-D conductance to last plateau at working point

• Change number of electrons in dot: make VM more negative

Working point: max. sensitivity to electrostatic environment

Page 17: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 17

QPC as charge detector

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M R

Q

T

P

N

N-1N-2

Reduce number of electrons in dot:

Change in charge lifts the electrostatic

potential at the QPC constriction,

resulting in a step-like feature in IQPC

Enhance sensitivity

Page 18: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 18

QPC as charge detector

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M R

Q

T

P

Measure differential conductance in IQPC

Coulomb oscillations in dot can be detected by QPC

highly sensitive charge detector (1/8 e)

allows to study QD even when isolated from reservoirs (s. QuBits)

Page 19: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 19

Read-Out of Electron Spin

Requirements

• Read-out has to be fast enough→ Shorter than T1 (spin energy relaxation)

• Charges are measured→ Spin to charge conversion

• Back-action on qubit system should be small→ decouple read-out from qubit system

Page 20: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 20

How fast is the charge detection?

IQPC

DRAIN

SOURCE

RE

SE

RV

OIR

200 nm M P R

Q

T

• VSD = 1 mV

• IQPC ~ 30 nA• ∆IQPC ~ 0.3 nA

• Observation of singel tunneling events

• Spontaneous back and forth tunneling between dot and reservoir

(a) electron predominantly in reservoir (b) electron predominantly in dot

(a)

(b)

• shortest steps ~ 8 µs

Page 21: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 21

Pulsed-induced tunneling

responseto pulse

IQ

PC (

nA)

Time(ms)

0 0.5 1.0 1.5

responseto electrontunneling

0.0

0.4

0.8

-0.4Real time single electron tunneling

Page 22: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 22

Histograms tunnel time

~ (60 s)-1

0.0 0.5 1.0 1.5-1

0

1

2

3

IQ

PC (

a.u

.)

Time (ms)

~ (230 s)-1

Increase tunnelbarrier

0.0 0.5 1.0 1.5-1

0

1

2

3

Time (ms)

Page 23: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 23

Spin read out principle:

N = 1

SPIN UP

time

charge

0

-e

N = 1 N = 1N = 0

SPIN DOWN

time

charge

0

-e

-1

convert spin to charge

Page 24: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 24

Initialization

Energy selective tunneling

• spin-up will stay in dot

• spin down will tunnel

• wait a few tunneling processes (high polarization in state)

• fast initialization process

|

Page 25: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 25

Read-Out of Electron Spin

Requirements

• Read-out has to be fast enough→ Shorter than T1 (spin energy relaxation)

• Charges are measured→ Spin to charge conversion

• Back-action on qubit system should be small→ decouple read-out from qubit system

Page 26: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 26

Spin read-out procedure

inject & waitempty QD

Vp

uls

e

read-out spinempty QD

IQ

PC

Nature 430, 431(2004)

Page 27: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 27

Spin read-out results

inject & waitempty QD

Vp

uls

e

read-out spinempty QD

IQ

PC

“SPIN DOWN”

Time (ms)

0 1.00.5 1.5

“SPIN UP”

Time (ms)

0 1.00.5

IQ

PC (

nA)

0

1

2

1.5

Elzerman et al., Nature 430, 431, 2004

Page 28: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 28

More spin down traces

Time (ms)

0 1.5

IQ

PC (

nA)

0

1

2

1.00.5

treadtwait

thold

Thresholdvalue

thold : time the electron spends in the dot

tdetect : 1/1 tunneling time

Page 29: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 29

Verification spin read-out

Waiting time (ms)

Spi

n do

wn

frac

tion

1

exp wait

T

tC

Spin flip

Page 30: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 30

Measurement of T1

B = 8 TT1 ~ 0.85 ms

B = 10 TT1 ~ 0.55 ms

B = 14 TT1 ~ 0.12 ms

• Surprisingly long T1

• T1 goes up at low B

Elzerman et al., Nature 430, 431, 2004

Page 31: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 31

Read-Out of Electron Spin

Requirements

• Read-out has to be fast enough→ Shorter than T1 (spin energy relaxation)

