17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with...

64
1 17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions: Scalar Functions (or Scalar Field) and Vector Functions (or Vector Field). Scalar Point Function A scalar function (, , )defined over some region R of space is a function which associates, to each point (, , ) in R, a scalar value = (, , ) . And the set of all scalars () for all values of P in R is called the scalar field over R. Precisely, we can say that scalar function defines a scalar field in a region or on a space or a curve. Examples are the temperature field in a body, pressure field in the air in earth’s atmosphere. Moreover, if the position vector of the point P is , then we may also write the scalar field as = (). This notation emphasizes the fact that the scalar value () is associated with the position vector in the region R. E.g. 1) The distance of any point (, , ) from a fixed point β€²( β€² , β€², β€²) in the space is a scalar function whose domain of definition is the whole space and is given by = (βˆ’ β€² ) 2 +(βˆ’ β€² ) 2 +(βˆ’ β€² ) 2 . Also defines a scalar field in space. E.g. 2) The function , , = 2 + + 2 for the point (, , ) inside the unit sphere 2 + 2 + 2 =1 is a scalar function and also is defines a scalar field throughout the sphere. Note: In the physical problems, the scalar function F depends on time variable t in addition to the point P and then we write it as , = , = (, , , ) . The example of such a time dependent scalar function is the temperature distribution throughout a block of metal heated in such a way that its temperature varies with time. Vector Point Function A vector functions , , defined over some region R of space is a function which associates, to each point (, , ) in R, a vector value = (, , ) and the set of all vectors for all points P in R is called the vector field over R Moreover, if the position vector of the point P is , then we may write the vector field as = (). This notation emphasizes the fact that the vector value () is associated with the position vector in the region R. Also the general form (component form) of the vector function is = 1 + 2 + 3 , where the components 1 , 2 and 3 are the scalar functions. E.g. 1) The function , , =2 + sin +3 2 for point P( x, y, z ) inside an ellipsoid 2 9 + 2 16 + 2 4 =1 is a vector function and defines a vector field throughout the ellipsoid. E.g. 2) The force field given by , , = +2 + 2 is a vector field.

Transcript of 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with...

Page 1: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

1

17. Vector Calculus with Applications

17.1 INTRODUCTION

In vector calculus, we deal with two types of functions: Scalar Functions (or Scalar Field) and

Vector Functions (or Vector Field).

Scalar Point Function

A scalar function 𝐹(π‘₯, 𝑦, 𝑧)defined over some region R of space is a function which associates, to

each point 𝑃(π‘₯, 𝑦, 𝑧)in R, a scalar value 𝐹 𝑃 = 𝐹(π‘₯, 𝑦, 𝑧). And the set of all scalars 𝐹(𝑃)for all

values of P in R is called the scalar field over R.

Precisely, we can say that scalar function defines a scalar field in a region or on a space or a curve.

Examples are the temperature field in a body, pressure field in the air in earth’s atmosphere.

Moreover, if the position vector of the point P is π‘Ÿ , then we may also write the scalar field as

𝐹 𝑃 = 𝐹(π‘Ÿ ). This notation emphasizes the fact that the scalar value 𝐹(π‘Ÿ ) is associated with the

position vector π‘Ÿ in the region R.

E.g. 1) The distance 𝐹 𝑃 of any point 𝑃(π‘₯, 𝑦, 𝑧) from a fixed point 𝑃′(π‘₯ β€², 𝑦′, 𝑧′) in the space is a

scalar function whose domain of definition is the whole space and is given by

𝐹 𝑃 = (π‘₯ βˆ’ π‘₯ β€²)2 + (𝑦 βˆ’ 𝑦 β€²)2 + (𝑧 βˆ’ 𝑧 β€²)2. Also 𝐹 𝑃 defines a scalar field in space.

E.g. 2) The function 𝐹 π‘₯, 𝑦, 𝑧 = π‘₯𝑦2 + 𝑦𝑧 + π‘₯2 for the point (π‘₯, 𝑦, 𝑧) inside the unit sphere

π‘₯2 + 𝑦2 + 𝑧2 = 1 is a scalar function and also is defines a scalar field throughout the sphere.

Note: In the physical problems, the scalar function F depends on time variable t in addition to the

point P and then we write it as 𝐹 𝑃, 𝑑 = 𝐹 π‘Ÿ , 𝑑 = 𝐹(π‘₯, 𝑦, 𝑧, 𝑑) . The example of such a time

dependent scalar function is the temperature distribution throughout a block of metal heated in such

a way that its temperature varies with time.

Vector Point Function

A vector functions 𝐹 π‘₯, 𝑦, 𝑧 defined over some region R of space is a function which associates, to

each point 𝑃(π‘₯, 𝑦, 𝑧) in R, a vector value 𝐹 𝑃 = 𝐹 (π‘₯, 𝑦, 𝑧) and the set of all vectors 𝐹 𝑃 for all

points P in R is called the vector field over R

Moreover, if the position vector of the point P is π‘Ÿ , then we may write the vector field as

𝐹 𝑃 = 𝐹 (π‘Ÿ ). This notation emphasizes the fact that the vector value 𝐹 (π‘Ÿ ) is associated with the

position vector π‘Ÿ in the region R. Also the general form (component form) of the vector function is

𝐹 π‘Ÿ = 𝐹1 π‘Ÿ 𝑖 + 𝐹2 π‘Ÿ 𝑗 + 𝐹3 π‘Ÿ π‘˜ , where the components 𝐹1 π‘Ÿ , 𝐹2 π‘Ÿ and 𝐹3 π‘Ÿ are the scalar

functions.

E.g. 1) The function 𝐹 π‘₯, 𝑦, 𝑧 = 2π‘₯𝑦𝑖 + sin π‘₯ 𝑗 + 3𝑧2π‘˜ for point P( x, y, z ) inside an ellipsoid

π‘₯2

9+

𝑦2

16+

𝑧2

4 = 1 is a vector function and defines a vector field throughout the ellipsoid.

E.g. 2) The force field given by 𝐹 π‘₯, 𝑦, 𝑧 = π‘₯𝑖 + 2𝑦𝑗 + 𝑧2π‘˜ is a vector field.

Page 2: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

2

Note: Like the time dependent scalar field, time dependent vector field also exists. Such a field depends on

time variable t in addition to the point in the region R and may be expressed as

𝐹 π‘Ÿ , 𝑑 = 𝐹1 π‘Ÿ , 𝑑 𝑖 + 𝐹2 π‘Ÿ , 𝑑 𝑗 + 𝐹3 π‘Ÿ , 𝑑 π‘˜ , where 𝐹1 , 𝐹2 and 𝐹3 are scalar functions. An example of time

dependent vector field is the fluid velocity vector in the unsteady flow of water around a bridge support

column, because this velocity depends on the position vector π‘Ÿ in the water and the time variable t and is

given as 𝑉 (π‘Ÿ , 𝑑).

Vector Function of Single Variable

A vector function 𝐹 of single variable t is a function which assigns a vector value 𝐹 (𝑑) to each

scalar value t in interval π‘Ž ≀ 𝑑 ≀ 𝑏 . In the component form, it may be written as

𝐹 𝑑 = 𝐹1 𝑑 𝑖 + 𝐹2 𝑑 𝑗 + 𝐹3 𝑑 π‘˜ where 𝐹1, 𝐹2 and 𝐹3 are called components and are scalar functions

of the same single variable t.

For example, the functions given by𝐹 𝑑 = 𝑑 𝑖 + sin(𝑑 βˆ’ 2) 𝑗 + cos 3𝑑 π‘˜ and 𝐺 𝑑 = 𝑑2𝑖 + 𝑒𝑑𝑗 + log 𝑑 π‘˜

are vector functions of a single variable t.

Limit of a Vector Function of Single Variable

A vector function 𝐹 𝑑 = 𝐹1 𝑑 𝑖 + 𝐹2 𝑑 𝑗 + 𝐹3(𝑑)π‘˜ of single variable t is said to have a limit

𝐿 = 𝐿1𝑖 +𝐿2𝑗 +𝐿3π‘˜ as 𝑑 β†’ 𝑑0 , if 𝐹 𝑑 is defined in the neighborhood of t0 and Lt𝑑→𝑑0 𝐹 𝑑 βˆ’ 𝐿 = 0

or Lt𝑑→𝑑0

𝐹1 𝑑 βˆ’ 𝐿1 = Lt𝑑→𝑑0 𝐹2 𝑑 βˆ’ 𝐿2 = Lt𝑑→𝑑0

𝐹3 𝑑 βˆ’ 𝐿3 = 0, then we write it as Lt𝑑→𝑑0𝐹 (𝑑) = 𝐿 .

Continuity of a Vector Function of Single Variable

A vector function 𝐹 𝑑 = 𝐹1 𝑑 𝑖 + 𝐹2 𝑑 𝑗 + 𝐹3(𝑑)π‘˜ of a single variable t is said to be continuous at

t = t0, if it is defined in some neighborhood of t0 and Lt𝑑→𝑑0𝐹 𝑑 = 𝐹 𝑑0 .

Moreover, 𝐹 𝑑 is said to be continuous at 𝑑 = 𝑑0 if and only if its three components F1, F2 and F3

are continuous as 𝑑 = 𝑑0.

DIFFERENTIAL VECTOR CALCULUS

17.2 DIFFERENTIATION OF VECTORES

Differentiability of a Vector Function of Single Variable

A vector function 𝐹 𝑑 = 𝐹1 𝑑 𝑖 + 𝐹2 𝑑 𝑗 + 𝐹3(𝑑)π‘˜ of a single variable t defined over the interval

π‘Ž ≀ 𝑑 ≀ 𝑏 is said to be differentiable at t = t0 if the following limit exists.

Lt𝑑→𝑑0

𝐹 𝑑 βˆ’πΉ (𝑑0)

π‘‘βˆ’π‘‘0 = 𝐹 β€²(𝑑0)

And 𝐹 β€²(𝑑0) is called the derivative of 𝐹 𝑑 at t = t0.

Also 𝐹 𝑑 is said to be differentiable over the interval π‘Ž ≀ 𝑑 ≀ 𝑏, if it is differentiable at each of the

points of the interval. In component form, 𝐹 𝑑 is said to be differentiable at t = t0 if and only if its

three components are differentiable at t = t0. In general, the derivative of 𝐹 (𝑑) is given by

Page 3: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

3

𝐹 β€² 𝑑 = Lt𝑑→𝑑0

𝐹 𝑑+βˆ†π‘‘ βˆ’πΉ (𝑑)

βˆ†π‘‘, provided the limit exists and in terms of components

𝐹 β€² 𝑑 = 𝐹1β€² 𝑑 𝑖 + 𝐹2

β€² 𝑑 𝑗 + 𝐹3β€² (𝑑)π‘˜ or

𝑑𝐹

𝑑𝑑=

𝑑𝐹1

𝑑𝑑𝑖 +

𝑑𝐹2

𝑑𝑑𝑗 +

𝑑𝐹3

π‘‘π‘‘π‘˜ .

In the similar manner, 𝑑2𝐹

𝑑𝑑 2=

𝑑

𝑑𝑑 𝑑𝐹

𝑑𝑑 ,

𝑑3𝐹

𝑑𝑑 3=

𝑑

𝑑𝑑

𝑑2𝐹

𝑑𝑑 2 =𝑑2

𝑑𝑑 2 𝑑𝐹

𝑑𝑑 .

Rules for Differentiation of Vector Functions

If 𝐹 𝑑 , 𝐺 𝑑 & 𝐻 𝑑 are the vector functions and 𝑓(𝑑) is a scalar function of single variable 𝑑 defined

over the interval π‘Ž ≀ 𝑑 ≀ 𝑏, then

1. 𝑑𝐢

𝑑𝑑 = 0 , where 𝑐 is a constant vector.

2. 𝑑 𝐢 𝐹 𝑑

𝑑𝑑 = 𝐢

𝑑𝐹

𝑑𝑑, where C is a constant.

3. 𝑑 𝐹 𝑑 ±𝐺 (𝑑)

𝑑𝑑=

𝑑𝐹

𝑑𝑑±

𝑑𝐺

𝑑𝑑

4. 𝑑 𝑓 𝑑 𝐹 𝑑

𝑑𝑑 = 𝑓 𝑑

𝑑𝐹

𝑑𝑑+

𝑑𝑓

𝑑𝑑 𝐹 (𝑑)

5. 𝑑 𝐹 𝑑 βˆ™ 𝐺 (𝑑)

𝑑𝑑 =

𝑑𝐹

𝑑𝑑 βˆ™ 𝐺 (𝑑) + 𝐹 (𝑑) βˆ™

𝑑𝐺

𝑑𝑑

6. 𝑑 𝐹 𝑑 ×𝐺 (𝑑)

𝑑𝑑 =

𝑑𝐹

𝑑𝑑 Γ— 𝐺 (𝑑) + 𝐹 (𝑑) Γ—

𝑑𝐺

𝑑𝑑

7. 𝑑

𝑑𝑑 𝐹 𝑑 , 𝐺 𝑑 , 𝐻 (𝑑) =

𝑑𝐹

𝑑𝑑, 𝐺 𝑑 , 𝐻 (𝑑) + 𝐹 𝑑 ,

𝑑𝐺

𝑑𝑑, 𝐻 (𝑑) + 𝐹 𝑑 , 𝐺 𝑑 ,

𝑑𝐻

𝑑𝑑

8. 𝑑

𝑑𝑑 𝐹 𝑑 Γ— 𝐺 𝑑 Γ— 𝐻 𝑑 =

𝑑𝐹

𝑑𝑑× 𝐺 𝑑 Γ— 𝐻 (𝑑) + 𝐹 𝑑 Γ—

𝑑𝐺

𝑑𝑑× 𝐻 (𝑑) + 𝐹 𝑑 Γ— 𝐺 𝑑 Γ—

𝑑𝐻

𝑑𝑑

9. If 𝐹 𝑑 is differentiable function of 𝑑 and 𝑑 = 𝑑(𝑠) is differentiable function then

𝑑𝐹

𝑑𝑠=

𝑑𝐹

𝑑𝑑 𝑑𝑑

𝑑𝑠 .

Observations:

(i) If 𝐹 (𝑑) has a constant magnitude, then 𝐹 βˆ™ 𝑑𝐹

𝑑𝑑 = 0. For 𝐹 𝑑 βˆ™ 𝐹 𝑑 = 𝐹 (𝑑)

2= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘,

implying 𝐹 βˆ™ 𝑑𝐹

𝑑𝑑 = 0 or 𝐹 βŠ₯

𝑑𝐹

𝑑𝑑 .

(ii) If 𝐹 (𝑑) has a constant (fixed) direction, then 𝐹 Γ— 𝑑𝐹

𝑑𝑑 = 0 .

Let 𝐹 𝑑 = 𝑓(𝑑)𝐺 (𝑑), where 𝐺 (𝑑) is a unit vector in the direction of 𝐹 (𝑑).

∴ dF

dt=

𝑑 𝑓 𝑑 𝐺 𝑑

𝑑𝑑 = 𝑓 𝑑

𝑑𝐺

𝑑𝑑+

𝑑𝑓

𝑑𝑑 𝐺 𝑑 =

𝑑𝑓

𝑑𝑑 𝐺 𝑑 𝑠𝑖𝑛𝑐𝑒, 𝐺 𝑖𝑠 π‘Ž π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘, π‘ π‘œ

𝑑𝐺

𝑑𝑑= 0

and 𝐹 Γ— 𝑑𝐹

𝑑𝑑= 𝑓(𝑑)𝐺 (𝑑) Γ—

𝑑𝑓

𝑑𝑑 𝐺 𝑑 = 𝑓 𝑑

𝑑𝑓

𝑑𝑑 𝐺 𝑑 Γ— 𝐺 𝑑 = 0 𝑠𝑖𝑛𝑐𝑒, 𝐺 Γ— 𝐺 = 0

Theorem 1: Derivative of a constant vector is a zero vector. A vector is said to be constant if

both its magnitude and direction are constant (fixed).

Proof: Let π‘Ÿ = 𝑐 be a constant vector, then π‘Ÿ + π›Ώπ‘Ÿ = 𝑐 .

On subtraction, π›Ώπ‘Ÿ = 0 .Which further implies that π›Ώπ‘Ÿ

𝛿𝑑 = 0 .

Page 4: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

4

Implying,𝐿𝑑

𝛿𝑑 β†’ 0 π›Ώπ‘Ÿ

𝛿𝑑 = 0 i.e.

π‘‘π‘Ÿ

𝑑𝑑 = 0 .

Theorem 2: The necessary and sufficient condition for the vector function 𝑭 of a single

variable t to have constant magnitude is 𝑭 βˆ™ 𝒅𝑭

𝒅𝒕 = 𝟎.

Proof:

Necessary condition: Suppose 𝐹 has constant magnitude, so 𝐹 𝑑 βˆ™ 𝐹 𝑑 = 𝐹 (𝑑) 2

= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘.

=> 𝑑

𝑑𝑑 𝐹 βˆ™ 𝐹 = 0 i.e. 𝐹 βˆ™

𝑑𝐹

𝑑𝑑 +

𝑑𝐹

𝑑𝑑 βˆ™ 𝐹 = 0

=> 2𝐹 βˆ™ 𝑑𝐹

𝑑𝑑 = 0 i.e. 𝐹 βˆ™

𝑑𝐹

𝑑𝑑 = 0.

Sufficient condition: Suppose 𝐹 βˆ™ 𝑑𝐹

𝑑𝑑 = 0 => 2𝐹 βˆ™

𝑑𝐹

𝑑𝑑 = 0

=> 𝐹 βˆ™ 𝑑𝐹

𝑑𝑑 +

𝑑𝐹

𝑑𝑑 βˆ™ 𝐹 = 0 =>

𝑑

𝑑𝑑 𝐹 βˆ™ 𝐹 = 0

=> 𝐹 βˆ™ 𝐹 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ => 𝐹 2

= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

Therefore 𝐹 has a constant magnitude.

Theorem 3: The necessary and sufficient condition for the vector function 𝑭 of a single

variable t to have a constant direction is 𝑭 Γ— 𝒅𝑭

𝒅𝒕 = 𝟎 .

Proof: Suppose that 𝑓 is a unit vector in the direction of 𝐹 and 𝐹 = 𝐹 , then 𝑓 = 𝐹

𝐹 i.e.

