17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in...

20
17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen, Y. Podoba, T. Stange, D. Zhang, F. Wagner and the WEGA-team Max-Planck-Institut für Plasmaphysik, Greifswald branch, EURATOM Ass. Wendelsteinstr. 1 D-17491 Greifswald, Germany

Transcript of 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in...

Page 1: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

17th International Stellarator / Heliotron Workshop

Princeton, USA

Overdense Plasma Operation in WEGA Stellarator

Matthias Otte, H.P. Laqua, S. Marsen, Y. Podoba,

T. Stange, D. Zhang, F. Wagner and the WEGA-team

Max-Planck-Institut für Plasmaphysik, Greifswald branch, EURATOM Ass.

Wendelsteinstr. 1

D-17491 Greifswald, Germany

Page 2: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 2

Outline

• Motivation on over-dense plasma generation

• Overview WEGA

• Setup of 28GHz ECRH system

• Results from OXB mode heating

• Summary and outlook

Overview of actual WEGA results will be

presented on poster P-D02

during workshop’s poster session from Monday

till Wednesday.

Page 3: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Motivation

Why OXB Mode Heating ?

• Electromagnetic waves used for resonant electron or ion cyclotron heating can not penetrate the plasma above associated cut-off density ➽ problem for high-density operation

• Electrostatic Bernstein waves (EBW)

- no density limit but need a medium for propagating

- excitation via mode conversion process (X-B or O-X-B)

- damped on electrons at fundamental or harmonic Doppler-shifted

electron cyclotron resonance

• Plasma is optically thick for EBWs even at low temperature (<10 eV)

• Interesting physics:

- Wave field physics

- Generation and confinement of fast electrons

- Current drive in overdense plasmas

Matthias Otte Princeton, 13 October 2009 3

Page 4: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

The OXB-mode Conversion Process

Matthias Otte Princeton, 13 October 2009 4

Requirements

• O-wave launched with θopt in respect to the

magnetic field vector

- correct polarisation

- angular window width ~ 1/k0Ln (with L = n / grad

n)

• Density ne above cut-off density ne,cut

• Existence of UHR (ω > ωc)

Example:

Ray tracing

calculation of slow

X-mode conversion

process

at W7-AS

θo

pt

0B

en

y

Page 5: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 5

WEGA = Wendelstein Experiment in Greifswald zur Ausbildung (for education)

• Hybrid tokamak/stellarator experiment in Grenoble/France in the 1970s and ´80s

for development of LH heating

• Installation at IPP Greifswald in 2000/2001

as classical stellarator

• October 2009: about 33000 pulses

with typical duration of 10 - 60 s

• 0.5 T operation for 30 s possible

• Up to ~100 pulses / day

Overview WEGA

Page 6: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 6

Btoroidal

Bpoloidal

Bvertical

Setup and Magnetic Properties

Vessel• Two half-tori with R = 0.72 m, r = 0.19

m • 100 ports ( ≤ 92 mm)

Magnetic field coils

• 40 toroidal field coils: Bmax (cw) = 0.34

T

and 0.9T for pulsed operation• Helical field coils: l = 2, m = 5• Rotational transform = 0.1 - 1

amax = 11 cm, Vmax = 0.15 m3 (limiter

configuration)

a <= 5 cm for high iota (separatrix

configuration)• Vertical field and error field

compensation coils

Plasma heating• 20 + 6 kW magnetrons @ 2.45 GHz

(cw) • 10 kW gyrotron @ 28 GHz (cw)

• 5-arm transformer with 0.44 Vs

Working gases• Helium, Argon, Hydrogen

Page 7: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Relevant 28GHz Diagnostics

• Interferometer (80 GHz, single channel)

• Sniffer probe (28 GHz)• 12-channel bolometer array• Radiometer with 12 channels (23 – 40

GHz) for ECE, EBE and Reflectometry

• Spectrum analyzer up to 40 GHz• Soft X-ray (PHA)• Langmuir probes

Matthias Otte Princeton, 13 October 2009 7

Bolometer array

Sniffer probe

ECE antenna system

Low field side

High field side

Page 8: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Microwave Diagnostic

Matthias Otte Princeton, 13 October 2009 8

Temperature measurements

• ECE: problem ➽ over-dense and optically thin

• Electron Bernstein emission EBE: accessible via

BXO conversion, optically thick even at low

temperature, no density limit

➽ oblique alignment of antenna necessary

Oblique alignmentof EBE antenna (55°)

EBE horn

HFS-ECE horn

Page 9: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Setup of 28GHz ECRH system

Page 10: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 10

ECRH Components

Installation of a 28GHz ECRH for B0=0.5T operation in cooperation with CIEMAT/Spain and IPF Stuttgart

4.3 m

Gyrotron 10kW cw(20 kHz modulation) Transmission line

Mirror system inside vessel for X2 and OXB mode

28 GHz Gyrotron (CPI VGA-8028)0.110 kW CW

15 kW 10s20 kW 1s

80 dBDirectional

Coupler

TE02-TE01

ConverterDC Break & Mode

FilterTE01-TE11

Converter

HE11

WaveguideHE11

UptaperTE11-HE11

Converter

VacuumWindow

WEGAVacuumVesselArc

DetectorArc

Detector

AntennaForwardPower

Detector

ReflectedPower

Detector

SmoothWaveguide

TE02 TE01

TE11

TE11

Uptaper

TE11 HE11

HE11 HE11

Ø41 mm

Ø63.5 mmØ44.45 mm

Ø63.5 mm

Ø32.6 mmØ32.6 mm Ø32.6 mm

Page 11: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 11

ECRH Components: In-Vessel Mirrors• Switching between X2 and OXB mode heating possible by exchanging A-port

mirror

• Quasi-optical Gaussian beam in equatorial plane at vertical elongated symmetry plane