• Charges are measured→ Spin to charge conversion

• Back-action on qubit system should be small→ decouple read-out from qubit system

Page 32: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 32

„DiVincenzo“ Criteria

DiVincenzo: Fortschr. Phys. 48 (2000) 9-11, pp. 771-783

A scalable system with well characterized qubits

A qubit-specific measurement capability A („read-out“)

The ability to initialize the state of the qubits to a simple fiducial state, e.g. |00...0>

A „universal“ set of quantum gates U

Long relevant decoherence times, much longer than the gate operation time

( )

Page 33: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 33

quantum measurement

Any more questions about this point?

Page 34: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 34

Drawbacks of read-out

So far:energy-selective read-out(E-RO)

Drawbacks:

(1) energy splitting must be larger than thermal energy

(2) very sensitive to fluctuations in electrostatic potential

(3) high-frequency noise can spoil E-RO (photo-assisted

tunneling)

Page 35: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 35

(3) t = : with

high PR that electron was in state ES

low PR that electron was in state GS

Alternative read-out scheme

Now:

tunnel-rate-selective read-out (TR-RO)

(1) t = 0 : position both levels above chemical potential

(2) electron will tunnel regardless of spin state

ES GS >>

-1 -1GS ES >> >>

Page 36: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 36

Alternative read-out scheme

Now:

tunnel-rate-selective read-out (TR-RO)

ES GS

Advantage:

(1) does NOT rely on large energy splitting

(2) robust against background charge fluctuations

(cause small variation of tunneling rate)

(3) photon-assisted tunneling not important

>>

Page 37: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 37

Singlet-triplet read-out

Experimental conditions:

(1) can be achieved in Quantum Hall regime, where high spin-selectivity is induced by spatial separation of spin-resolved edge channels

(2) can be used for read-out of two-electron dot with electrons in

(a) spin singlet ground state (b) spin triplet state

| S |T

Page 38: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 38

Single-shot read-out

T S/ 20

S 2.5 kHz

T 50 kHz

20 kHz low pass filter

Page 39: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 39

Single-shot read-out

T S/ 20

S 2.5 kHz

T 50 kHz

20 kHz low pass filter

Page 40: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 51

On chip generation of oscillating magnetic fields

Minimum field Bac = 5 mT

fRabi ~ 30 MHz

Single Qubit gate operation

1/2fRabi ~ 15 ns

On-chip design

dissipation: 10 W at 1 mT

250 W at 5 mT

thermal “budget” dilution fridge:

300 W at 100 mK

Compare to spin coherence time

Page 41: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 52

Basics of electron spin resonance

m agne tic fie ld

ab

sorp

tion

m agne tic fie ld

fieldm

odulation

E = h= giµBB0 = 30 µeV für GHz

mS = 1/2

mS = -1/2

B0ener

gy

magnetic field

Page 42: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 53

Detection of continuous wave ESR

| Ground state

AC field lifts Coulomb blockade

Simple concept: BUT hard to prove that signal in current is due to single spin rotation

Engel & Loss, PRL 86, 4648 (01)

Page 43: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 54

Photon-assisted tunneling

0 - hf

N electrons N+1 electrons

0 + hf

- Electron in dot absorbs photon (N+1) → N- Electron in lead absorbs photon N → (N+1)Two side-peaks arise

Electric field couples to charge for < f:

Page 44: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 56

Spin manipulation and detection

Initialization Pull dot levels far below Fermi level to avoid PAT

Switch on hf to change the spin state

Single shot read-out

Pulse spin down level in bias window

Page 45: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 57

Spin manipulation and detection

Initialization Pull dot levels far below Fermi level to avoid PAT

Switch on hf to change the spin state

Single shot read-out

S(0,2)