𝐹 = 𝐹𝑓 … (1)

And 𝑑𝐹

𝑑𝑑 = 𝐹

𝑑𝑓

𝑑𝑑+

𝑑𝐹

𝑑𝑑 𝑓 … (2)

Thus 𝐹 Γ— 𝑑𝐹

𝑑𝑑 = 𝐹𝑓 Γ— (𝐹

𝑑𝑓

𝑑𝑑+

𝑑𝐹

𝑑𝑑 𝑓 ) (using (1) and (2))

= 𝐹2𝑓 Γ— 𝑑𝑓

𝑑𝑑 +𝐹

𝑑𝐹

𝑑𝑑 (𝑓 Γ— 𝑓 )

= 𝐹2𝑓 Γ— 𝑑𝑓

𝑑𝑑 (since 𝑓 Γ— 𝑓 = 0 ) … (3)

Necessary condition: Suppose 𝐹 has a constant direction, then 𝑓 has a constant direction and

constant magnitude. So 𝑑𝑓

𝑑𝑑 = 0 . Thus from (3), 𝐹 Γ—

𝑑𝐹

𝑑𝑑 = 0 .

Sufficient condition : Suppose that 𝐹 Γ— 𝑑𝐹

𝑑𝑑 = 0 .

Then by (3), 𝐹2𝑓 Γ— 𝑑𝑓

𝑑𝑑 = 0 i.e. 𝑓 Γ—

𝑑𝑓

𝑑𝑑 = 0 … (4)

Since 𝑓 has a constant magnitude, so, by theorem 2, 𝑓 βˆ™ 𝑑𝑓

𝑑𝑑 = 0 … (5)

Form (4) and (5), 𝑑𝑓

𝑑𝑑 = 0.

Which implies 𝑓 is a constant vector i.e. 𝑓 has a constant direction. Hence 𝐹 has a constant

direction.

Example 1: Show that if 𝒓 = 𝒂 π¬π’π§πŽπ’• + 𝒃 𝐜𝐨𝐬 πŽπ’• where 𝒂 , 𝒃 and 𝝎 are constants, then

Page 5: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

5

π’…πŸπ’“

π’…π’•πŸ = βˆ’πŽπŸπ’“ and 𝒓 Γ—

𝒅𝒓

𝒅𝒕 = βˆ’πŽ(𝒂 Γ— 𝒃) .

Solution: Given π‘Ÿ = π‘Ž sin πœ”π‘‘ + 𝑏 cos πœ”π‘‘

Differentiating w. r. to t, π‘‘π‘Ÿ

𝑑𝑑 = π‘Ž πœ” cos πœ”π‘‘ βˆ’ 𝑏 πœ” sin πœ”π‘‘

Again differentiating w. r. to t, 𝑑2π‘Ÿ

𝑑𝑑 2 = βˆ’π‘Ž πœ”2 sin πœ”π‘‘ βˆ’ 𝑏 πœ”2 cos πœ”π‘‘

= βˆ’ πœ”2 π‘Ž sin πœ”π‘‘ + 𝑏 cos πœ”π‘‘ = βˆ’πœ”2π‘Ÿ

Also π‘Ÿ Γ— π‘‘π‘Ÿ

𝑑𝑑 = π‘Ž sin πœ”π‘‘ + 𝑏 cos πœ”π‘‘ Γ— (π‘Ž πœ” cos πœ”π‘‘ βˆ’ 𝑏 πœ” sin πœ”π‘‘)

= π‘Ž Γ— π‘Ž πœ” sin πœ”π‘‘ cos πœ”π‘‘ + 𝑏 Γ— π‘Ž πœ” cos2 πœ”π‘‘ βˆ’ π‘Ž Γ— 𝑏 πœ” sin2 πœ”π‘‘ βˆ’ 𝑏 Γ— 𝑏 πœ” sin πœ”π‘‘ cos πœ”π‘‘

= βˆ’ π‘Ž Γ— 𝑏 πœ”(cos2 πœ”π‘‘ + sin2 πœ”π‘‘) (since π‘Ž Γ— π‘Ž = 𝑏 Γ— 𝑏 = 0 )

= βˆ’ π‘Ž Γ— 𝑏 πœ” = βˆ’πœ”(π‘Ž Γ— 𝑏 ).

Example 2: If 𝒂 = π’™πŸπ’šπ’› π’Š βˆ’ πŸπ’™π’›πŸ‘ 𝒋 + π’™π’›πŸ π’Œ and 𝒃 = πŸπ’› π’Š + π’š 𝒋 βˆ’ π’™πŸ π’Œ , find 𝝏𝟐

ππ’™ππ’š 𝒂 Γ— 𝒃 at

(1, 0, -2).

Solution: Here π‘Ž Γ— 𝑏 = π‘₯2𝑦𝑧 𝑖 βˆ’ 2π‘₯𝑧3 𝑗 + π‘₯𝑧2 π‘˜ Γ— 2𝑧 𝑖 + 𝑦 𝑗 βˆ’ π‘₯2 π‘˜

= π‘₯2𝑦2𝑧 π‘˜ + π‘₯4𝑦𝑧 𝑗 + 4π‘₯𝑧4 π‘˜ + 2π‘₯3𝑧3 𝑖 + 2π‘₯𝑧3 𝑗 βˆ’ π‘₯𝑦𝑧2 𝑖

(∡ 𝑖 Γ— 𝑖 = 𝑗 Γ— 𝑗 = π‘˜ Γ— π‘˜ = 0 π‘Žπ‘›π‘‘ 𝑖 Γ— 𝑗 = π‘˜ , 𝑗 Γ— 𝑖 = βˆ’π‘˜ 𝑒𝑑𝑐.)

= 2π‘₯3𝑧3 βˆ’ π‘₯𝑦𝑧2 𝑖 + π‘₯4𝑦𝑧 + 2π‘₯𝑧3 𝑗 + π‘₯2𝑦2𝑧 + 4π‘₯𝑧4 π‘˜

Now πœ•2

πœ•π‘₯πœ•π‘¦ π‘Ž Γ— 𝑏 =

πœ•2

πœ•π‘₯πœ•π‘¦ 2π‘₯3𝑧3 βˆ’ π‘₯𝑦𝑧2 𝑖 + π‘₯4𝑦𝑧 + 2π‘₯𝑧3 𝑗 + π‘₯2𝑦2𝑧 + 4π‘₯𝑧4 π‘˜

= πœ•

πœ•π‘₯

πœ•

πœ•π‘¦ 2π‘₯3𝑧3 βˆ’ π‘₯𝑦𝑧2 𝑖 + π‘₯4𝑦𝑧 + 2π‘₯𝑧3 𝑗 + π‘₯2𝑦2𝑧 + 4π‘₯𝑧4 π‘˜

= πœ•

πœ•π‘₯ βˆ’π‘₯𝑧2 𝑖 + π‘₯4𝑧 𝑗 + 2π‘₯2𝑦𝑧 π‘˜ = βˆ’π‘§2 𝑖 + 4π‘₯3𝑧 𝑗 + 4π‘₯𝑦𝑧 π‘˜

At the point (1, 0, -2) πœ•2

πœ•π‘₯πœ•π‘¦ π‘Ž Γ— 𝑏 = βˆ’4𝑖 βˆ’ 8𝑗

Example 3: If 𝑷 = πŸ“π’•πŸπ’Š + π’•πŸ‘π’‹ βˆ’ π’•π’Œ and 𝑸 = 𝟐 𝐬𝐒𝐧 𝒕 π’Š βˆ’ 𝐜𝐨𝐬 𝒕 𝒋 + πŸ“π’•π’Œ , then find (a) 𝒅

𝒅𝒕 𝑷 βˆ™ 𝑸

(b) 𝒅

𝒅𝒕 𝑷 Γ— 𝑸 .

Solution: Consider 𝑃 = 5𝑑2𝑖 + 𝑑3𝑗 βˆ’ π‘‘π‘˜ and 𝑄 = 2 sin 𝑑 𝑖 βˆ’ cos 𝑑 𝑗 + 5π‘‘π‘˜

So 𝒅𝑃

𝒅𝒕 = 10𝑑 𝑖 + 3𝑑2𝑗 βˆ’ π‘˜ and

𝒅𝑄

𝒅𝒕 = 2 cos 𝑑 𝑖 + sin 𝑑 𝑗 + 5π‘˜

a) 𝑑

𝑑𝑑 𝑃 βˆ™ 𝑄 =

𝒅𝑃

𝒅𝒕 βˆ™ 𝑄 + 𝑃 βˆ™

𝒅𝑄

𝒅𝒕

= 10𝑑 𝑖 + 3𝑑2𝑗 βˆ’ π‘˜ βˆ™ 2 sin 𝑑 𝑖 βˆ’ cos 𝑑 𝑗 + 5π‘‘π‘˜

+ 5𝑑2𝑖 + 𝑑3𝑗 βˆ’ π‘‘π‘˜ βˆ™ 2 cos 𝑑 𝑖 + sin 𝑑 𝑗 + 5π‘˜

= 20 𝑑 sin 𝑑 βˆ’ 3𝑑2 cos 𝑑 βˆ’ 5𝑑 + 10 𝑑2 cos 𝑑 + 𝑑3 sin 𝑑 βˆ’ 5𝑑

= 𝑑3 sin 𝑑 + 7𝑑2 cos 𝑑 + 20 𝑑 sin 𝑑 βˆ’ 10 𝑑

Page 6: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

6

b) 𝑑

𝑑𝑑 𝑃 Γ— 𝑄 =

𝒅𝑃

𝒅𝒕 Γ— 𝑄 + 𝑃 Γ—

𝒅𝑄

𝒅𝒕

= 10𝑑 𝑖 + 3𝑑2𝑗 βˆ’ π‘˜ Γ— 2 sin 𝑑 𝑖 βˆ’ cos 𝑑 𝑗 + 5π‘‘π‘˜

+ 5𝑑2𝑖 + 𝑑3𝑗 βˆ’ π‘‘π‘˜ Γ— 2 cos 𝑑 𝑖 + sin 𝑑 𝑗 + 5π‘˜

= 𝑖 𝑗 π‘˜

10 𝑑 3𝑑2 βˆ’12 sin 𝑑 βˆ’ cos 𝑑 5𝑑

+ 𝑖 𝑗 π‘˜

5𝑑2 𝑑3 βˆ’π‘‘2 cos 𝑑 sin 𝑑 5

= 𝑖 15𝑑3 βˆ’ cos 𝑑 + 𝑗 βˆ’2 sin 𝑑 βˆ’ 50 𝑑2 + π‘˜ βˆ’10𝑑 cos 𝑑 βˆ’ 6𝑑2 sin 𝑑

+ 𝑖 5𝑑3 + 𝑑 sin 𝑑 + 𝑗 βˆ’2𝑑 cos 𝑑 βˆ’ 25 𝑑2 + π‘˜ 5𝑑2 sin 𝑑 βˆ’ 2𝑑3 cos 𝑑

= 𝑖 20𝑑3 + 𝑑 sin 𝑑 βˆ’ cos 𝑑 βˆ’ 𝑗 2𝑑 cos 𝑑 + 2 sin 𝑑 + 75 𝑑2

βˆ’π‘˜ 2𝑑3 cos 𝑑 + 10𝑑 cos 𝑑 + 𝑑2 sin 𝑑

Example 4: If 𝒅𝑼

𝒅𝒕 = 𝑾 Γ— 𝑼 and

𝒅𝑽

𝒅𝒕 = 𝑾 Γ— 𝑽 , then prove that

𝒅

𝒅𝒕 𝑼 Γ— 𝑽 = 𝑾 Γ— (𝑼 Γ— 𝑽 ).

Solution: Given π‘‘π‘ˆ

𝑑𝑑 = π‘Š Γ— π‘ˆ and

𝑑𝑉

𝑑𝑑 = π‘Š Γ— 𝑉 … (1)

Consider 𝑑

𝑑𝑑 π‘ˆ Γ— 𝑉 =

π‘‘π‘ˆ

𝑑𝑑 Γ— 𝑉 + π‘ˆ Γ—

𝑑𝑉

𝑑𝑑 = π‘Š Γ— π‘ˆ Γ— 𝑉 + π‘ˆ Γ— π‘Š Γ— 𝑉

= π‘Š βˆ™ 𝑉 π‘ˆ βˆ’ π‘ˆ βˆ™ 𝑉 π‘Š + π‘ˆ βˆ™ 𝑉 π‘Š βˆ’ π‘ˆ βˆ™ π‘Š 𝑉 = π‘Š βˆ™ 𝑉 π‘ˆ βˆ’ π‘ˆ βˆ™ π‘Š 𝑉

= π‘Š Γ— (π‘ˆ Γ— 𝑉 )

𝑒𝑠𝑖𝑛𝑔 π‘Ž Γ— 𝑏 Γ— 𝑐 = π‘Ž βˆ™ 𝑐 𝑏 βˆ’ 𝑏 βˆ™ 𝑐 π‘Ž π‘Žπ‘›π‘‘ π‘Ž Γ— 𝑏 Γ— 𝑐 = π‘Ž βˆ™ 𝑐 𝑏 βˆ’ π‘Ž βˆ™ 𝑏 𝑐

7.3 CURVES IN SPACE

1. Tangent Vector:

Let π‘Ÿ 𝑑 = π‘₯ 𝑑 𝑖 + 𝑦 𝑑 𝑗 + 𝑧(𝑑)π‘˜ be the position vector

of a point P. Then for different values of the scalar

parameter t, point P traces the curve in space (Fig.

17.1). For neighboring point Q with position vector

π‘Ÿ (𝑑 + 𝛿𝑑) , π›Ώπ‘Ÿ = π‘Ÿ 𝑑 + 𝛿𝑑 βˆ’ π‘Ÿ 𝑑 implying π›Ώπ‘Ÿ

𝛿𝑑=

π‘Ÿ 𝑑+𝛿𝑑 βˆ’π‘Ÿ (𝑑)

𝛿𝑑 is directed along the chord PQ.

As 𝛿𝑑 β†’ 0, π›Ώπ‘Ÿ

𝛿𝑑 becomes the tangent to the space curve

at P provided there exists a non zero limit.

Thus a vector π‘‘π‘Ÿ

𝑑𝑑= π‘Ÿ β€² is a tangent to the space curve π‘Ÿ = 𝐹 (𝑑).

Let P0 be a fixed point on the space curve corresponding to t=t0, and the arc length 𝑃0𝑃 = 𝑠 , then

𝛿𝑠

𝛿𝑑=

𝛿𝑠

π›Ώπ‘Ÿ

π›Ώπ‘Ÿ

𝛿𝑑=

π‘Žπ‘Ÿπ‘ 𝑃𝑄

π‘π‘•π‘œπ‘Ÿπ‘‘ 𝑃𝑄 π›Ώπ‘Ÿ

𝛿𝑑 . … (1)

As 𝑄 β†’ 𝑃 along the curve QP, i.e. 𝛿𝑑 β†’ 0, then the π‘Žπ‘Ÿπ‘ 𝑃𝑄

π‘π‘•π‘œπ‘Ÿπ‘‘ 𝑃𝑄 β†’ 1 and

𝑑𝑠

𝑑𝑑=

π‘‘π‘Ÿ

𝑑𝑑 = π‘Ÿ β€²(𝑑) … (2)

Page 7: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

7

If π‘‘π‘Ÿ

𝑑𝑑 is continuous, then 𝑠 =

π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝑑

𝑑0 = π‘₯β€² 2+ 𝑦′ 2+ 𝑧′ 2𝑑𝑑

𝑑

𝑑0 … (3)

Further, if we take s as the parameter in place of t, then the magnitude of the tangent vector i.e.

π‘‘π‘Ÿ

𝑑𝑠 = 1. Thus denoting the unit tangent vector by 𝑇 , we have 𝑇 =

π‘‘π‘Ÿ

𝑑𝑠 …(4)

Example 5: Find the unit tangent vector at any point on the curve 𝒙 = π’•πŸ + 𝟐, π’š = πŸ’π’• βˆ’ πŸ“,

𝒛 = πŸπ’•πŸ βˆ’ πŸ”π’• where t is variable. Also determine the unit tangent vector at t = 2.

Solution: Let π‘Ÿ be the position vector of any point π‘₯, 𝑦, 𝑧 on the given curve,

then π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜

∴ π‘Ÿ = 𝑑2 + 2 𝑖 + 4𝑑 βˆ’ 5 𝑗 + 2𝑑2 βˆ’ 6𝑑 π‘˜

The vector tangent to the curve at any point π‘₯, 𝑦, 𝑧 is π‘‘π‘Ÿ

𝑑𝑑 = 2𝑑 𝑖 + 4 𝑗 + 4𝑑 βˆ’ 6 π‘˜

Now π‘‘π‘Ÿ

𝑑𝑑 = 2𝑑 2 + 4 2 + 4𝑑 βˆ’ 6 2 = 2 5𝑑2 βˆ’ 12𝑑 + 13

Therefore unit tangent vector at π‘₯, 𝑦, 𝑧 =π‘‘π‘Ÿ

𝑑𝑑 π‘‘π‘Ÿ

𝑑𝑑 =

2𝑑 𝑖 + 4 𝑗 + 4π‘‘βˆ’6 π‘˜

2 5𝑑2βˆ’12𝑑+13

And the unit tangent vector at t = 2 is π‘‘π‘Ÿ

𝑑𝑑 π‘‘π‘Ÿ

𝑑𝑑

𝑑=2 =

2𝑑 𝑖 + 4 𝑗 + 4π‘‘βˆ’6 π‘˜

2 5𝑑2βˆ’12𝑑+13 𝑑 = 2

=2𝑖 +2𝑗 +π‘˜

3.

2. Principal Normal: Since 𝑇 is a unit vector, so 𝑑𝑇

π‘‘π‘ βˆ™ 𝑇 = 0 i.e. either

𝑑𝑇

𝑑𝑠 is perpendicular to 𝑇 or

𝑑𝑇

𝑑𝑠 = 0, in which case 𝑇 is a constant vector w.r.t. the arc length s and so has a fixed direction i.e.

the curve is a straight line. Now, if we denote the unit normal vector to the curve at P by 𝑁 , then 𝑑𝑇

𝑑𝑠

is in the direction of 𝑁 which is known as the principal normal to the curve at P. The plane of 𝑇

and 𝑁 is called osculating plane of the curve at P.

3. Binormal: A unit vector 𝐡 = 𝑇 Γ— 𝑁 is called the binormal at P. As 𝑇 and 𝑁 both are unit vectors,

so 𝐡 is also a unit vector normal to both 𝑇 and 𝑁

i.e. to the osculating plane of 𝑇 and 𝑁 .

Thus at each point P on the curve C, there are

three mutually perpendicular unit vectors 𝑇 , 𝑁

and 𝐡 , which form a moving trihedral such that

𝐡 = 𝑇 Γ— 𝑁 , 𝑁 = 𝐡 Γ— 𝑇 , 𝑇 = 𝑁 Γ— 𝐡 . … (1)

This moving trihedral determines three

fundamental planes at each point of the curve C.