(steepest gradient expected) under angle of 55° to magnetic field line

• Steerable OXB-mirror for finding optimum OXB conversion (up to now venting of vessel necessary)

flux surfaces

Gaussian beam

port

toroidal coil

elliptical focus

OXB-Mirror

Discharges at B0=0.5 T up to 30s at <= 0.4

OXBA-port X2

Page 12: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 12

OXB – Ray Propagation

Ray-tracing calculations by J.

Preinhaelter and J. Urban (IPP-Prague)

predict high efficiency central heating

at densities above 1 × 1019 m-3 and no

Doppler-shift

Challenge

How to reach 1×1019 m-3 (28 GHz O-

cutoff) ?

• 0.5×1019 m-3 is already reached with

X2-mode

(X-cutoff)

Additional energy sources available

• 20 kW 2.45 GHz resistive R-wave

heating at 0.5 T

• Ohmic heating with transformer

mirror

Page 13: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Results from OXB mode heating

Page 14: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 14

Reaching OXB mode3.

3. Start OXB conversion above 1 × 1019

m-3 (O-mode cut-off): • central deposition due to

high single pass absorption• EBE signal in keV – range

(radiation but not electron temperature) ➽ supra-thermal electron component

• density peaking up to 1.4 ×

1019 m-3 (33 GHz EBE signal)

4.

4. Switch off additional heating:Plasma sustained by OXB-heating only, strongly peaked radiation profiles

2.

2. Overcome power gap above 0.5 × 1018

m-3 (X2-mode cut-off) by additional resistive 2.45 GHz heating (20 kW)

1.1.Plasma start-up: Plasma generation by 10% X2-mode at resonant field, multi-pass heating with broad deposition

He, #30340

Page 15: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Further Results during OXB Phase

Matthias Otte Princeton, 13 October 2009 15

Langmuir probe

• Peaked profiles with ne,0 = 1.3 ×

1019 m-3

well above cut-off density

• Bulk parameters:

ne = 1 × 1019 m-3 at R = 75 cm

Te = 5 -15 eV

0 2 4 6 8 10 12 14 1605

1015202530354045505560

Pra

d (

mW

/cm

3)

reff

(cm)

#30344/ He /iota 0.3/ECRH 7 kW

28 GHz OXB-heating

28 GHz O2/X2 multipass heating

12-channel Bolometer camera

Reconstructed radiation power

signal:

• Peaked profile during OXB-

phase due to central power

deposition

• Broad, flat profile during O2-

mode heating due to multi-pass

absorption

Page 16: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Matthias Otte Princeton, 13 October 2009 16

Soft X-ray • Pulse height analyzer with range of 0.5keV – 15keV

• Signals above 1keV detected exclusively during OXB phase

• Only Bremsstrahlung, but no characteristic radiation detected (e.g. wall material) except from argon from previous experiments➽ supra-thermal electron component arises in center

as expected by resonant absorption mechanism

0 2 4 6 8 10 12 14

1

10

100

1000

Co

un

ts

Energy [ keV ]

Helium#30340-#30357

smoothed curve

K(Ar) from background gas

Page 17: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Optimization

Gas

• Analogue results in argon even without additional heating but no conversion reached in hydrogen (factor of 3 missing in density)

Rotational transform• iota (iota↑, confinement↑, but plasma size↓) • best iota = 0.3 (still limiter configuration, higher iota not

accessible)

OXB mirror position• October 2009: remotely steering of OXB-mirror possible,

detailed study of emission pattern performed

Matthias Otte Princeton, 13 October 2009 17

Thermal emission pattern for varying toroidal position on target installed at vessel high field side

Page 18: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Summary and Outlook

WEGA has reached a new unexplored physics regime!

• Quasi-stationary overdense plasma heated by 28 GHz OXB mode

conversion exclusively

• Supra-thermal electron component detected in EBE radiation,

confirmed by X-rays detector, however quantitative fraction to be

determined

• Acceleration mechanism of the supra-thermal electron component

➽ maybe auto-resonance cyclotron acceleration of electrons which is not

limited

Supra-thermal electrons

• Fast particle confinement

• Generation of current drive

• Ray tracing with non-Maxwellian

➽ do they exist and how could they be measured?

• Source for highly charged ions

Matthias Otte Princeton, 13 October 2009 18

Page 19: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

Acknowledgement

The authors gratefully acknowledge the work of

D. Aßmus, R. Gerhardt, the colleagues of the W7-

diagnostic group and the technical staff of the IPP.

Thank you for your attention!

Matthias Otte Princeton, 13 October 2009 19

Page 20: 17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,

EBE Signal

Trad before OXB-heating

Chan 527.3 GHz

Chan 527.3 GHz

Chan 628.5 GHzChan 6

28.5 GHz

Trad during OXB-heating

notchfilter