T(0,2)

by spin blockade

Double quantum dot with one electron in the right dot

Pulse spin down level in bias window

Read-out by lifted spin blockade

Page 46: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 58

Coherent Rabi oscillations

Page 47: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 59

Coherent Rabi oscillations

Idot large

Idot small

Page 48: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 60

SWAP gate implementation in a Double Quantum Dot

Few electron double quantum dot

• Fully tunable 2Qubit system

• Quantum point contact (QPC)as charge detector

• Measure dIQPC/dVL : change of total electron number in double dot

• VL controls number of electrons in left dot

• VPR controls number of electrons in right dot

Page 49: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 61

source

Vleft

drain

Vright

Vtgl Vtgm Vtgr

Current in a double quantum dot

(0,0)

(1,0)

(0,1) (0,2)

(1,1)

(2,0)

(1,2)

Vright

(2,1) (2,2)

Vle

ft

Page 50: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 62

source

Vleft

drain

Vright

Vtgl Vtgm Vtgr

Current in a double quantum dot

(0,0)

(1,0)

(0,1) (0,2)

(1,1)

(0,2)

(1,2)

(2,1) (2,2)

e

h

01234 024681012

Vright

Vle

ft

Page 51: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 63

VL VR

Two electron double quantum dot

• QPC can detect all charge transitions• 2 electron double quantum dot• Tuned between (1,1) and (0,2) state

Page 52: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 64

Spin configurations in a DQD

Spin-Singlet

S = 0

antisymmetric

Spin-Triplet

S = 1; ms = +1, 0, -1

symmetric

Page 53: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 65

Hyperfine coupling in a DQD

• Ga and Ar have a nuclear spin:

about 106 nuclear spins in a quantum dot

• Electrons feel a magnetic field due to hyperfine interaction with these nuclei

• Nuclear spins are not fully polarized

fluctuations lead to a field

• Singlet and Triplet states become mixed

“Overhauser field”

• In an external magnetic field in <z>, |S and |T0 become mixed

Page 54: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 66

Harvard scheme

Singlet ground state

Tilt potential:new charge ground state(1, 1)

B > 0:(1,1) S and (1,1) To

mixing

t = s:transfer to (0,2) ground state

spin selection rules:

• (1,1) S can tunnel to (0,2) S

• (1,1) T to (0,2) S transition is blocked

If charge does NOT return to (0,2) state, spin dephasing

during time s

Page 55: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 67

Harvard scheme

Interdot tunneling:

• hybridization (0,2) – (1,1)

• exchange splitting J()

B = 100 mT perp. field

Strength of J()

controlled by gates

Page 56: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 68

The logical Qubit

1. prepare singlet (0,2) S2. rapid pulse (1 ns) : slow compared to tunnel splitting

separated singlet3. separation time s: rapid back projection into (0,2) S state

1 2 3

How long can the electrons

be separated spatially before

they loose phase coherence?

T2* ~ 8 ns

Page 57: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 69

Spin swap and Rabi oscillations

2oS T

Slow detuning:

rotate intoS

for J 0

Page 58: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 70

Spin swap and Rabi oscillations

S

Read-out

0T

Page 59: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 71

Spin swap and Rabi oscillations

2oS T 2oS T

turn on J()

Page 60: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 72

Spin SWAP and Rabi oscillations

Page 61: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 73

• CNOT can be composed from single qubit rotations and √SWAP

A universal set of quantum gates

Single qubit rotations and the CNOT gate form a universal set

• Single qubit rotations

I dot (

fA)

100

Rotation of spin 1Rotation of spin 2

Page 62: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 74

„DiVincenzo“ Criteria

DiVincenzo: Fortschr. Phys. 48 (2000) 9-11, pp. 771-783

A scalable system with well characterized qubits

A qubit-specific measurement capability A („read-out“)

The ability to initialize the state of the qubits to a simple fiducial state, e.g. |00...0>

A „universal“ set of quantum gates U

Long relevant decoherence times, much longer than the gate operation time

( )