(i) The osculating plane of 𝑇 and 𝑁 .

(ii) The normal plane of 𝑁 and 𝐡 .

(iii) The rectifying plane of 𝐡 and 𝑇 .

4. Curvture: The arc rate of turning of the tangent viz. 𝑑𝑇

𝑑𝑠 is called the curvature of the curve

and is denoted by . As 𝑑𝑇

𝑑𝑠 is in the direction of the principal normal 𝑁 , therefore

𝑑𝑇

𝑑𝑠 = 𝑁 … (2)

Page 8: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

8

5. Torsion: As the binormal 𝐡 is a unit vector, so 𝑑𝐡

𝑑𝑠 βˆ™ 𝐡 = 0. Also 𝐡 βˆ™ 𝑇 = 0, therefore

𝑑𝐡

𝑑𝑠 βˆ™ 𝑇 + 𝐡 βˆ™

𝑑𝑇

𝑑𝑠 = 0 or

𝑑𝐡

𝑑𝑠 βˆ™ 𝑇 + 𝐡 βˆ™ 𝑁 = 0 or

𝑑𝐡

𝑑𝑠 βˆ™ 𝑇 = 0. Hence,

𝑑𝐡

𝑑𝑠 is perpendicular to both 𝐡 and 𝑇 and

is, therefore, parallel to 𝑁 . The arc rate of turning of the binormal viz. 𝑑𝐡

𝑑𝑠 is called torsion of the

curve and is denoted by 𝜏. So, we can write it as

𝑑𝐡

𝑑𝑠 = βˆ’πœπ‘ (the negative sign indicates that for 𝜏 > 0,

𝑑𝐡

𝑑𝑠 has a direction of βˆ’π‘ ) …(3)

Further, we know that 𝑁 = 𝐡 Γ— 𝑇 , which on differentiation gives ,

𝑑𝑁

𝑑𝑠 =

𝑑𝐡

𝑑𝑠 Γ— 𝑇 + 𝐡 Γ—

𝑑𝑇

𝑑𝑠 = βˆ’πœπ‘ Γ— 𝑇 + 𝐡 Γ— 𝑁

𝑑𝑁

𝑑𝑠 = 𝜏𝐡 βˆ’ 𝑇 (using (1)) … (4)

The relations in (1), (2) and (3) constitutes the well known Frenet Formulas for the curve C.

Observations:

(i) 𝜌 =1

is called the radius of curvature.

(ii) 𝜍 =1

𝜏 is called the radius of torsion.

(iii) 𝜏 = 0 for a plane curve.

Example 6: Find 𝑡 (𝒕) and 𝑡 (𝟏) for the curve represented by 𝒓 𝒕 = πŸ‘π’• π’Š + πŸπ’•πŸπ’‹ .

Solution: For given π‘Ÿ 𝑑 , we have π‘Ÿ β€² 𝑑 = 3𝑖 + 4𝑑𝑗 and π‘Ÿ β€² 𝑑 = 9 + 16𝑑2

Which implies that the unit tangent vector 𝑇 𝑑 = π‘Ÿ β€² 𝑑

π‘Ÿ β€² 𝑑 =

3𝑖 +4𝑑𝑗

9+16𝑑2 … (1)

Differentiating 𝑇 𝑑 w. r. to t, 𝑇 β€² 𝑑 = 1

9+16𝑑2 4𝑗 βˆ’

16𝑑

9+16𝑑2 32

(3𝑖 + 4𝑑𝑗 ) = 12(βˆ’4𝑑𝑖 +3𝑗 )

9+16𝑑2 3/2 …(2)

And 𝑇 β€² 𝑑 = 12 9+16𝑑2

9+16𝑑2 3=

12

9+16𝑑2 … (3)

Therefore, the principal unit normal vector is 𝑁 𝑑 = 𝑇 β€²(𝑑)

𝑇 β€²(𝑑) =

βˆ’4𝑑𝑖 +3𝑗

9+16𝑑2 … (4)

But at 𝑑 = 1, the principal unit normal vector is 𝑁 1 = 1

5 (βˆ’4𝑖 + 3𝑗 ).

Example 7: Find the angle between the tangents to the curve 𝒓 = π’•πŸ π’Š + πŸπ’• 𝒋 βˆ’ π’•πŸ‘ π’Œ at the point

t = Β± 1.

Solution: Differentiating the given curve w. r. to t, we get

π‘‘π‘Ÿ

𝑑𝑑 = 2𝑑 𝑖 + 2 𝑗 βˆ’ 3𝑑2 π‘˜ which is the tangent vector to the curve at any point t.

Let 𝑇1 & 𝑇2

are the tangent vectors to the curve at t = 1 and t = -1 respectively, then

𝑇1 = 2 𝑖 + 2 𝑗 βˆ’ 3 π‘˜ and 𝑇2

= βˆ’2 𝑖 + 2 𝑗 βˆ’ 3 π‘˜

Let πœƒ be the angle between the tangents 𝑇1 & 𝑇2

, then

πΆπ‘œπ‘  πœƒ = 𝑇1 βˆ™ 𝑇2

𝑇1 𝑇2 =

2 𝑖 +2 𝑗 βˆ’3 π‘˜ βˆ™ βˆ’2 𝑖 +2 𝑗 βˆ’3 π‘˜

2 𝑖 +2 𝑗 βˆ’3 π‘˜ βˆ’2 𝑖 +2 𝑗 βˆ’3 π‘˜ =

βˆ’4 + 4 + 9

17 17=

9

17

Page 9: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

9

∴ πœƒ = π‘π‘œπ‘ βˆ’1 9

17

Example 8: Find the curvature and torsion of the curve 𝒙 = 𝒂 𝒄𝒐𝒔 𝒕, π’š = 𝒂 π’”π’Šπ’ 𝒕, 𝒛 = 𝒃𝒕. (This curve is drawn on a circular cylinder cutting its generators at a constant angle and is known as a circular helix)

Solution: Equation of the given curve in vector form is

π‘Ÿ = π‘Ž cos 𝑑 𝑖 + π‘Ž sin 𝑑 𝑗 + 𝑏𝑑 π‘˜

Differentiating w. r. to t,

π‘‘π‘Ÿ

𝑑𝑑 = βˆ’π‘Ž sin 𝑑 𝑖 + π‘Ž cos 𝑑 𝑗 + 𝑏 π‘˜

Now, the arc length of the curve from P0 (t = 0) to any

point P (t) is given by

𝑠 = π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝑑

0 = π‘Ž2 + 𝑏2 𝑑

∴ 𝑑𝑠

𝑑𝑑 = π‘Ž2 + 𝑏2

Now, the unit tangent vector,

𝑇 =π‘‘π‘Ÿ

𝑑𝑠=

π‘‘π‘Ÿ 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

βˆ’π‘Ž sin 𝑑 𝑖 + π‘Ž cos 𝑑 𝑗 + 𝑏 π‘˜

π‘Ž2+𝑏2

So 𝑑𝑇

𝑑𝑠=

𝑑𝑇 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

βˆ’π‘Ž cos 𝑑 𝑖 βˆ’ π‘Ž sin 𝑑 𝑗

π‘Ž2+𝑏2

∴ = 𝑑𝑇

𝑑𝑠 =

π‘Ž

π‘Ž2+𝑏2 is the curvature of the given curve.

Also, the unit normal vector is 𝑁 = βˆ’(cos 𝑑 𝑖 + sin 𝑑 𝑗 ) and 𝐡 = 𝑇 Γ— 𝑁 = (b sin 𝑑 𝑖 βˆ’π‘ cos 𝑑𝑗 +π‘Žπ‘˜ )

π‘Ž2+𝑏2

So 𝑑𝐡

𝑑𝑠=

𝑑𝐡 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

𝑏(cos 𝑑 𝑖 +sin 𝑑 𝑗)

π‘Ž2+𝑏2 = βˆ’πœπ‘ = 𝜏(cos 𝑑 𝑖 + sin 𝑑 𝑗 )

Hence 𝜏 = 𝑏

π‘Ž2+𝑏2 .

Example 9: A circular helix is given by the equation 𝒓 = 𝟐 𝐜𝐨𝐬 𝒕 π’Š + 𝟐 𝐬𝐒𝐧 𝒕 𝒋 + π’Œ . Find the

curvature and torsion of the curve at any point and show that they are constant.

Solution: Equation of the given curve in vector form is

π‘Ÿ = 2 cos 𝑑 𝑖 + 2 sin 𝑑 𝑗 + π‘˜

Differentiating w. r. to t, π‘‘π‘Ÿ

𝑑𝑑 = βˆ’2 sin 𝑑 𝑖 + 2 cos 𝑑 𝑗 + 0 π‘˜

Now, the arc length of the curve from P0 (t = 0) to any point P (t) is given by

𝑠 = π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝑑

0 = 2 𝑑 implying

𝑑𝑠

𝑑𝑑 = 2

Now, the unit tangent vector, 𝑇 =π‘‘π‘Ÿ

𝑑𝑠=

π‘‘π‘Ÿ 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

βˆ’2 sin 𝑑 𝑖 + 2 cos 𝑑 𝑗 + 0 π‘˜

2

So 𝑑𝑇

𝑑𝑠=

𝑑𝑇 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

βˆ’ cos 𝑑 𝑖 βˆ’ sin 𝑑 𝑗

2

∴ = 𝑑𝑇

𝑑𝑠 =

1

2 is the curvature of the given curve and is a constant.

Also, the unit normal vector is 𝑁 = βˆ’(cos 𝑑 𝑖 + sin 𝑑 𝑗 ) and

𝐡 = 𝑇 Γ— 𝑁 = βˆ’ sin 𝑑 𝑖 + cos 𝑑 𝑗 Γ— βˆ’ cos 𝑑 𝑖 βˆ’ sin 𝑑 𝑗 = π‘˜

So 𝑑𝐡

𝑑𝑠=

𝑑𝐡 𝑑𝑑

𝑑𝑠 𝑑𝑑 = 0 = βˆ’πœπ‘ = 𝜏(cos 𝑑 𝑖 + sin 𝑑 𝑗 )

Page 10: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

10

Hence 𝜏 = 0 is the torsion of the given curve and is constant.

Example 10: Show that for the curve 𝒓 = 𝒂 πŸ‘π’• βˆ’ π’•πŸ‘ π’Š + πŸ‘π’‚π’•πŸ 𝒋 + 𝒂(πŸ‘π’• + π’•πŸ‘)π’Œ , the curvature

equals torsion.

Solution: Given curve is π‘Ÿ = π‘Ž 3𝑑 βˆ’ 𝑑3 𝑖 + 3π‘Žπ‘‘2 𝑗 + π‘Ž(3𝑑 + 𝑑3)π‘˜

Differentiating w. r. to t, π‘‘π‘Ÿ

𝑑𝑑= π‘Ž 3 βˆ’ 3𝑑2 𝑖 + 6π‘Žπ‘‘ 𝑗 + π‘Ž 3 + 3𝑑2 π‘˜

Now, the arc length of the curve P0 (t = 0) to any point P (t) is given by

𝑠 = π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝑑

0= π‘Ž 3 βˆ’ 3𝑑2

2 + 6π‘Žπ‘‘ 2 + π‘Ž 3 + 3𝑑2

2 𝑑𝑑

𝑑

0

= 3π‘Ž 2 𝑑2 + 1 𝑑𝑑𝑑

0= 3π‘Ž 2

𝑑3

3+ 𝑑

∴ 𝑑𝑠

𝑑𝑑 = 3π‘Ž 2 𝑑2 + 1

Now, the unit tangent vector,

𝑇 = π‘‘π‘Ÿ

𝑑𝑠=

π‘‘π‘Ÿ 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

π‘Ž 3βˆ’3𝑑2 𝑖 +6π‘Žπ‘‘ 𝑗 +π‘Ž 3+3𝑑2 π‘˜

3π‘Ž 2 𝑑2+1 =

1βˆ’π‘‘2 𝑖 +2𝑑 𝑗 + 1+𝑑2 π‘˜

2 𝑑2+1

So 𝑑𝑇

𝑑𝑠=

𝑑𝑇 𝑑𝑑

𝑑𝑠 𝑑𝑑 =

βˆ’2𝑑 𝑖 + 1βˆ’π‘‘2 𝑗

3π‘Ž 1+𝑑2 3

∴ = 𝑑𝑇

𝑑𝑠 =

1

3π‘Ž 1+𝑑2 2 is the curvature of the given curve.

Also, the unit normal vector is 𝑁 =βˆ’2𝑑 𝑖 + 1βˆ’π‘‘2

𝑗

1+𝑑2

and

𝐡 = 𝑇 Γ— 𝑁 = 1βˆ’π‘‘2 𝑖 +2𝑑 𝑗 + 1+𝑑2 π‘˜

2 1+𝑑2

So 𝑑𝐡

𝑑𝑠=

𝑑𝐡 𝑑𝑑

𝑑𝑠 𝑑𝑑 = βˆ’

βˆ’2𝑑 𝑖 + 1βˆ’π‘‘2 𝑗

3π‘Ž 1+𝑑2 3 = βˆ’

1

3π‘Ž 1+𝑑2 2 .

βˆ’2𝑑 𝑖 + 1βˆ’π‘‘2 𝑗

1+𝑑2 = βˆ’πœπ‘

∴ 𝜏 =1

3π‘Ž 1+𝑑2

2 is the torsion of the given curve.

Hence curvature equals torsion for the given curve.

ASSIGNMENT 1

1. If π‘Ž = π‘₯2𝑦𝑧 𝑖 βˆ’ 2π‘₯𝑧3𝑗 + π‘₯𝑧2π‘˜ and 𝑏 = 2𝑧 𝑖 + 𝑦 𝑗 βˆ’ π‘₯2π‘˜ , find πœ•2

πœ•π‘₯πœ•π‘¦ π‘Ž Γ— 𝑏 at (1, 0, -2).

2. Given π‘Ÿ = π‘‘π‘š 𝐴 + 𝑑𝑛 𝐡 , where 𝐴 and 𝐡 are constant vectors, show that, if π‘Ÿ and 𝑑2π‘Ÿ

𝑑𝑑2 are parallel

vectors, then π‘š + 𝑛 = 1, unless π‘š = 𝑛.

3. Find the equation of tangent line to the curve π‘₯ = π‘Ž cos πœƒ , 𝑦 = π‘Ž sin πœƒ , 𝑧 = π‘Žπœƒ tan 𝛼 at = πœ‹

4.

Page 11: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

11

4. Find the unit tangent vector at any point on the curve π‘₯ = 𝑑2 + 2, 𝑦 = 4𝑑 βˆ’ 5, 𝑧 = 2𝑑2 βˆ’ 6𝑑, where t

is any variable. Also determine the unit tangent vector at the point 𝑑 = 2.

5. If π‘Ÿ = π‘Ž cos 𝑑 𝑖 + π‘Ž sin 𝑑 𝑗 + π‘Žπ‘‘ tan 𝛼 π‘˜ , find the value of (a) π‘‘π‘Ÿ

𝑑𝑑×

𝑑2π‘Ÿ

𝑑𝑑2 (b)

π‘‘π‘Ÿ

𝑑𝑑

𝑑2π‘Ÿ

𝑑𝑑2

𝑑3π‘Ÿ

𝑑𝑑3 .

Also find the unit tangent vector at any point t on the curve.

6. Find the equation of the osculating plane and binormal to the curve

(a) π‘₯ = π‘’πœƒ cos πœƒ , 𝑦 = π‘’πœƒ sin πœƒ , 𝑧 = π‘’πœƒ at πœƒ = 0 (b) π‘₯ = 2 coshπœƒ

2, 𝑦 = 2 sinh

πœƒ

2, 𝑧 = 2πœƒ at πœƒ = 0

7. Find the curvature of the (a) ellipse π‘Ÿ = π‘Ž cos 𝑑 𝑖 + 𝑏 sin 𝑑 𝑗 (b) parabola π‘Ÿ = 2𝑑 𝑖 + 𝑑2 𝑗 at point

𝑑 = 1.

17.4 VELOCITY AND ACCELERATION

1. Velocity: Let the position of particle P at a time t on the curve C is π‘Ÿ 𝑑 and it comes to point Q

at time 𝑑 + 𝛿𝑑 having position π‘Ÿ 𝑑 + 𝛿𝑑 , then π›Ώπ‘Ÿ = π‘Ÿ 𝑑 + 𝛿𝑑 βˆ’ π‘Ÿ 𝑑 i.e. π›Ώπ‘Ÿ

𝛿𝑑 is directed along PQ.

As 𝑄 β†’ 𝑃 along C, the line PQ becomes tangent at P to the curve C.

So 𝑣 𝑑 = π‘‘π‘Ÿ

𝑑𝑑 = Lt𝛿𝑑→0

π›Ώπ‘Ÿ

𝛿𝑑 is the tangent vector to C at point P which is the velocity vector 𝑣 (𝑑) of

the motion and its magnitude gives the speed 𝑣 = 𝑑𝑠

𝑑𝑑, where s is the arc length of P from a fixed

point P0 (s=0) on C.

2. Acceleration: Acceleration vector π‘Ž 𝑑 of a particle is the derivative of the velocity vector 𝑣 (𝑑),

and it is given by π‘Ž 𝑑 = 𝑑𝑣

𝑑𝑑=

𝑑2π‘Ÿ

𝑑𝑑2 . It is an interesting fact that the magnitude of acceleration is not

always the rate of change of 𝑣 = 𝑣 , as π‘Ž 𝑑 is not always tangential to the curve C. There are two

components of acceleration, which are given as: (i) Tangential Acceleration (ii) Normal

Acceleration

Observation: The acceleration is the time rate of change of 𝑣 𝑑 = 𝑑𝑠

𝑑𝑑, if and only if the normal acceleration

is zero, for then π‘Ž = 𝑑2𝑠

𝑑𝑑2 π‘‘π‘Ÿ

𝑑𝑠 =

𝑑2𝑠

𝑑𝑑2 .

3. Relative Velocity and Acceleration: Let two particles P and

Q moving along the curves C1 and C2 have position vectors π‘Ÿ1 (𝑑)

and π‘Ÿ2 (𝑑) at time t, so that π‘Ÿ 𝑑 = 𝑃𝑄 = π‘Ÿ2 𝑑 βˆ’ π‘Ÿ1 (𝑑)

Differentiating w. r. to t, π‘‘π‘Ÿ

𝑑𝑑=

π‘‘π‘Ÿ 2

π‘‘π‘‘βˆ’

π‘‘π‘Ÿ 1

𝑑𝑑 … (1)

This defines the relative velocity of Q w. r. t. P and states that the

velocity of Q relative to P = Velocity vector of Q – Velocity

vector of P.

Again differentiating (1) w. r. to t., we have

𝑑2π‘Ÿ

𝑑𝑑2=

𝑑2π‘Ÿ 2

𝑑𝑑2βˆ’

𝑑2π‘Ÿ 1

𝑑𝑑 2

This defines the relative acceleration of Q w. r. t. and states that Acceleration of Q relative to P =

Acceleration of Q – Acceleration of P.

Page 12: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

12

Example 11: Find the tangential and normal acceleration of a particle moving in a plane

curve in Cartesian coordinates.

Solution: Let π‘Ÿ be the position vector the point P, a function of a scalar t. In particular, if the scalar

variable t is taken as an arc length s along the curve C measured from some fixed point, that is,

π‘₯ = π‘₯ 𝑠 , 𝑦 = 𝑦 𝑠 , 𝑧 = 𝑧(𝑠) then π‘Ÿ = π‘₯ 𝑠 𝑖 + 𝑦 𝑠 𝑗 + 𝑧(𝑠)π‘˜

So that π‘‘π‘Ÿ

𝑑𝑠=

𝑑π‘₯

𝑑𝑠𝑖 +

𝑑𝑦

𝑑𝑠𝑗 +

𝑑𝑧

π‘‘π‘ π‘˜ … (1)

And π‘‘π‘Ÿ

𝑑𝑠

2

= 𝑑π‘₯

𝑑𝑠

2+

𝑑𝑦

𝑑𝑠

2+

𝑑𝑧

𝑑𝑠

2 … (2)

For two dimension curves we have in calculus

𝑑𝑠 2 = 𝑑π‘₯ 2 + 𝑑𝑦 2

which when extended to the space, becomes

𝑑𝑠 2 = 𝑑π‘₯ 2 + 𝑑𝑦 2 + 𝑑𝑧 2

Or 𝑑π‘₯

𝑑𝑠

2+

𝑑𝑦

𝑑𝑠

2+

𝑑𝑧

𝑑𝑠

2= 1

Therefore (2) gives π‘‘π‘Ÿ

𝑑𝑠

2

= 1

That means, π‘‘π‘Ÿ

𝑑𝑠 is a unit vector along the tangent and (1) represents a unit tangent vector along the

curve C in space.

Therefore, Velocity 𝑣 of the particle at any point of the curve is given by

𝑣 =π‘‘π‘Ÿ

𝑑𝑑= π‘‘π‘Ÿ

𝑑𝑠𝑑𝑠𝑑𝑑

= 𝑣 𝑇 … (3)

where 𝑣 =𝑑𝑠

𝑑𝑑 and 𝑇 =

π‘‘π‘Ÿ

𝑑𝑠 is the unit vector along the tangent.

Thus 𝑣 =𝑑𝑠

𝑑𝑑 is the tangential component of the velocity and the normal component of the velocity

is zero.

Next, acceleration π‘Ž =𝑑𝑣

𝑑𝑑= 𝑑(𝑣𝑇)

𝑑𝑑= 𝑑𝑣

𝑑𝑑 𝑇 + 𝑣

𝑑𝑇

𝑑𝑑

or π‘Ž =𝑑2𝑠

𝑑𝑑2 𝑇 + 𝑑𝑠

𝑑𝑑

𝑑𝑇

𝑑𝑠

𝑑𝑠

𝑑𝑑=

𝑑𝑣

𝑑𝑑 𝑇 + 𝑣2

𝑑𝑇

π‘‘πœ“

π‘‘πœ“

𝑑𝑠

=𝑑𝑣

𝑑𝑑 𝑇 +

𝑣2

𝜌 𝑑𝑇

π‘‘πœ“ (since radius of curvature, 𝜌 =

π‘‘πœ“

𝑑𝑠 ) … (4)

From the adjoining figure, 𝑇 = 𝑃𝑄 is along the tangent at P to the curve C and 𝑁 is the unit vector

along the normal to P.

∴ 𝑇 = cos πœ“ 𝑖 + sin πœ“ 𝑗 and 𝑁 = cos πœ‹

2+ πœ“ 𝑖 + sin

πœ‹

2+ πœ“ 𝑗 = βˆ’sin πœ“ 𝑖 + cos πœ“ 𝑗

Now 𝑑𝑇

π‘‘πœ“ = βˆ’sin πœ“ 𝑖 + cos πœ“ 𝑗 = 𝑁

Therefore, equation (4) becomes π‘Ž =𝑑𝑣

𝑑𝑑 𝑇 +

𝑣2

πœŒπ‘

Which shows that tangential and normal components of acceleration at the point P are 𝑑𝑣

𝑑𝑑 and

𝑣2

𝜌 .

Since 𝑑𝑣

𝑑𝑑=

𝑑𝑣

𝑑𝑠

𝑑𝑠

𝑑𝑑 = v

𝑑𝑣

𝑑𝑠, so the tangential component of acceleration is also written as v

𝑑𝑣

𝑑𝑠.

Page 13: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

13

Example 12: Find the radial and transverse acceleration of a particle moving in a plane curve

in Polar coordinates.

Solution: Let the position vector of a moving particle 𝑃(π‘Ÿ, πœƒ) be π‘Ÿ so that

π‘Ÿ = π‘Ÿ π‘Ÿ = π‘Ÿ (cos πœƒ 𝑖 + sin πœƒ 𝑗 ) at any time t.

Then the velocity of the particle is 𝑣 = π‘‘π‘Ÿ

𝑑𝑑=

π‘‘π‘Ÿ

𝑑𝑑 π‘Ÿ + π‘Ÿ

π‘‘π‘Ÿ

𝑑𝑑

As π‘Ÿ = (cos πœƒ 𝑖 + sin πœƒ 𝑗 ) so π‘‘π‘Ÿ

𝑑𝑑= (βˆ’sinπœƒ 𝑖 + cos πœƒ 𝑗 )

π‘‘πœƒ

𝑑𝑑

Therefore, π‘‘π‘Ÿ

𝑑𝑑 is perpendicular to π‘Ÿ and

π‘‘π‘Ÿ

𝑑𝑑 =

π‘‘πœƒ

𝑑𝑑 i.e. if 𝑒

is a unit vector perpendicular to π‘Ÿ , then π‘‘π‘Ÿ

𝑑𝑑=

π‘‘πœƒ

𝑑𝑑 𝑒

And thus, 𝑣 = π‘‘π‘Ÿ

𝑑𝑑=

π‘‘π‘Ÿ

𝑑𝑑 π‘Ÿ + π‘Ÿ

π‘‘πœƒ

𝑑𝑑 𝑒

So the radial and transverse components of the velocity are π‘‘π‘Ÿ

𝑑𝑑 and

π‘‘πœƒ

𝑑𝑑.

Also π‘Ž = 𝑑𝑣

𝑑𝑑=

𝑑2π‘Ÿ

𝑑𝑑 2 π‘Ÿ +

π‘‘π‘Ÿ

𝑑𝑑

π‘‘π‘Ÿ

𝑑𝑑 +

π‘‘π‘Ÿ

𝑑𝑑

π‘‘πœƒ

𝑑𝑑 𝑒 +π‘Ÿ

𝑑2πœƒ

𝑑𝑑 2 𝑒 + π‘Ÿ

π‘‘πœƒ

𝑑𝑑

𝑑𝑒

𝑑𝑑

= 𝑑2π‘Ÿ

𝑑𝑑 2βˆ’ π‘Ÿ

π‘‘πœƒ

𝑑𝑑

2

π‘Ÿ + 2π‘‘π‘Ÿ

𝑑𝑑

π‘‘πœƒ

𝑑𝑑+ π‘Ÿ

𝑑2πœƒ

𝑑𝑑2 𝑒

𝑠𝑖𝑛𝑐𝑒 𝑒 = βˆ’ sin πœƒ 𝑖 + cos πœƒ 𝑗 𝑔𝑖𝑣𝑒𝑠 𝑑𝑒

𝑑𝑑= βˆ’

π‘‘πœƒ

π‘‘π‘‘π‘Ÿ

Thus radial and transverse components of the acceleration are 𝑑2π‘Ÿ

𝑑𝑑 2βˆ’ π‘Ÿ

π‘‘πœƒ

𝑑𝑑

2

and

2π‘‘π‘Ÿ

𝑑𝑑

π‘‘πœƒ

𝑑𝑑+ π‘Ÿ

𝑑2πœƒ

𝑑𝑑 2 .

Example 13: A particle moves along the curve 𝒓 = π­πŸ‘ βˆ’ πŸ’π­ π’Š + 𝐭𝟐 + πŸ’π­ 𝒋 + πŸ–π’•πŸ βˆ’ πŸ‘π’•πŸ‘ π’Œ

where t denotes the time. Find the magnitudes of acceleration along the tangent and normal at

time t = 2.

Solution: The velocity of the particle is 𝑣 = π‘‘π‘Ÿ

𝑑𝑑 = 3𝑑2 βˆ’ 4 𝑖 + 2𝑑 + 4 𝑗 + 16𝑑 βˆ’ 9𝑑2 π‘˜

And the acceleration is π‘Ž = 𝑑2π‘Ÿ

𝑑𝑑 2 = 6𝑑 𝑖 + 2 𝑗 + 16 βˆ’ 18𝑑 π‘˜

At t = 2, 𝑣 = 8 𝑖 + 8 𝑗 βˆ’ 4 π‘˜ and π‘Ž = 12 𝑖 + 2 𝑗 βˆ’ 20 π‘˜

Since the velocity vector is also the tangent vector to the curve, so the magnitude of acceleration

along the tangent at t = 2 is = π‘Ž βˆ™ 𝑣

𝑣 = 12 𝑖 + 2 𝑗 βˆ’ 20 π‘˜ βˆ™

8 𝑖 +8 𝑗 βˆ’4 π‘˜

64+64+16

= 12 8 + 2 8 + βˆ’20 (βˆ’4)

12 = 16

And, the magnitude of acceleration along the normal at t = 2 is

π‘Ž βˆ’ πΆπ‘œπ‘šπ‘π‘œπ‘›π‘’π‘›π‘‘ π‘œπ‘“ π‘Ž along the tangent at 𝑑 = 2 = 12 𝑖 + 2 𝑗 βˆ’ 20 π‘˜ βˆ’ 16 8 𝑖 +8 𝑗 βˆ’4 π‘˜

12

= 4 𝑖 βˆ’26 𝑗 βˆ’44 π‘˜

3 = 2 73

Example 14: A person going east wards with a velocity of 4 km per hour, finds that the wind

appears to blow directly from the north. He doubles his speed and the wind seems to come

from north-east. Find the actual velocity of the wind.

Page 14: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

14

Solution: Let the actual velocity of the wind is 𝑣 = π‘₯𝑖 + 𝑦𝑗 , where 𝑖 and 𝑗 represent velocities of 1

km per hour towards the east and north respectively. As the person is going eastwards with a

velocity of 4 km per hour, his actual velocity is 4𝑖 .

Then the velocity of the wind relative to the man is π‘₯𝑖 + 𝑦𝑗 βˆ’ 4𝑖 , which is parallel to βˆ’π‘— , as it

appears to blow from the north. Hence x = 4.

When the velocity of the person becomes 8𝑖 , the velocity of the wind relative to a man is π‘₯𝑖 + 𝑦𝑗 βˆ’

8𝑖 . But this is parallel to βˆ’ 𝑖 + 𝑗 .

∴ π‘₯βˆ’8

𝑦 = 1 which gives 𝑦 = βˆ’4 (using (1))

Hence the actual velocity of the wind is 4𝑖 βˆ’ 4𝑗 i.e. 4 2 km per hour towards south east.

Example 15: A particle moves along the curve 𝒙 = π’•πŸ‘ + 𝟏, π’š = π’•πŸ, 𝒛 = πŸπ’• + πŸ‘ where t is the

time. Find the components of velocity and acceleration at t = 1in the direction of the vector

π’Š + 𝒋 + πŸ‘π’Œ .

Solution: Let π‘Ÿ be the position vector of the particle at any time t,

then π‘Ÿ = 𝑑3 + 1 𝑖 + 𝑑2 𝑗 + 2𝑑 + 3 π‘˜

So the velocity is 𝑣 = π‘‘π‘Ÿ

𝑑𝑑 = 3𝑑2 𝑖 + 2𝑑 𝑗 + 2 π‘˜

And the acceleration is π‘Ž = 𝑑2π‘Ÿ

𝑑𝑑 2 = 6𝑑 𝑖 + 2 𝑗 + 0 π‘˜

At t =1, 𝑣 = 3 𝑖 + 2 𝑗 + 2 π‘˜ and π‘Ž = 6 𝑖 + 2 𝑗 + 0 π‘˜

Also the unit vector in the direction of the given vector 𝑖 + 𝑗 + 3π‘˜ is = 𝑖 +𝑗 +3π‘˜

𝑖 +𝑗 +3π‘˜ =

𝑖 +𝑗 +3π‘˜

11

Now the component of velocity at t = 1, in the direction of the vector 𝑖 + 𝑗 + 3π‘˜ =

3 𝑖 +2 𝑗 +2 π‘˜ βˆ™ 𝑖 +𝑗 +3π‘˜

11=

3+2+6

11 = 11

And the component of acceleration at t = 1, in the direction of the vector 𝑖 + 𝑗 + 3π‘˜ =

6 𝑖 +2 𝑗 +0 π‘˜ βˆ™ 𝑖 +𝑗 +3π‘˜

11=

6+2+0

11=

8

11

ASSIGNMENT 2

1. The particle moves along a curve π‘₯ = π‘’βˆ’π‘‘ , 𝑦 = 2 cos 3𝑑 , 𝑧 = 2 sin 3𝑑, where t is the time variable.

Determine its velocity and acceleration vectors and also the magnitudes of velocity and

acceleration at 𝑑 = 0.

2. A particle (with position vector π‘Ÿ ) is moving in a circle with constant angular velocity πœ”. Show

by vector methods, that the acceleration is equal to βˆ’πœ”2π‘Ÿ .

3. A particle moves on the curve π‘₯ = 2𝑑2 , 𝑦 = 𝑑2 βˆ’ 4𝑑, 𝑧 = 3𝑑 βˆ’ 5, where t is the time. Find the

components of velocity and acceleration at time t = 1 in the direction 𝑖 βˆ’ 3𝑗 + 2π‘˜ .

4. The position vector of a particle at time t is π‘Ÿ = cos(𝑑 βˆ’ 1) 𝑖 + sinh 𝑑 βˆ’ 1 𝑗 + π‘Žπ‘‘3π‘˜ . Find the

condition imposed on a by requiring that at time t = 1, the acceleration is normal to the position

vector.

Page 15: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

15

5. A particle moves so that its position vector is given by π‘Ÿ = cos πœ”π‘‘ 𝑖 + sin πœ”π‘‘ 𝑗 . Show that the

velocity 𝑣 of the particle is perpendicular to π‘Ÿ and π‘Ÿ Γ— 𝑣 is a constant vector.

6. A particle moves along a catenary 𝑠 = 𝑐 tan πœ“. The direction of acceleration at any point makes

equal angles with the tangent and normal to the path at that point. If the speed at vertex (πœ“ = 0)

be 𝑣0, show that the magnitude of velocity and acceleration at any point are given by 𝑣0 π‘’πœ“ and

2

𝑐𝑣0

2𝑒2πœ“ cos2 πœ“ respectively.

7. The position vector of a moving particle at a time t is π‘Ÿ = 𝑑2 𝑖 βˆ’ 𝑑3 𝑗 + 𝑑4 π‘˜ . Find the tangential

and normal components of acceleration at t = 1.

8. A vessel A is a sailing with a velocity of 11 knots per hour in the direction south-east and a

second vessel B is sailing with a velocity of 13 knots per hour in a direction 300 of north. Find

the velocity of A relative to B.

9. The velocity of a boat relative to water is represented by 3𝑖 + 4𝑗 and that of water relative to

earth is 𝑖 βˆ’ 3𝑗 . What is the velocity of the boat relative to earth if 𝑖 and 𝑗 represent one KM an

hour east and north respectively?

10. A person travelling towards the north-east with a velocity of 6 KM per hour finds that the wind

appears to blow from the north, but when he doubles his speed it seems to come from a

direction inclined at an angle tanβˆ’1 2 to the north of east. Show that the actual velocity of the

wind is 3 2 KM per hour towards the east.

17.5 DEL APPLIED TO SCALAR POINT FUNCTIONS: GRADIENT [KUK 2009]

Del Operator: Del operator is a vector differential operator and is written as

𝛁 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§

Gradient of a Scalar Function: Let βˆ…(π‘₯, 𝑦, 𝑧) be a scalar function of three variables defined over a

region R of space. Then gradient of is a vector function defined as

βˆ… = 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§,

wherever the partial derivatives exists. It may also be denoted as π‘”π‘Ÿπ‘Žπ‘‘(βˆ…). The del operator is also

called the gradient operator.

Level Surface: Let βˆ…(π‘₯, 𝑦, 𝑧) be a scalar valued function and C is a constant. The surface given by

βˆ… π‘₯, 𝑦, 𝑧 = 𝐢 through a point 𝑃(π‘Ÿ ) is such that at each point on it the function has same value, is

called the level surface of βˆ… π‘₯, 𝑦, 𝑧 through P, e.g. equi-potential or isothermal surfaces.

In other words, locus of the point 𝑃(π‘Ÿ ) satisfying βˆ… π‘Ÿ = 𝐢 form a surface through P. This surface is

called the level surface through P.

Gradient as Normal or Geometrical Interpretation of Gradient

Page 16: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

16

Let βˆ… π‘Ÿ = βˆ… π‘₯, 𝑦, 𝑧 is a scalar function where π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ . And βˆ… π‘₯, 𝑦, 𝑧 = 𝐢 is the level

surface of βˆ… through 𝑃(π‘Ÿ ). Let 𝑄(π‘Ÿ + π›Ώπ‘Ÿ ) be a point on neighboring level surface βˆ… + π›Ώβˆ…, then

π›βˆ… βˆ™ Ξ΄r = 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ βˆ™ 𝛿π‘₯𝑖 + 𝛿𝑦𝑗 + π›Ώπ‘§π‘˜

= πœ•βˆ…

πœ•π‘₯ 𝛿π‘₯ +

πœ•βˆ…

πœ•π‘¦ 𝛿𝑦 +

πœ•βˆ…

πœ•π‘§ 𝛿𝑧 = π›Ώβˆ… … (1)

Now if P and Q lie on same level surface i.e. βˆ… & βˆ… + π›Ώβˆ… are

same, then π›Ώβˆ… = 0.

Implies π›βˆ… βˆ™ Ξ΄r = 0 (using (1))

Therefore, π›βˆ… is perpendicular (normal) to every Ξ΄r lying on

this surface.