Page 63: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 75

Entanglement and decoherence

Page 64: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 76

Singlet-triplet spin echo

• refocus separated singlet to undo inhomogeneous dephasing

• apply pulse by pulsed J()

( ) / , 3 , 5EJ

Page 65: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 77

Singlet-triplet spin echo

Singlet probability as a functionof detuning and E.

singlet recovery

Page 66: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 78

Singlet-triplet spin echo

Page 67: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 79

Spin-spin relaxation times

Spin dephasing time: ~ 8 ns

Spin coherence time: ~ 1.2 s

Time for √SWAP: ~ 180 ps

about 7000 √SWAP operations can be performed during T2

However

Page 68: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 80

„DiVincenzo“ Criteria

DiVincenzo: Fortschr. Phys. 48 (2000) 9-11, pp. 771-783

A scalable system with well characterized qubits

A qubit-specific measurement capability A („read-out“)

The ability to initialize the state of the qubits to a simple fiducial state, e.g. |00...0>

A „universal“ set of quantum gates U

Long relevant decoherence times, much longer than the gate operation time

( )

Why can’t we already buy a quantum computer ?Why can’t we already buy a quantum computer ?

( )

Page 69: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 81

Spin energy relaxation

nuclei: T1 ~ hours – dayselectrons: T1 ~ ms

spin system is in excited state

relaxation to ground state due to spin-phonon interaction

read-out within T1

dMz

dt= (Mx(t)By My(t)Bx)

Mz M0

T1

Page 70: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 82

Origin of spin-phonon coupling

Spin-orbit interaction is the most important contribution

HSO cannot couple different spin states of the same orbital

New eigenstates can couple to the electric field

Lattice vibrations lead to fluctuations of the electric field

Spin relaxation

Page 71: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 83

Different contributionsnew eigenstates

Only acoustic phonons are relevant → linear dispersion relation

Matrix element:

Piezoelectric phonons dominate

Phonon wavelength much larger than dot size

Page 72: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 84

Breaking time reversal symmetry

All contributions would cancel out without magnetic field applied

Follow one period of lattice vibration (harmonic oscillator)

“van Vleck” cancellation

SO

SO

B0

Page 73: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 85

Magnetic field dependence

All contributions add up to: EZee5

Page 74: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 86

Decoherence due to dephasing spins

magnetization in x,y-plane(superposition)

superposition decays because of dephasing

Slow fluctuations can be refocused

Time ensemble is needed for presented Hahn-echo

However:

From one Hahn-Echo sequence to the next nuclear field takes a new, random and unknown value

Page 75: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 87

Magnetic field fluctuations

Unknown magnetic field

electron spin evolves in an unknown way

Gaussian distribution with standard deviation

T2* = 10 ns

In experiment:

=̂ BN = 2.3 mT

Reduce dephasing

Find a way to decrease of magnetic field

BN

Page 76: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 88

Summary

Proposal for quantum computing with quantum dots

electron spin as qubit

exchange interaction as qubit coupling

Single spin read-out

spin to charge conversion

quantum point contact as charge detector

spin-energy relaxation time (T1) measurement

Quantum gates

single spin rotation

SWAP operation between two qubits

spin-phase relaxation time (T2) measurement

Origin of spin relaxation

spin orbit coupling (T1)

nuclear hyperfine field (T2)

Page 77: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 89

Outlook

• All necessary components not yet implemented in the same device

• Gate implementation still too slow

• Scaling to ~1000 qubits not straight forward

• Improve T2 : Polarize nuclei to >99%

Find materials without nuclear spins and SO coupling

→ carbon based (graphene, carbon nanotubes)

→ silicon (2DEG charge carrier mobility too low)

Any solutions possible?Any solutions possible?

Why can’t we already buy a quantum computer ?Why can’t we already buy a quantum computer ?

Page 78: 18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.

18. March 2009 IFF Spring School Folie 90

Dilbert