Hence, π›βˆ… is normal to the surface βˆ… π‘₯, 𝑦, 𝑧 = 𝐢 and we can write π›βˆ… = π›βˆ… n , where 𝑛 is unit

normal vector to the surface.

See the Fig. 17.7, if the perpendicular distance PM between the surfaces through P and Q be 𝛿𝑛, then

rate of change of βˆ… along the normal to the surface through P is

πœ•βˆ…

πœ•π‘›= 𝐿𝑑𝛿𝑛→0

π›Ώβˆ…

𝛿𝑛 = 𝐿𝑑𝛿𝑛→0

π›βˆ…βˆ™Ξ΄r

𝛿𝑛 (using (1))

= Lt𝛿𝑛→0 π›βˆ… n βˆ™Ξ΄r

𝛿𝑛 = π›βˆ… Lt𝛿𝑛→0

n βˆ™Ξ΄r

𝛿𝑛 … (2)

= π›βˆ… Lt𝛿𝑛→0Ξ΄n

𝛿𝑛 = π›βˆ… (𝐴𝑠 𝑛 βˆ™ π›Ώπ‘Ÿ = π›Ώπ‘Ÿ cos πœƒ = 𝛿𝑛)

Hence the magnitude of π›βˆ… i.e. π›βˆ… = πœ•βˆ…

πœ•π‘› … (3)

Thus π‘”π‘Ÿπ‘Žπ‘‘ βˆ… is normal vector to the level surface βˆ… π‘₯, 𝑦, 𝑧 = 𝐢 and its magnitude represents the rate

of change of βˆ… along this normal.

Directional Derivative: If π›Ώπ‘Ÿ denotes the length PQ and 𝒖 be the unit vector in the direction of PQ,

the limiting value of 𝛿𝑓

π›Ώπ‘Ÿ as π›Ώπ‘Ÿ β†’ 0 (i.e.

πœ•π‘“

πœ•π‘Ÿ) is known as the directional derivative of f along the

direction PQ.

Since π›Ώπ‘Ÿ =𝛿𝑛

cos 𝛼=

𝛿𝑛

𝑛 βˆ™π‘’ , therefore

πœ•π‘“

πœ•π‘Ÿ= Ltπ›Ώπ‘Ÿβ†’0 𝑛 βˆ™ 𝑒

𝛿𝑓

𝛿𝑛 = 𝑒 βˆ™

𝛿𝑓

𝛿𝑛 𝑛 = 𝑒 βˆ™ 𝛁𝑓

Thus the directional derivative of f in the direction of 𝑒 is the resolved part of 𝛁𝑓 in the direction of 𝑒 .

Since 𝛁𝑓 βˆ™ 𝑒 = 𝛁𝑓 cos 𝛼 ≀ 𝛁𝑓

It follows that 𝛁𝑓 gives the maximum rate of change of f.

Properties of Gradient Operator: Let βˆ…(π‘₯, 𝑦, 𝑧) & ψ(π‘₯, 𝑦, 𝑧) are two differentiable scalar functions

defined over some region R. then the gradient operator has following properties:

Page 17: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

17

(i) Gradient of a constant multiple of scalar function βˆ…

π‘”π‘Ÿπ‘Žπ‘‘ πΆβˆ… = 𝐢 π‘”π‘Ÿπ‘Žπ‘‘(βˆ…) or βˆ‡ πΆβˆ… = 𝐢 βˆ‡βˆ…

Proof: Consider π‘”π‘Ÿπ‘Žπ‘‘ πΆβˆ… = βˆ‡ πΆβˆ…

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ πΆβˆ…

= 𝑖 πœ•

πœ•π‘₯(πΆβˆ…) + 𝑗

πœ•

πœ•π‘¦(πΆβˆ…) + π‘˜

πœ•

πœ•π‘§(πΆβˆ…)

= 𝐢 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝐢 𝑗

πœ•βˆ…

πœ•π‘¦+ 𝐢 π‘˜

πœ•βˆ…

πœ•π‘§

= 𝐢 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§

= 𝐢 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ…

= 𝐢 βˆ‡βˆ… = 𝐢 π‘”π‘Ÿπ‘Žπ‘‘ βˆ…

Hence π‘”π‘Ÿπ‘Žπ‘‘ πΆβˆ… = 𝐢 π‘”π‘Ÿπ‘Žπ‘‘(βˆ…).

(ii) Gradient of sum or difference of two scalar functions

π‘”π‘Ÿπ‘Žπ‘‘ βˆ… Β± πœ“ = π‘”π‘Ÿπ‘Žπ‘‘ βˆ… Β± π‘”π‘Ÿπ‘Žπ‘‘(πœ“) or βˆ‡ βˆ… Β± πœ“ = βˆ‡βˆ… Β± βˆ‡πœ“

Proof: Consider π‘”π‘Ÿπ‘Žπ‘‘ βˆ… Β± πœ“ = βˆ‡ βˆ… Β± πœ“

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ… Β± πœ“

= 𝑖 πœ•

πœ•π‘₯ βˆ… Β± πœ“ + 𝑗

πœ•

πœ•π‘¦ βˆ… Β± πœ“ + π‘˜

πœ•

πœ•π‘§ βˆ… Β± πœ“

= 𝑖 πœ•βˆ…

πœ•π‘₯Β±

πœ•πœ“

πœ•π‘₯ + 𝑗

πœ•βˆ…

πœ•π‘¦Β±

πœ•πœ“

πœ•π‘¦ + π‘˜

πœ•βˆ…

πœ•π‘§Β±

πœ•πœ“

πœ•π‘§

= 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ Β± 𝑖

πœ•πœ“

πœ•π‘₯+ 𝑗

πœ•πœ“

πœ•π‘¦+ π‘˜

πœ•πœ“

πœ•π‘§

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ… Β± 𝑖

πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ πœ“

= βˆ‡βˆ… Β± βˆ‡πœ“ = π‘”π‘Ÿπ‘Žπ‘‘ βˆ… Β± π‘”π‘Ÿπ‘Žπ‘‘(πœ“).

Hence π‘”π‘Ÿπ‘Žπ‘‘ βˆ… Β± πœ“ = π‘”π‘Ÿπ‘Žπ‘‘ βˆ… Β± π‘”π‘Ÿπ‘Žπ‘‘(πœ“).

(iii) Gradient of product of two scalar functions

π‘”π‘Ÿπ‘Žπ‘‘ βˆ…πœ“ = βˆ… π‘”π‘Ÿπ‘Žπ‘‘ πœ“ + πœ“ π‘”π‘Ÿπ‘Žπ‘‘(βˆ…) or βˆ‡ βˆ… πœ“ = βˆ… βˆ‡πœ“ + πœ“ βˆ‡βˆ…

Proof: Consider π‘”π‘Ÿπ‘Žπ‘‘ βˆ…πœ“ = βˆ‡ βˆ… πœ“

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ… πœ“

= 𝑖 πœ•

πœ•π‘₯ βˆ… πœ“ + 𝑗

πœ•

πœ•π‘¦ βˆ… πœ“ + π‘˜

πœ•

πœ•π‘§ βˆ… πœ“

Page 18: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

18

= 𝑖 βˆ… πœ•πœ“

πœ•π‘₯+ πœ“

πœ•βˆ…

πœ•π‘₯ + 𝑗 βˆ…

πœ•πœ“

πœ•π‘¦+ πœ“

πœ•βˆ…

πœ•π‘¦ + π‘˜ βˆ…

πœ•πœ“

πœ•π‘§+ πœ“

πœ•βˆ…

πœ•π‘§

= βˆ… 𝑖 πœ•πœ“

πœ•π‘₯+ 𝑗

πœ•πœ“

πœ•π‘¦+ π‘˜

πœ•πœ“

πœ•π‘§ + πœ“ 𝑖

πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§

= βˆ… βˆ‡πœ“ + πœ“ βˆ‡βˆ… = βˆ… π‘”π‘Ÿπ‘Žπ‘‘ πœ“ Β± πœ“ π‘”π‘Ÿπ‘Žπ‘‘(βˆ…)

Hence π‘”π‘Ÿπ‘Žπ‘‘ βˆ…πœ“ = βˆ… π‘”π‘Ÿπ‘Žπ‘‘ πœ“ Β± πœ“ π‘”π‘Ÿπ‘Žπ‘‘(βˆ…).

(iv) Gradient of quotient of two scalar functions

π‘”π‘Ÿπ‘Žπ‘‘ βˆ…

πœ“ =

πœ“ π‘”π‘Ÿπ‘Žπ‘‘ βˆ… βˆ’βˆ… π‘”π‘Ÿπ‘Žπ‘‘ (πœ“)

πœ“ 2 or βˆ‡

βˆ…

πœ“ =

πœ“ βˆ‡ βˆ… βˆ’βˆ… βˆ‡(πœ“)

πœ“ 2, provided πœ“ β‰  0.

Proof: Consider π‘”π‘Ÿπ‘Žπ‘‘ βˆ…

πœ“ = βˆ‡

βˆ…

πœ“

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§

βˆ…

πœ“

= 𝑖 πœ•

πœ•π‘₯

βˆ…

πœ“ + 𝑗

πœ•

πœ•π‘¦

βˆ…

πœ“ + π‘˜

πœ•

πœ•π‘§

βˆ…

πœ“

= 𝑖 πœ“

πœ•βˆ…

πœ•π‘₯ βˆ’ βˆ…

πœ•πœ“

πœ•π‘₯

πœ“2 + 𝑗 πœ“

πœ•βˆ…

πœ•π‘¦ βˆ’ βˆ…

πœ•πœ“

πœ•π‘¦

πœ“2 + π‘˜ πœ“

πœ•βˆ…

πœ•π‘§ βˆ’ βˆ…

πœ•πœ“

πœ•π‘§

πœ“2

=1

πœ“2 πœ“ 𝑖

πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ βˆ’ βˆ… 𝑖

πœ•πœ“

πœ•π‘₯+ 𝑗

πœ•πœ“

πœ•π‘¦+ π‘˜

πœ•πœ“

πœ•π‘§

=1

πœ“2 πœ“ π‘”π‘Ÿπ‘Žπ‘‘(βˆ…) βˆ’ βˆ… π‘”π‘Ÿπ‘Žπ‘‘(πœ“) =

πœ“ π‘”π‘Ÿπ‘Žπ‘‘ βˆ… βˆ’βˆ… π‘”π‘Ÿπ‘Žπ‘‘ (πœ“)

πœ“ 2

=πœ“ βˆ‡ βˆ… βˆ’βˆ… βˆ‡(πœ“)

πœ“ 2

Hence π‘”π‘Ÿπ‘Žπ‘‘ βˆ…

πœ“ =

πœ“ π‘”π‘Ÿπ‘Žπ‘‘ βˆ… βˆ’βˆ… π‘”π‘Ÿπ‘Žπ‘‘ (πœ“)

πœ“ 2 .

Example 16: If βˆ… = πŸ‘π’™πŸπ’š βˆ’ π’šπŸ‘π’›πŸ , then find π’ˆπ’“π’‚π’… βˆ… at (1, -2, -1).

Solution: π‘”π‘Ÿπ‘Žπ‘‘ βˆ… = βˆ‡ 3π‘₯2𝑦 βˆ’ 𝑦3𝑧2

= 𝑖 πœ•

πœ•π‘₯ 3π‘₯2𝑦 βˆ’ 𝑦3𝑧2 + 𝑗

πœ•

πœ•π‘¦ 3π‘₯2𝑦 βˆ’ 𝑦3𝑧2 + π‘˜

πœ•

πœ•π‘§ 3π‘₯2𝑦 βˆ’ 𝑦3𝑧2

= 𝑖 6π‘₯𝑦 + 𝑗 3π‘₯2 βˆ’ 3𝑦2𝑧2 + π‘˜ βˆ’2𝑦3𝑧

At (1, -2, -1), π‘”π‘Ÿπ‘Žπ‘‘ βˆ… = 𝑖 6 1 βˆ’2 + 𝑗 3 1 2 βˆ’ 3 βˆ’2 2 βˆ’1 2 + π‘˜ βˆ’2 βˆ’2 3 βˆ’1

= βˆ’12𝑖 βˆ’ 9𝑗 βˆ’ 16π‘˜

Example 17: Prove that 𝛁 𝒓𝒏 = 𝒏 π’“π’βˆ’πŸ 𝒓 , where 𝒓 = π’™π’Š + π’šπ’‹ + π’›π’Œ .

Solution: Here π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ and π‘Ÿ2 = π‘₯2 + 𝑦2 + 𝑧2

So differentiating partially w. r. t. x, πœ•π‘Ÿ

πœ•π‘₯=

π‘₯

π‘Ÿ, Similarly,

πœ•π‘Ÿ

πœ•π‘¦=

𝑦

π‘Ÿ and

πœ•π‘Ÿ

πœ•π‘§=

𝑧

π‘Ÿ … (1)

Page 19: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

19

Consider βˆ‡ π‘Ÿπ‘› = 𝑖 πœ•

πœ•π‘₯ π‘Ÿπ‘› + 𝑗

πœ•

πœ•π‘¦ π‘Ÿπ‘› + π‘˜

πœ•

πœ•π‘§ π‘Ÿπ‘›

= 𝑖 𝑛 π‘Ÿπ‘›βˆ’1 πœ•π‘Ÿ

πœ•π‘₯ + 𝑗 𝑛 π‘Ÿπ‘›βˆ’1 πœ•π‘Ÿ

πœ•π‘¦ + π‘˜ 𝑛 π‘Ÿπ‘›βˆ’1 πœ•π‘Ÿ

πœ•π‘§

= 𝑖 𝑛 π‘Ÿπ‘›βˆ’1 π‘₯

π‘Ÿ + 𝑗 𝑛 π‘Ÿπ‘›βˆ’1 𝑦

π‘Ÿ + π‘˜ 𝑛 π‘Ÿπ‘›βˆ’1 𝑧

π‘Ÿ

= 𝑖 𝑛 π‘Ÿπ‘›βˆ’2 π‘₯ + 𝑗 𝑛 π‘Ÿπ‘›βˆ’2 𝑦 + π‘˜ 𝑛 π‘Ÿπ‘›βˆ’2 𝑧

= 𝑛 π‘Ÿπ‘›βˆ’2 π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ = 𝑛 π‘Ÿπ‘›βˆ’2 π‘Ÿ

Hence βˆ‡ π‘Ÿπ‘› = 𝑛 π‘Ÿπ‘›βˆ’2 π‘Ÿ

Example 18: Find the unit vector normal to the surface π’™πŸ‘ + π’šπŸ‘ + πŸ‘π’™π’šπ’› = πŸ‘ at

(i) the point (1, 2, -1) * (ii) the point (1, 3, -1)** [KUK *2006, **2011]

Solution: We know that a vector normal to a surface is given by its gradient, so if 𝑛 is the vector

normal to the given surface then

𝑛 = βˆ‡ π‘₯3 + 𝑦3 + 3π‘₯𝑦𝑧 βˆ’ 3 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ π‘₯3 + 𝑦3 + 3π‘₯𝑦𝑧 βˆ’ 3

= 3π‘₯2 + 3𝑦𝑧 𝑖 + 3𝑦2 + 3π‘₯𝑧 𝑗 + 3π‘₯𝑦 π‘˜

(i) At point (1, 2, -1), 𝑛 = 3 1 2 + 3 2 βˆ’1 𝑖 + 3 2 2 + 3 1 βˆ’1 𝑗 + 3 1 2 π‘˜

= βˆ’πŸ‘π‘– + 9𝑗 + 6π‘˜

Also 𝑛 = βˆ’3 2 + 9 2 + 6 2 = 126

Therefore the unit normal vector to the given surface at a point (1, 2, -1) is

𝑛 =1

126 βˆ’πŸ‘π‘– + 9𝑗 + 6π‘˜ .

(ii) At point (1, 3, -1), 𝑛 = 3 1 2 + 3 3 βˆ’1 𝑖 + 3 3 2 + 3 1 βˆ’1 𝑗 + 3 1 3 π‘˜

= βˆ’6𝑖 + 24𝑗 + 9π‘˜

Also 𝑛 = βˆ’6 2 + 24 2 + 9 2 = 693

Therefore the unit normal vector to the given surface at a point (1, 3, -1) is

𝑛 =1

693 – 6 𝑖 + 24 𝑗 + 9 π‘˜ .

Example 19: Show that π’ˆπ’“π’‚π’… 𝒆(π’™πŸ+π’šπŸ+π’›πŸ) = πŸπ’†π’“πŸ, 𝐰𝐑𝐞𝐫𝐞 π’“πŸ = 𝒓 𝟐 = π’™πŸ + π’šπŸ + π’›πŸ.

Solution: Here π‘Ÿ2 = π‘₯2 + 𝑦2 + 𝑧2

So differentiating w. r. t. x, πœ•π‘Ÿ

πœ•π‘₯=

π‘₯

π‘Ÿ, Similarly,

πœ•π‘Ÿ

πœ•π‘¦=

𝑦

π‘Ÿ and

πœ•π‘Ÿ

πœ•π‘§=

𝑧

π‘Ÿ.

Now π‘”π‘Ÿπ‘Žπ‘‘ 𝑒 π‘₯2+𝑦2+𝑧2 = βˆ‡ π‘’π‘Ÿ2= 𝑖

πœ•

πœ•π‘₯ π‘’π‘Ÿ2

+ 𝑗 πœ•

πœ•π‘¦ π‘’π‘Ÿ2

+ π‘˜ πœ•

πœ•π‘§ π‘’π‘Ÿ2

= 𝑖 π‘’π‘Ÿ2 2π‘Ÿ

πœ•π‘Ÿ

πœ•π‘₯ + 𝑗 π‘’π‘Ÿ2

2π‘Ÿπœ•π‘Ÿ

πœ•π‘¦ + π‘˜ π‘’π‘Ÿ2

2π‘Ÿπœ•π‘Ÿ

πœ•π‘§

Page 20: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

20

= π‘’π‘Ÿ2 2π‘Ÿ 𝑖

πœ•π‘Ÿ

πœ•π‘₯+ 𝑗

πœ•π‘Ÿ

πœ•π‘¦+ π‘˜

πœ•π‘Ÿ

πœ•π‘§ = π‘’π‘Ÿ2

2π‘Ÿ 𝑖 π‘₯

π‘Ÿ+ 𝑗

𝑦

π‘Ÿ+ π‘˜

𝑧

π‘Ÿ

= 2π‘’π‘Ÿ2π‘Ÿ

Example 20: If 𝒖 = 𝒙 + π’š + 𝒛, 𝒗 = π’™πŸ + π’šπŸ + π’›πŸ 𝐚𝐧𝐝 π’˜ = π’šπ’› + 𝒛𝒙 + π’™π’š , then show that

π’ˆπ’“π’‚π’… 𝒖, π’ˆπ’“π’‚π’… 𝒗 𝐚𝐧𝐝 π’ˆπ’“π’‚π’… π’˜ are coplanar.

Solution: Consider π‘”π‘Ÿπ‘Žπ‘‘ 𝑒 = 𝑖 πœ•π‘’

πœ•π‘₯+ 𝑗

πœ•π‘’

πœ•π‘¦+ π‘˜

πœ•π‘’

πœ•π‘§ = 𝑖 1 + 𝑗 1 + π‘˜ 1 = 𝑖 + 𝑗 + π‘˜

π‘”π‘Ÿπ‘Žπ‘‘ 𝑣 = 𝑖 πœ•π‘£

πœ•π‘₯+ 𝑗

πœ•π‘£

πœ•π‘¦+ π‘˜

πœ•π‘£

πœ•π‘§= 𝑖 2π‘₯ + 𝑗 2𝑦 + π‘˜ 2𝑧 = 2π‘₯ 𝑖 + 2𝑦 𝑗 + 2𝑧 π‘˜

π‘”π‘Ÿπ‘Žπ‘‘ 𝑀 = 𝑖 πœ•π‘€

πœ•π‘₯+ 𝑗

πœ•π‘€

πœ•π‘¦+ π‘˜

πœ•π‘€

πœ•π‘§= 𝑦 + 𝑧 𝑖 + 𝑧 + π‘₯ 𝑗 + π‘₯ + 𝑦 π‘˜

We know that three vectors π‘Ž , 𝑏 π‘Žπ‘›π‘‘ 𝑐 are coplanar if their scalar triple product is zero i.e.

π‘Ž 𝑏 𝑐 = 0

Consider π‘”π‘Ÿπ‘Žπ‘‘ 𝑒 π‘”π‘Ÿπ‘Žπ‘‘ 𝑣 π‘”π‘Ÿπ‘Žπ‘‘ 𝑀 = 1 1 1

2π‘₯ 2𝑦 2𝑧𝑦 + 𝑧 𝑧 + π‘₯ π‘₯ + 𝑦

= 2 1 1 1π‘₯ 𝑦 𝑧

𝑦 + 𝑧 𝑧 + π‘₯ π‘₯ + 𝑦 (taking common 2 from R2)

= 2 1 1 1

π‘₯ + 𝑦 + 𝑧 π‘₯ + 𝑦 + 𝑧 π‘₯ + 𝑦 + 𝑧𝑦 + 𝑧 𝑧 + π‘₯ π‘₯ + 𝑦

(adding R2 and R3)

= 2(π‘₯ + 𝑦 + 𝑧) 1 1 11 1 1

𝑦 + 𝑧 𝑧 + π‘₯ π‘₯ + 𝑦

(taking common (x + y + z) from R2)

= 2 π‘₯ + 𝑦 + 𝑧 0 = 0

Hence π‘”π‘Ÿπ‘Žπ‘‘ 𝑒, π‘”π‘Ÿπ‘Žπ‘‘ 𝑣 and π‘”π‘Ÿπ‘Žπ‘‘ 𝑀 are coplanar.

Example 21: Show that π’ˆπ’“π’‚π’… 𝒇 𝒓 Γ— 𝒓 = 𝟎 .

Solution: Here π‘”π‘Ÿπ‘Žπ‘‘ 𝑓 π‘Ÿ = βˆ‡ 𝑓(π‘Ÿ) = 𝑖 πœ•

πœ•π‘₯ 𝑓(π‘Ÿ) + 𝑗

πœ•

πœ•π‘¦ 𝑓(π‘Ÿ) + π‘˜

πœ•

πœ•π‘§ 𝑓(π‘Ÿ)

= 𝑖 𝑓 β€²(π‘Ÿ) πœ•π‘Ÿ

πœ•π‘₯ + 𝑗 𝑓 β€²(π‘Ÿ)

πœ•π‘Ÿ

πœ•π‘¦ + π‘˜ 𝑓 β€²(π‘Ÿ)

πœ•π‘Ÿ

πœ•π‘§

= 𝑓 β€²(π‘Ÿ) 𝑖 πœ•π‘Ÿ

πœ•π‘₯+ 𝑗

πœ•π‘Ÿ

πœ•π‘¦+ π‘˜

πœ•π‘Ÿ

πœ•π‘§ = 𝑓 β€²(π‘Ÿ) 𝑖

π‘₯

π‘Ÿ+ 𝑗

𝑦

π‘Ÿ+ π‘˜

𝑧

π‘Ÿ

= 𝑓 β€²(π‘Ÿ) π‘Ÿ

π‘Ÿ

Page 21: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

21

Now π‘”π‘Ÿπ‘Žπ‘‘ 𝑓 π‘Ÿ Γ— π‘Ÿ = 𝑓 β€²(π‘Ÿ) π‘Ÿ

π‘ŸΓ— π‘Ÿ = 𝑓 β€²(π‘Ÿ)

1

π‘Ÿ π‘Ÿ Γ— π‘Ÿ = 0

𝑠𝑖𝑛𝑐𝑒 π‘Ÿ Γ— π‘Ÿ = 0

Example 22: Find the directional derivative of 𝒇 𝒙, π’š, 𝒛 = π’™πŸπ’šπŸπ’›πŸ at the point (1, 1, -1) in the

direction of the tangent to the curve 𝒙 = 𝒆𝒕, π’š = 𝟐 π’”π’Šπ’ 𝒕 + 𝟏, 𝒛 = 𝒕 βˆ’ 𝒄𝒐𝒔 𝒕 at t = 0.

Solution: Consider βˆ‡ 𝑓 π‘₯, 𝑦, 𝑧 = βˆ‡ π‘₯2𝑦2𝑧2 = 2π‘₯𝑦2𝑧2 𝑖 + 2𝑦π‘₯2𝑧2 𝑗 + 2𝑧π‘₯2𝑦2 π‘˜

At (1, 1, -1), βˆ‡ 𝑓 π‘₯, 𝑦, 𝑧 = 2 𝑖 + 2 𝑗 βˆ’ 2 π‘˜

Now π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ = 𝑒𝑑 𝑖 + 2 sin 𝑑 + 1 𝑗 + (𝑑 βˆ’ cos 𝑑)π‘˜

So tangent to the curve is π‘‘π‘Ÿ

𝑑𝑑 = 𝑒𝑑 𝑖 + 2 cos 𝑑 𝑗 + (1 + sin 𝑑)π‘˜

At t = 0, π‘‘π‘Ÿ

𝑑𝑑 = 𝑖 + 2𝑗 + π‘˜

And the unit tangent vector is π‘‘π‘Ÿ

𝑑𝑑/

π‘‘π‘Ÿ

𝑑𝑑 =

𝑖 +2𝑗 +π‘˜

6

So the required directional derivative in the direction of the tangent is βˆ‡π‘“ π‘₯, 𝑦, 𝑧 βˆ™ π‘‘π‘Ÿ

𝑑𝑑/

π‘‘π‘Ÿ

𝑑𝑑

= 2 𝑖 + 2 𝑗 βˆ’ 2 π‘˜ βˆ™ 𝑖 + 2𝑗 + π‘˜ / 6 =4

6=

2 3

3

Example 23: If the directional derivative βˆ… = 𝒂 π’™πŸπ’š + 𝒃 π’šπŸπ’› + 𝒄 π’›πŸπ’™ at the point (1, 1, 1) has

maximum magnitude 15 in the direction parallel to the line π’™βˆ’πŸ

𝟐=

π’šβˆ’πŸ‘

βˆ’πŸ=

𝒛

𝟏 , find the values of

a, b and c. [Madrass 2004]

Solution: Consider βˆ‡ βˆ… = βˆ‡ (π‘Ž π‘₯2𝑦 + 𝑏 𝑦2𝑧 + 𝑐 𝑧2π‘₯)

= 2π‘Ž π‘₯𝑦 + 𝑐 𝑧2 𝑖 + π‘Ž π‘₯2 + 2𝑏 𝑦𝑧 𝑗 + (𝑏 𝑦2 + 2𝑐 𝑧π‘₯)π‘˜

At (1, 1, 1), βˆ‡ βˆ… = 2π‘Ž + 𝑐 𝑖 + π‘Ž + 2𝑏 𝑗 + (𝑏 + 2𝑐)π‘˜

We know that directional derivative of βˆ… is maximum in the direction of its normal vector βˆ‡ βˆ…, but it

is given to be maximum in the direction of the line π‘₯βˆ’1

2=

π‘¦βˆ’3

βˆ’2=

𝑧

1 .

Therefore, the line and normal vector are parallel to each other, which results as:

2π‘Ž+𝑐

2=

π‘Ž+2𝑏

βˆ’2=

𝑏+2𝑐

1 … (1)

Taking first two members of (1), 3π‘Ž + 2𝑏 + 𝑐 = 0

and by last two members of (1), π‘Ž + 4𝑏 + 4𝑐 = 0

Solving the two obtained equations, π‘Ž

4=

𝑏

βˆ’11=

𝑐

10 = πœ† 𝐿𝑒𝑑

=> π‘Ž = 4πœ†, 𝑏 = βˆ’11πœ† π‘Žπ‘›π‘‘ 𝑐 = 10πœ† … (2)

Also given that maximum magnitude of directional derivative is 15 units i.e. βˆ‡βˆ… = 15

So , 2π‘Ž + 𝑐 2 + π‘Ž + 2𝑏 2 + 𝑏 + 2𝑐 2 = 15 2 …(3)

Putting the values of a, b and c from (2),

Page 22: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

22

8πœ† + 10πœ† 2 + 4πœ† βˆ’ 22πœ† 2 + βˆ’11πœ† + 20πœ† 2 = 15 2 => πœ† = Β± 5

9

Hence π‘Ž = Β± 20

9 , 𝑏 = βˆ“

55

9 , 𝑐 = Β±

50

9.

Example 24: In what direction from (3, 1, -2) is the directional derivative of βˆ… = π’™πŸπ’šπŸπ’›πŸ’

maximum? Find also the magnitude of this maximum. [KUK 2010, 2007, 2006]

Solution: The vector normal to the given surface is

𝑛 = βˆ‡ βˆ… = βˆ‡ π‘₯2𝑦2𝑧4 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ π‘₯2𝑦2𝑧4

= 2π‘₯𝑦2𝑧4 𝑖 + 2π‘₯2𝑦𝑧4 𝑗 + 4π‘₯2𝑦2𝑧3 π‘˜

At point (3, 1, -2) 𝑛 = 2 3 1 2 βˆ’2 4 𝑖 + 2 3 2 1 βˆ’2 4 𝑗 + 4 3 2 1 2 βˆ’2 3 π‘˜

= 96 𝑖 + 288 𝑗 βˆ’ 288 π‘˜

Also 𝑛 = 96 2 + 288 2 + βˆ’288 2 = 96 19

So the directional derivative of given surface will be maximum in the direction of

96 𝑖 + 288 𝑗 βˆ’ 288 π‘˜ and the magnitude of this maximum is 96 19.

Example 25: Find the angle between the surfaces π’™πŸ + π’šπŸ + π’›πŸ = πŸ— and 𝒛 = π’™πŸ + π’šπŸ βˆ’ πŸ‘ at

(2, -1, 2). [KUK 2008]

Solution: Given surfaces are

βˆ…1 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 9 = 0 … (1)

and βˆ…2 = π‘₯2 + 𝑦2 βˆ’ 𝑧 βˆ’ 3 = 0 … (2)

We know that gradient of a surface gives the vector normal to the surface. Let 𝑛 1 and 𝑛 2 are the

vectors normal to the surfaces (1) and (2) respectively.

Now βˆ‡βˆ…1 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ π‘₯2 + 𝑦2 + 𝑧2 = 9 = 2π‘₯ 𝑖 + 2𝑦 𝑗 + 2𝑧 π‘˜ … (3)

βˆ‡βˆ…2 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ π‘₯2 + 𝑦2 βˆ’ 𝑧 βˆ’ 3 = 2π‘₯ 𝑖 + 2𝑦 𝑗 βˆ’ π‘˜ … (4)

So, 𝑛 1 = βˆ‡βˆ…1 at (2,βˆ’1,2) = 4 𝑖 βˆ’ 2 𝑗 + 4 π‘˜ and 𝑛 2 = βˆ‡βˆ…2 at (2,βˆ’1,2) = 4 𝑖 βˆ’ 2 𝑗 βˆ’ π‘˜

Let πœƒ be the angle between the given surfaces at point (2, -1, 2), then πœƒ will also be an angle between

their normals 𝑛 1 and 𝑛 2.

Therefore, cos πœƒ = 𝑛 1βˆ™π‘› 2

𝑛 1 𝑛 2 =

4 𝑖 βˆ’2 𝑗 +4 π‘˜ βˆ™ 4 𝑖 βˆ’2 𝑗 βˆ’ π‘˜

4 𝑖 βˆ’2 𝑗 +4 π‘˜ 4 𝑖 βˆ’2 𝑗 βˆ’ π‘˜ =

16+4βˆ’4

36 21=

8

3 21.

Example 26: Find the constants a and b so that the surface π’‚π’™πŸ βˆ’ π’ƒπ’šπ’› = 𝒂 + 𝟐 𝒙 is orthogonal

to the surface πŸ’π’™πŸπ’š + π’›πŸ‘ = πŸ’ at the point (1, -1, 2).

Solution: Given surfaces are

𝑓 = π‘Žπ‘₯2 βˆ’ 𝑏𝑦𝑧 βˆ’ π‘Ž + 2 π‘₯ = 0 … (1)

and 𝑔 = 4π‘₯2𝑦 + 𝑧3 βˆ’ 4 = 0 …(2)

Page 23: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

23

Let 𝑛1 and 𝑛2 are the vectors normal to the surfaces (1) and (2) at (1, -1, 2), respectively.

Consider βˆ‡π‘“ = 𝑖 πœ•π‘“

πœ•π‘₯+ 𝑗

πœ•π‘“

πœ•π‘¦+ π‘˜

πœ•π‘“

πœ•π‘§ = 𝑖 2π‘Žπ‘₯ βˆ’ π‘Ž + 2 + 𝑗 (βˆ’π‘π‘§) + π‘˜ (βˆ’π‘π‘¦) … (3)

And βˆ‡π‘” = 𝑖 πœ•π‘”

πœ•π‘₯+ 𝑗

πœ•π‘”

πœ•π‘¦+ π‘˜

πœ•π‘”

πœ•π‘§ = 𝑖 8π‘₯𝑦 + 𝑗 (4π‘₯2) + π‘˜ (3𝑧2) … (4)

So, 𝑛1 = βˆ‡π‘“ (1, βˆ’1, 2) = 𝑖 π‘Ž βˆ’ 2 + 𝑗 βˆ’2𝑏 + π‘˜ 𝑏 = π‘Ž βˆ’ 2 𝑖 βˆ’ 2𝑏𝑗 + π‘π‘˜

𝑛2 = βˆ‡π‘” (1, βˆ’1, 2) = 𝑖 βˆ’8 + 𝑗 4 + π‘˜ 12 = βˆ’8𝑖 + 4𝑗 + 12π‘˜

Given that surfaces (1) and (2) cut orthogonally at (1, -1, 2), so their normal vectors i.e. 𝑛1 and 𝑛2

should also be orthogonal to each other.

Therefore, 𝑛1 . 𝑛2 = 0

=> π‘Ž βˆ’ 2 𝑖 βˆ’ 2𝑏𝑗 + π‘π‘˜ . βˆ’8𝑖 + 4𝑗 + 12π‘˜ = 0

=> βˆ’8 π‘Ž βˆ’ 2 βˆ’ 8𝑏 + 12𝑏 = 0

=> 2π‘Ž βˆ’ 𝑏 = 4 … (5)

Also the point (1, -2, 1) lies on the surface (1), so we have

π‘Ž + 2𝑏 βˆ’ π‘Ž + 2 = 0 π‘œπ‘Ÿ 2𝑏 βˆ’ 2 = 0 π‘œπ‘Ÿ 𝒃 = 𝟏

Putting value of b in (3), we get 2π‘Ž βˆ’ 1 = 4 π‘œπ‘Ÿ 𝒂 =πŸ“

𝟐

Example 27: Show that the components of a vector 𝒓 along and normal (perpendicular) to a

vector 𝒂 , in the plane of 𝒓 and 𝒂 , are 𝒓 βˆ™π’‚

𝒂 𝟐 𝒂 and

𝐚 Γ— 𝒓 ×𝒂

𝒂 𝟐.

Solution: Let 𝑂𝐴 = π‘Ž and 𝑂𝐡 = π‘Ÿ and 𝑂𝑀 be the projection

of π‘Ÿ on π‘Ž (Fig. 17.8)

∴ Component of π‘Ÿ along π‘Ž = OM (unit vector along π‘Ž )

= π‘Ÿ βˆ™ π‘Ž π‘Ž = π‘Ÿ βˆ™π‘Ž

π‘Ž

π‘Ž

π‘Ž =

π‘Ÿ βˆ™π‘Ž

π‘Ž 2 π‘Ž

Also the component of π‘Ÿ normal to π‘Ž = 𝑀𝐡 = 𝑂𝐡 βˆ’ 𝑂𝑀

= π‘Ÿ βˆ’ π‘Ÿ βˆ™π‘Ž

π‘Ž 2 π‘Ž =

π‘Ž βˆ™π‘Ž π‘Ÿ βˆ’ π‘Ÿ βˆ™π‘Ž π‘Ž

π‘Ž 2=

a Γ— π‘Ÿ Γ—π‘Ž

π‘Ž 2

Example 28: If f and 𝑭 are point functions, prove that the components of the latter normal and

tangential to the surface f = 0 are 𝑭 βˆ™π›π’‡ 𝛁𝒇

𝛁𝒇 𝟐 and

𝛁𝒇× 𝑭 ×𝛁𝒇

𝛁𝒇 𝟐.

Solution: We know that for the given surface f = 0, the vector normal to the surface is given by the

gradient i.e. βˆ‡π‘“.

Now the component of 𝐹 normal to the given surface is = 𝐹 βˆ™ βˆ‡π‘“

βˆ‡π‘“

βˆ‡π‘“

βˆ‡π‘“ =

𝐹 βˆ™βˆ‡π‘“ βˆ‡π‘“

βˆ‡π‘“ 2=

𝐹 βˆ™βˆ‡π‘“ βˆ‡π‘“

βˆ‡π‘“ 2

And the component of 𝐹 tangential to the given surface is = 𝐹 βˆ’ 𝑑𝑕𝑒 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘π‘œπ‘šπ‘π‘œπ‘›π‘’π‘›π‘‘ π‘œπ‘“ 𝐹

Page 24: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

24

= 𝐹 βˆ’ 𝐹 βˆ™βˆ‡π‘“ βˆ‡π‘“

βˆ‡π‘“ 2=

𝐹 βˆ‡π‘“ 2βˆ’ 𝐹 βˆ™βˆ‡π‘“ βˆ‡π‘“

βˆ‡π‘“ 2=

𝐹 βˆ‡π‘“βˆ™βˆ‡π‘“ βˆ’ 𝐹 βˆ™βˆ‡π‘“ βˆ‡π‘“

βˆ‡π‘“ 2=

βˆ‡π‘“Γ— 𝐹 Γ—βˆ‡π‘“

βˆ‡π‘“ 2

ASSIGNMENT 3

1. Find βˆ‡βˆ…, if βˆ… = log π‘₯2 + 𝑦2 + 𝑧2 .

2. Show that 1

π‘Ÿ= βˆ’

π‘Ÿ

π‘Ÿ3.

3. What is the directional derivative of βˆ… = π‘₯𝑦2 + 𝑦𝑧3 at the point (2, -1, 1) in the direction of the

normal to the surface π‘₯ log 𝑧 βˆ’ 𝑦2 = βˆ’4 at (-1, 2, 1)? [JNTU 2005; VTU 2004]

4. What is the directional derivative of βˆ… = π‘₯2𝑦𝑧 + 4π‘₯𝑧2at the point (1, -2, 1) in the direction of the

vector 2𝑖 βˆ’ 𝑗 βˆ’ 2π‘˜ . [VTU 2007; UP Tech, JNTU 2006]

5. The temperature of points in a space is given by 𝑇 π‘₯, 𝑦, 𝑧 = π‘₯2 + 𝑦2 βˆ’ 𝑧. A mosquito located at

(1, 1, 2) desires to fly in such a direction that it will get warm as soon as possible. In what

direction should it move?

6. What is the greatest rate of increase of 𝑒 = π‘₯2 + 𝑦𝑧2 at the point (1, -1, 3)?

7. Find the angle between the tangent planes to the surfaces π‘₯ log 𝑧 = 𝑦2 βˆ’ 1 and π‘₯2𝑦 = 2 βˆ’ 𝑧 at the

point (1, 1, 1). [JNTU 2003]

8. Calculate the angle between the normals to the surface π‘₯𝑦 = 𝑧2 at the points (4, 1, 2) and

(3, 3, -3).

9. Find the angle between the surfaces π‘₯2 + 𝑦2 + 𝑧2 = 9 and 𝑧 = π‘₯2 + 𝑦2 βˆ’ 3 at (2, -1, 2).

10. Find the values of πœ† and πœ‡ so that the surface πœ†π‘₯2𝑦 + πœ‡π‘§3 = 4 may cut the surface

5π‘₯2 = 2𝑦𝑧 + 9π‘₯ orthogonally at (1, -1, 2)

17.6 DEL APPLIED TO VECTOR POINT FUNCTIONS (Divergence & Curl)

1. Divergence: Let 𝑓 (π‘₯, 𝑦, 𝑧) = 𝑓1(π‘₯, 𝑦, 𝑧)𝑖 + 𝑓2(π‘₯, 𝑦, 𝑧)𝑗 + 𝑓3(π‘₯, 𝑦, 𝑧)π‘˜ be a continuously differentiable

vector point function. Divergence 𝑓 (π‘₯, 𝑦, 𝑧) of is a scalar which is denoted by βˆ‡ βˆ™ 𝑓 and is defined as

βˆ‡ βˆ™ 𝑓 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3π‘˜ =

πœ•π‘“1

πœ•π‘₯+

πœ•π‘“2

πœ•π‘¦+

πœ•π‘“3

πœ•π‘§.

t is also denoted by 𝑑𝑖𝑣 𝑓 .

Physical interpretation of Divergence

Consider the case of fluid flow.

Let 𝑣 = 𝑣π‘₯ 𝑖 + 𝑣𝑦 𝑗 + π‘£π‘§π‘˜ be the velocity of the fluid at a

point 𝑃(π‘₯, 𝑦, 𝑧) . Consider a small parallelopiped with

edges 𝛿π‘₯, 𝛿𝑦 and 𝛿𝑧 parallel to the x, y and z axis

Page 25: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

25

respectively in the mass of fluid, with one of its corner at point 𝑃.

So, the mass of fluid flowing in through the face 𝑃𝑄𝑅𝑆 per unit time = 𝑣𝑦 𝛿𝑧 𝛿π‘₯

and the mass of fluid flowing out of the face 𝑃′𝑄′𝑅′𝑆′ per unit time

= 𝑣𝑦+𝛿𝑦 𝛿𝑧 𝛿π‘₯ = 𝑣𝑦 +πœ•π‘£π‘¦

πœ•π‘¦ 𝛿𝑦 𝛿𝑧 𝛿π‘₯

∴ The net decrease in fluid mass in the parallelopiped corresponding to flow along y-axis

= 𝑣𝑦 +πœ•π‘£π‘¦

πœ•π‘¦ 𝛿𝑦 𝛿𝑧 𝛿π‘₯ βˆ’ 𝑣𝑦 𝛿𝑧 𝛿π‘₯ =

πœ•π‘£π‘¦

πœ•π‘¦ 𝛿π‘₯ 𝛿𝑦 𝛿𝑧

Similarly, the net decrease in fluid mass in the parallelopiped corresponding to the flow along x-axis

and z-axis is πœ•π‘£π‘₯

πœ•π‘₯ 𝛿π‘₯ 𝛿𝑦 𝛿𝑧 and

πœ•π‘£π‘§

πœ•π‘§ 𝛿π‘₯ 𝛿𝑦 𝛿𝑧 respectively.

So, total decrease in mass of fluid mass in the parallelopiped per unit time

= πœ•π‘£π‘₯

πœ•π‘₯+

πœ•π‘£π‘¦

πœ•π‘¦+

πœ•π‘£π‘§

πœ•π‘§ 𝛿π‘₯ 𝛿𝑦 𝛿𝑧

Thus, the rate of loss of fluid per unit volume =πœ•π‘£π‘₯

πœ•π‘₯+

πœ•π‘£π‘¦

πœ•π‘¦+

πœ•π‘£π‘§

πœ•π‘§

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ 𝑣π‘₯ 𝑖 + 𝑣𝑦 𝑗 + π‘£π‘§π‘˜

= βˆ‡ βˆ™ 𝑣 = 𝑑𝑖𝑣 𝑣

Hence, 𝑑𝑖𝑣 𝑣 gives the rate at which fluid is originating or diminishing at a point per unit volume.

If the fluid is incompressible, there can be no loss or gain in the volume element i.e. 𝑑𝑖𝑣 𝑣 = 0.

Observations:

(i) if 𝑣 represent the electric flux, then 𝑑𝑖𝑣 𝑣 is the amount of flux which diverges per unit volume in unit

time.

(ii) if 𝑣 represent the heat flux, then 𝑑𝑖𝑣 𝑣 is the rate at which the heat is issuing from a point per unit

volume.

(iii) If the flux entering any element of space is the same as that leaving it i.e.𝑑𝑖𝑣 𝑣 = 0 everywhere, then

such a vector point function is called Solenoidal.

Example 29: If 𝒓 = π’™π’Š + π’šπ’‹ + π’›π’Œ then show that π’…π’Šπ’— 𝒓 = πŸ‘.

Solution: 𝑑𝑖𝑣 π‘Ÿ = βˆ‡ βˆ™ π‘Ÿ = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜

=πœ•

πœ•π‘₯ π‘₯ +

πœ•

πœ•π‘¦ 𝑦 +

πœ•

πœ•π‘§ 𝑧 = 1 + 1 + 1 = 3

Example 30: Evaluate π’…π’Šπ’— 𝒇 where 𝒇 = πŸπ’™πŸπ’› π’Š βˆ’ π’™π’šπŸπ’› 𝒋 + πŸ‘π’šπŸπ’™ π’Œ at (1, 1, 1).

Solution: 𝑑𝑖𝑣 𝑓 = 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ βˆ™ 2π‘₯2𝑧 𝑖 βˆ’ π‘₯𝑦2𝑧 𝑗 + 3𝑦2π‘₯ π‘˜

Page 26: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

26

=πœ•

πœ•π‘₯ 2π‘₯2𝑧 +

πœ•

πœ•π‘¦ βˆ’π‘₯𝑦2𝑧 +

πœ•

πœ•π‘§ 3𝑦2π‘₯

= 4π‘₯𝑧 βˆ’ 2π‘₯𝑦𝑧 + 0

At (1, 1, 1), 𝑑𝑖𝑣 𝑓 = 4 1 1 βˆ’ 2 1 1 1 = 2

Example 31: Determine the constant a so that the vector 𝒇 = 𝒙 + πŸ‘π’š π’Š + π’š βˆ’ πŸπ’› 𝒋 + (𝒙 + 𝒂𝒛) π’Œ

is solenoidal.

Solution: Given that the vector 𝑓 is solenoidal, so 𝑑𝑖𝑣 𝑓 = 0

𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ π‘₯ + 3𝑦 𝑖 + 𝑦 βˆ’ 2𝑧 𝑗 + (π‘₯ + π‘Žπ‘§) π‘˜ = 0

πœ•

πœ•π‘₯ π‘₯ + 3𝑦 +

πœ•

πœ•π‘¦ 𝑦 βˆ’ 2𝑧 +

πœ•

πœ•π‘§ π‘₯ + π‘Žπ‘§ = 0

1 + 1 + π‘Ž = 0 => π‘Ž = βˆ’2

2. Curl: Let 𝑓 (π‘₯, 𝑦, 𝑧) = 𝑓1(π‘₯, 𝑦, 𝑧)𝑖 + 𝑓2(π‘₯, 𝑦, 𝑧)𝑗 + 𝑓3(π‘₯, 𝑦, 𝑧)π‘˜ be a continuously differentiable vector

point function. Curl of 𝑓 (π‘₯, 𝑦, 𝑧) of is a vector which is denoted by βˆ‡ Γ— 𝑓 and is defined as

βˆ‡ Γ— 𝑓 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ Γ— 𝑓 = 𝑖 Γ—

πœ•π‘“

πœ•π‘₯ +𝑗 Γ—

πœ•π‘“

πœ•π‘¦ +π‘˜ Γ—

πœ•π‘“

πœ•π‘§

Also in component form, curl of 𝑓 (π‘₯, 𝑦, 𝑧) is

βˆ‡ Γ— 𝑓 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ Γ— 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3π‘˜

=

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑓1 𝑓2 𝑓3

= 𝑖 πœ•π‘“3

πœ•π‘¦βˆ’

πœ•π‘“2

πœ•π‘§ + 𝑗

πœ•π‘“1

πœ•π‘§βˆ’

πœ•π‘“3

πœ•π‘₯ + π‘˜

πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦

Physical Interpretation of Curl

Consider the motion of a rigid body rotating with

angular velocity πœ” about an axis OA, where O is a

fixed point in the body. Let π‘Ÿ be the position vector of

any point P of the body. The point P describing a circle

whose center is M and radius is PM = π‘Ÿ sin πœƒ where πœƒ is

the angle between πœ” and π‘Ÿ , then the velocity of P is

πœ”π‘Ÿ sin πœƒ. This velocity is normal to the plane POM i.e.

normal to the plane of πœ” and π‘Ÿ .

So, if 𝑣 is the linear velocity of P, then 𝑣 =

πœ” π‘Ÿ sin πœƒ 𝑛 = πœ” Γ— π‘Ÿ

Page 27: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

27

(𝑛 𝑏𝑒𝑖𝑛𝑔 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘‘π‘œ πœ” π‘Žπ‘›π‘‘ π‘Ÿ )

Now, if πœ” = πœ”1 𝑖 + πœ”2 𝑗 + πœ”3π‘˜ and π‘Ÿ = π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ , then

πΆπ‘’π‘Ÿπ‘™ 𝑣 = πœ” Γ— π‘Ÿ = 𝑖 𝑗 π‘˜

πœ”1 πœ”2 πœ”3

π‘₯ 𝑦 𝑧 = 𝑖 πœ”2𝑧 βˆ’ πœ”3𝑦 + 𝑗 πœ”3π‘₯ βˆ’ πœ”1𝑧 + π‘˜ πœ”1𝑦 βˆ’ πœ”2π‘₯

And

πΆπ‘’π‘Ÿπ‘™ 𝑣 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

πœ”2𝑧 βˆ’ πœ”3𝑦 πœ”3π‘₯ βˆ’ πœ”1𝑧 πœ”1𝑦 βˆ’ πœ”2π‘₯

= 𝑖 πœ”1 + πœ”1 + 𝑗 πœ”2 + πœ”2 + π‘˜ πœ”3 + πœ”3

= 2πœ”1 𝑖 + 2πœ”2 𝑗 + 2πœ”3 π‘˜ = 2 πœ”

Hence πœ” =1

2πΆπ‘’π‘Ÿπ‘™ 𝑣

Thus the angular velocity of rotation at any point is equal to half the curl of the velocity vector.

Observations:

(i) The curl of a vector point function gives the measure of the angular velocity at a point.

(ii) If the curl of a vector point function becomes zero i.e. βˆ‡ Γ— 𝑓 = 0, then 𝑓 is called an irrotational

vector.

Example 32: If 𝒓 = π’™π’Š + π’šπ’‹ + π’›π’Œ then show that 𝒄𝒖𝒓𝒍 𝒓 = 𝟎 .

Solution: π‘π‘’π‘Ÿπ‘™ π‘Ÿ = βˆ‡ Γ— π‘Ÿ =

𝑖 𝑗 π‘˜ πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

π‘₯ 𝑦 𝑧

= 𝑖 πœ•π‘§

πœ•π‘¦βˆ’

πœ•π‘¦

πœ•π‘§ + 𝑗

πœ•π‘₯

πœ•π‘§βˆ’

πœ•π‘§

πœ•π‘₯ + π‘˜

πœ•π‘¦

πœ•π‘₯βˆ’

πœ•π‘₯

πœ•π‘¦

= 𝑖 0 βˆ’ 0 + 𝑗 0 βˆ’ 0 + π‘˜ 0 βˆ’ 0 = 0 .

Example 33: Find a so that the vector 𝒇 = π’‚π’™π’š βˆ’ π’›πŸ‘ π’Š + 𝒂 βˆ’ 𝟐 π’™πŸ 𝒋 + 𝟏 βˆ’ 𝒂 π’™π’›πŸ π’Œ is

irrotational.

Solution: Given that 𝑓 is irrotational, therefore π‘π‘’π‘Ÿπ‘™ 𝑓 = 0 … (1)

But π‘π‘’π‘Ÿπ‘™ 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

π‘Žπ‘₯𝑦 βˆ’ 𝑧3 π‘Ž βˆ’ 2 π‘₯2 1 βˆ’ π‘Ž π‘₯𝑧2

= 𝑖 0 βˆ’ 0 + 𝑗 βˆ’3𝑧2 βˆ’ 1 βˆ’ π‘Ž 𝑧2 + π‘˜ π‘Ž βˆ’ 2 2π‘₯ βˆ’ π‘Žπ‘₯

= 0 𝑖 + βˆ’4 + π‘Ž 𝑧2 𝑗 + βˆ’4 + π‘Ž π‘₯ π‘˜

Page 28: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

28

Using (1), 0 𝑖 + βˆ’4 + π‘Ž 𝑧2 𝑗 + βˆ’4 + π‘Ž π‘₯ π‘˜ = 0 𝑖 + 0 𝑗 + 0 π‘˜

Comparing the corresponding components both sides,

βˆ’4 + π‘Ž = 0 => π‘Ž = 4.

Example 34: If 𝒇 = π’™π’šπŸ π’Š + πŸπ’™πŸπ’šπ’› 𝒋 βˆ’ πŸ‘π’šπ’›πŸ π’Œ , find the 𝒄𝒖𝒓𝒍 𝒇 at the point (1, -1, 1).

Solution: π‘π‘’π‘Ÿπ‘™ 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

π‘₯𝑦2 2π‘₯2𝑦𝑧 βˆ’3𝑦𝑧2

= 𝑖 βˆ’3𝑧2 βˆ’ 2π‘₯2𝑦 + 𝑗 0 βˆ’ 0 + π‘˜ 4π‘₯𝑦𝑧 βˆ’ 2π‘₯𝑦

At (1, -1, 1),

π‘π‘’π‘Ÿπ‘™ 𝑓 = 𝑖 βˆ’3(1)2 βˆ’ 2 1 2(βˆ’1) + 𝑗 0 βˆ’ 0 + π‘˜ 4 1 βˆ’1 (1) βˆ’ 2(1)(βˆ’1)

= βˆ’π‘– βˆ’ 2 π‘˜ .

17.7 DEL APPLIED TO THE PRODUCT OF POINT FUNCTIONS

Let πœ™, πœ“ are two scalar point functions and 𝑓 , 𝑔 are two vector point functions, then

1. βˆ‡ Ο• ψ = Ο• βˆ‡Οˆ + ψ βˆ‡Ο•

2. βˆ‡ βˆ™ Ο• 𝑓 = βˆ‡Ο• βˆ™ 𝑓 + Ο• βˆ‡ βˆ™ 𝑓

3. βˆ‡ Γ— Ο• 𝑓 = βˆ‡Ο• Γ— 𝑓 + Ο• βˆ‡ Γ— 𝑓

4. βˆ‡ 𝑓 βˆ™ 𝑔 = 𝑓 βˆ™ βˆ‡ 𝑔 + 𝑔 βˆ™ βˆ‡ 𝑓 + 𝑓 Γ— βˆ‡ Γ— 𝑔 + 𝑔 Γ— βˆ‡ Γ— 𝑓 [KUK 2007]

5. βˆ‡ βˆ™ 𝑓 Γ— 𝑔 = 𝑔 βˆ™ βˆ‡ Γ— 𝑓 βˆ’ 𝑓 βˆ™ βˆ‡ Γ— 𝑔

6. βˆ‡ Γ— 𝑓 Γ— 𝑔 = 𝑓 βˆ‡ βˆ™ 𝑔 βˆ’ 𝑔 βˆ‡ βˆ™ 𝑓 + 𝑔 βˆ™ βˆ‡ 𝑓 βˆ’ 𝑓 βˆ™ βˆ‡ 𝑔 [KUK 2011]

Proof 1: Consider βˆ‡ Ο• ψ = 𝑖 πœ•

πœ•π‘₯ Ο• ψ = 𝑖 Ο•

πœ•Οˆ

πœ•π‘₯+ ψ

πœ•Ο•

πœ•π‘₯ = 𝑖 Ο•

πœ•Οˆ

πœ•π‘₯ + 𝑖 ψ

πœ•Ο•

πœ•π‘₯

= Ο• 𝑖 πœ•Οˆ

πœ•π‘₯ + ψ 𝑖

πœ•Ο•

πœ•π‘₯ = Ο• βˆ‡Οˆ + ψ βˆ‡Ο•

Proof 2: Consider βˆ‡ βˆ™ Ο• 𝑓 = 𝑖 βˆ™ πœ•

πœ•π‘₯ Ο• 𝑓 = 𝑖 βˆ™

πœ•Ο•

πœ•π‘₯𝑓 + Ο•

πœ•π‘“

πœ•π‘₯ = 𝑖 βˆ™

πœ•Ο•

πœ•π‘₯𝑓 + 𝑖 βˆ™ Ο•

πœ•π‘“

πœ•π‘₯

= 𝑖 πœ•Ο•

πœ•π‘₯ βˆ™ 𝑓 + Ο• 𝑖 βˆ™

πœ•π‘“

πœ•π‘₯ = βˆ‡Ο• βˆ™ 𝑓 + Ο• βˆ‡ βˆ™ 𝑓

Proof 3: Consider βˆ‡ Γ— Ο• 𝑓 = 𝑖 Γ— πœ•

πœ•π‘₯ Ο• 𝑓 = 𝑖 Γ—

πœ•Ο•

πœ•π‘₯𝑓 + Ο•

πœ•π‘“

πœ•π‘₯ = 𝑖 Γ—

πœ•Ο•

πœ•π‘₯𝑓 + 𝑖 Γ— Ο•

πœ•π‘“

πœ•π‘₯

= 𝑖 πœ•Ο•

πœ•π‘₯ Γ— 𝑓 + Ο• 𝑖 Γ—

πœ•π‘“

πœ•π‘₯ = βˆ‡Ο• Γ— 𝑓 + Ο• βˆ‡ Γ— 𝑓

Proof 4: Consider βˆ‡ 𝑓 βˆ™ 𝑔 = 𝑖 πœ•

πœ•π‘₯ 𝑓 βˆ™ 𝑔 = 𝑖

πœ•π‘“

πœ•π‘₯βˆ™ 𝑔 + 𝑓 βˆ™

πœ•π‘”

πœ•π‘₯ = 𝑖

πœ•π‘“

πœ•π‘₯ βˆ™ 𝑔 + 𝑖 𝑓 βˆ™

πœ•π‘”

πœ•π‘₯

… (1)

Page 29: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

29

But, 𝑔 Γ— 𝑖 Γ—πœ•π‘“

πœ•π‘₯ = 𝑔 βˆ™

πœ•π‘“

πœ•π‘₯ 𝑖 βˆ’ 𝑔 βˆ™ 𝑖

πœ•π‘“

πœ•π‘₯

or 𝑔 βˆ™πœ•π‘“

πœ•π‘₯ 𝑖 = 𝑔 Γ— 𝑖 Γ—

πœ•π‘“

πœ•π‘₯ + 𝑔 βˆ™ 𝑖

πœ•π‘“

πœ•π‘₯

So, 𝑔 βˆ™πœ•π‘“

πœ•π‘₯ 𝑖 = 𝑔 Γ— 𝑖 Γ—

πœ•π‘“

πœ•π‘₯ + 𝑔 βˆ™ 𝑖

πœ•π‘“

πœ•π‘₯= 𝑔 Γ— βˆ‡ Γ— 𝑓 + 𝑔 βˆ™ βˆ‡ 𝑓 … (2)

Interchanging 𝑓 and 𝑔 in (2)

𝑓 βˆ™πœ•π‘”

πœ•π‘₯ 𝑖 = 𝑓 Γ— 𝑖 Γ—

πœ•π‘”

πœ•π‘₯ + 𝑓 βˆ™ 𝑖

πœ•π‘”

πœ•π‘₯= 𝑓 Γ— βˆ‡ Γ— 𝑔 + 𝑓 βˆ™ βˆ‡ 𝑔 … (3)

Using (2) and (3) in (1), we get

βˆ‡ 𝑓 βˆ™ 𝑔 = 𝑓 βˆ™ βˆ‡ 𝑔 + 𝑔 βˆ™ βˆ‡ 𝑓 + 𝑓 Γ— βˆ‡ Γ— 𝑔 + 𝑔 Γ— βˆ‡ Γ— 𝑓

Proof 5: Consider βˆ‡ βˆ™ 𝑓 Γ— 𝑔 = 𝑖 βˆ™ πœ•

πœ•π‘₯ 𝑓 Γ— 𝑔 = 𝑖 βˆ™

πœ•π‘“

πœ•π‘₯Γ— 𝑔 + 𝑓 Γ—

πœ•π‘”

πœ•π‘₯

= 𝑖 βˆ™ πœ•π‘“

πœ•π‘₯Γ— 𝑔 + 𝑖 βˆ™ 𝑓 Γ—

πœ•π‘”

πœ•π‘₯ = 𝑔 βˆ™ 𝑖 Γ—

πœ•π‘“

πœ•π‘₯ βˆ’ 𝑓 βˆ™ 𝑖 Γ—

πœ•π‘”

πœ•π‘₯

= 𝑔 βˆ™ βˆ‡ Γ— 𝑓 βˆ’ 𝑓 βˆ™ βˆ‡ Γ— 𝑔

[using π‘Ž βˆ™ 𝑏 Γ— 𝑐 = 𝑐 βˆ™ π‘Ž Γ— 𝑏 = βˆ’π‘ βˆ™ π‘Ž Γ— 𝑐 ]

Proof 6: Consider βˆ‡ Γ— 𝑓 Γ— 𝑔 = 𝑖 Γ— πœ•

πœ•π‘₯ 𝑓 Γ— 𝑔 = 𝑖 Γ—

πœ•π‘“

πœ•π‘₯Γ— 𝑔 + 𝑓 Γ—

πœ•π‘”

πœ•π‘₯

= 𝑖 Γ— πœ•π‘“

πœ•π‘₯Γ— 𝑔 + 𝑖 Γ— 𝑓 Γ—

πœ•π‘”

πœ•π‘₯

= 𝑖 βˆ™ 𝑔 πœ•π‘“

πœ•π‘₯βˆ’ 𝑖 βˆ™

πœ•π‘“

πœ•π‘₯ 𝑔 + 𝑖 βˆ™

πœ•π‘”

πœ•π‘₯ 𝑓 βˆ’ 𝑖 βˆ™ 𝑓

πœ•π‘”

πœ•π‘₯

[using π‘Ž Γ— 𝑏 Γ— 𝑐 = π‘Ž βˆ™ 𝑐 𝑏 βˆ’ π‘Ž βˆ™ 𝑏 𝑐 ]

= 𝑔 βˆ™ 𝑖 πœ•π‘“

πœ•π‘₯βˆ’ 𝑔 𝑖 βˆ™

πœ•π‘“

πœ•π‘₯ + 𝑓 𝑖 βˆ™

πœ•π‘”

πœ•π‘₯ βˆ’ 𝑓 βˆ™ 𝑖

πœ•π‘”

πœ•π‘₯

= 𝑔 βˆ™ βˆ‡ 𝑓 βˆ’ 𝑔 βˆ‡ βˆ™ 𝑓 + 𝑓 βˆ‡ βˆ™ 𝑔 βˆ’ 𝑓 βˆ™ βˆ‡ 𝑔

= 𝑓 βˆ‡ βˆ™ 𝑔 βˆ’ 𝑔 βˆ‡ βˆ™ 𝑓 + 𝑔 βˆ™ βˆ‡ 𝑓 βˆ’ 𝑓 βˆ™ βˆ‡ 𝑔

17.8 DEL APPLIED TWICE TO POINT FUNCTIONS

Let βˆ… be a scalar point function and 𝑓 be a vector point function, then βˆ‡βˆ… and βˆ‡ Γ— 𝑓 being the vector

point functions, we can find their divergence and curl; whereas βˆ‡ βˆ™ 𝑓 being the scalar point function,

we can find its gradient only. Thus we have following formulae:

1. 𝑑𝑖𝑣 π‘”π‘Ÿπ‘Žπ‘‘ βˆ… = βˆ‡ βˆ™ βˆ‡βˆ… = βˆ‡2βˆ… =πœ•2βˆ…

πœ•π‘₯2 +πœ•2βˆ…

πœ•π‘¦2 +πœ•2βˆ…

πœ•π‘§2

2. π‘π‘’π‘Ÿπ‘™ π‘”π‘Ÿπ‘Žπ‘‘ βˆ… = βˆ‡ Γ— βˆ‡βˆ… = 0

3. 𝑑𝑖𝑣 π‘π‘’π‘Ÿπ‘™ 𝑓 = βˆ‡ βˆ™ βˆ‡ Γ— 𝑓 = 0

4. π‘π‘’π‘Ÿπ‘™ π‘π‘’π‘Ÿπ‘™ 𝑓 = βˆ‡ Γ— βˆ‡ Γ— 𝑓 = βˆ‡ βˆ‡ βˆ™ 𝑓 βˆ’ βˆ‡2𝑓 = π‘”π‘Ÿπ‘Žπ‘‘ 𝑑𝑖𝑣 𝑓 βˆ’ βˆ‡2𝑓 [KUK 2006]

5. π‘”π‘Ÿπ‘Žπ‘‘ 𝑑𝑖𝑣 𝑓 = βˆ‡ βˆ‡ βˆ™ 𝑓 = π‘π‘’π‘Ÿπ‘™ π‘π‘’π‘Ÿπ‘™ 𝑓 + βˆ‡2𝑓 = βˆ‡ Γ— βˆ‡ Γ— 𝑓 + βˆ‡2𝑓

Page 30: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

30

Proof 1: βˆ‡2βˆ… = βˆ‡ βˆ™ βˆ‡βˆ… = βˆ‡ βˆ™ 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§

=πœ•

πœ•π‘₯ πœ•βˆ…

πœ•π‘₯ +

πœ•

πœ•π‘¦

πœ•βˆ…

πœ•π‘¦ +

πœ•

πœ•π‘§

πœ•βˆ…

πœ•π‘§ =

πœ•2βˆ…

πœ•π‘₯2+

πœ•2βˆ…

πœ•π‘¦2+

πœ•2βˆ…

πœ•π‘§2

Here βˆ‡2 is called the Laplacian Operator and βˆ‡2βˆ… = 0 is called the Laplace’s Equation.

Proof 2: π‘π‘’π‘Ÿπ‘™ π‘”π‘Ÿπ‘Žπ‘‘ βˆ… = βˆ‡ Γ— βˆ‡βˆ… = βˆ‡ Γ— 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§

=

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

πœ•βˆ…

πœ•π‘₯

πœ•βˆ…

πœ•π‘¦

πœ•βˆ…

πœ•π‘§

= 𝑖

πœ•2βˆ…

πœ•π‘¦πœ•π‘§βˆ’

πœ•2βˆ…

πœ•π‘§πœ•π‘¦ = 0

Proof 3: 𝑑𝑖𝑣 π‘π‘’π‘Ÿπ‘™ 𝑓 = βˆ‡ βˆ™ βˆ‡ Γ— 𝑓 = 𝑖 πœ•

πœ•π‘₯ βˆ™ 𝑖 Γ—

πœ•π‘“

πœ•π‘₯+ 𝑗 Γ—

πœ•π‘“

πœ•π‘¦+ π‘˜ Γ—

πœ•π‘“

πœ•π‘§

= 𝑖 βˆ™ 𝑖 Γ—πœ•2𝑓

πœ•π‘₯2+ 𝑗 Γ—

πœ•2𝑓

πœ•π‘₯πœ•π‘¦+ π‘˜ Γ—

πœ•2𝑓

πœ•π‘₯πœ•π‘§

= 𝑖 Γ— 𝑖 βˆ™πœ•2𝑓

πœ•π‘₯2 + 𝑖 Γ— 𝑗 βˆ™πœ•2𝑓

πœ•π‘₯πœ•π‘¦+ 𝑖 Γ— π‘˜ βˆ™

πœ•2𝑓

πœ•π‘₯πœ•π‘§

= π‘˜ βˆ™πœ•2𝑓

πœ•π‘₯πœ•π‘¦βˆ’ 𝑗 βˆ™

πœ•2𝑓

πœ•π‘₯πœ•π‘§ = 0

Proof 4: π‘π‘’π‘Ÿπ‘™ π‘π‘’π‘Ÿπ‘™ 𝑓 = βˆ‡ Γ— βˆ‡ Γ— 𝑓 = 𝑖 πœ•

πœ•π‘₯ Γ— 𝑖 Γ—

πœ•π‘“

πœ•π‘₯+ 𝑗 Γ—

πœ•π‘“

πœ•π‘¦+ π‘˜ Γ—

πœ•π‘“

πœ•π‘§

= 𝑖 Γ— 𝑖 Γ—πœ•2𝑓

πœ•π‘₯2 + 𝑗 Γ—πœ•2𝑓

πœ•π‘₯πœ•π‘¦+ π‘˜ Γ—

πœ•2𝑓

πœ•π‘₯πœ•π‘§

= 𝑖 Γ— 𝑖 Γ—πœ•2𝑓

πœ•π‘₯2 + 𝑖 Γ— 𝑗 Γ—πœ•2𝑓

πœ•π‘₯πœ•π‘¦ + 𝑖 Γ— π‘˜ Γ—

πœ•2𝑓

πœ•π‘₯πœ•π‘§

= 𝑖 βˆ™πœ•2𝑓

πœ•π‘₯2 𝑖 βˆ’ 𝑖 βˆ™ 𝑖 πœ•2𝑓

πœ•π‘₯2 + 𝑖 βˆ™πœ•2𝑓

πœ•π‘₯πœ•π‘¦ 𝑗 βˆ’ 𝑖 βˆ™ 𝑗

πœ•2𝑓

πœ•π‘₯πœ•π‘¦ + 𝑖 βˆ™

πœ•2𝑓

πœ•π‘₯πœ•π‘§ π‘˜ βˆ’ 𝑖 βˆ™ π‘˜

πœ•2𝑓

πœ•π‘₯πœ•π‘§

= 𝑖 βˆ™πœ•2𝑓

πœ•π‘₯2 𝑖 + 𝑖 βˆ™πœ•2𝑓

πœ•π‘₯πœ•π‘¦ 𝑗 + 𝑖 βˆ™

πœ•2𝑓

πœ•π‘₯πœ•π‘§ π‘˜ βˆ’

πœ•2𝑓

πœ•π‘₯2

= 𝑖 πœ•

πœ•π‘₯ 𝑖 βˆ™

πœ•π‘“

πœ•π‘₯+ 𝑗 βˆ™

πœ•π‘“

πœ•π‘¦+ π‘˜ βˆ™

πœ•π‘“

πœ•π‘§ βˆ’

πœ•2𝑓

πœ•π‘₯2 = βˆ‡ βˆ‡ βˆ™ 𝑓 βˆ’ βˆ‡2𝑓

Proof 5: To get this formula we are to re-arrange the terms in last proof.

Example 35: Show that π›πŸ 𝒓𝒏 = 𝒏(𝒏 + 𝟏)π’“π’βˆ’πŸ.

Solution: We know that π‘Ÿ2 = π‘₯2 + 𝑦2 + 𝑧2

On differentiation w. r. t. x, πœ•π‘Ÿ

πœ•π‘₯=

π‘₯

π‘Ÿ

Similarly πœ•π‘Ÿ

πœ•π‘¦=

𝑦

π‘Ÿ and

πœ•π‘Ÿ

πœ•π‘§=

𝑧

π‘Ÿ

Now βˆ‡2 π‘Ÿπ‘› = πœ•2

πœ•π‘₯2+

πœ•2

πœ•π‘¦2+

πœ•2

πœ•π‘§2 π‘Ÿπ‘› =

πœ•

πœ•π‘₯

πœ•π‘Ÿπ‘›

πœ•π‘₯ +

πœ•

πœ•π‘¦

πœ•π‘Ÿπ‘›

πœ•π‘¦ +

πœ•

πœ•π‘§

πœ•π‘Ÿπ‘›

πœ•π‘§ … (1)

And πœ•

πœ•π‘₯

πœ•π‘Ÿπ‘›

πœ•π‘₯ =

πœ•

πœ•π‘₯ 𝑛 π‘Ÿπ‘›βˆ’1 πœ•π‘Ÿ

πœ•π‘₯ =

πœ•

πœ•π‘₯ 𝑛 π‘Ÿπ‘›βˆ’1 π‘₯

π‘Ÿ = 𝑛

πœ•

πœ•π‘₯ π‘Ÿπ‘›βˆ’2π‘₯

Page 31: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

31

= 𝑛 π‘Ÿπ‘›βˆ’2 + π‘₯ (𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’3 πœ•π‘Ÿ

πœ•π‘₯ = 𝑛 π‘Ÿπ‘›βˆ’2 + π‘₯2(𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’4

Similarly πœ•

πœ•π‘¦ πœ•π‘Ÿπ‘›

πœ•π‘¦ = 𝑛 π‘Ÿπ‘›βˆ’2 + 𝑦2(𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’4

πœ•

πœ•π‘§

πœ•π‘Ÿπ‘›

πœ•π‘§ = 𝑛 π‘Ÿπ‘›βˆ’2 + 𝑧2(𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’4

Using all these values in (1),

βˆ‡2 π‘Ÿπ‘› = 𝑛 π‘Ÿπ‘›βˆ’2 + π‘₯2(𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’4 ) + 𝑛 π‘Ÿπ‘›βˆ’2 + (𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’4 + 𝑛 π‘Ÿπ‘›βˆ’2 + 𝑧2(𝑛 βˆ’ 2)π‘Ÿπ‘›βˆ’4

= 3𝑛 π‘Ÿπ‘›βˆ’2 + 𝑛 𝑛 βˆ’ 2 π‘Ÿπ‘›βˆ’4 π‘₯2 + 𝑦2 + 𝑧2

= 3𝑛 π‘Ÿπ‘›βˆ’2 + 𝑛 𝑛 βˆ’ 2 π‘Ÿπ‘›βˆ’2 = 𝑛 𝑛 + 1 π‘Ÿπ‘›βˆ’2

Example 36: Show that *(i) π›πŸπ’‡ 𝒓 = 𝒇 β€²β€² 𝒓 +𝟐

𝒓 𝒇 β€² (𝒓) (ii) 𝛁 βˆ™ 𝝓 𝛁𝝍 βˆ’ 𝝍 𝛁𝝓 = 𝝓 π›πŸπ βˆ’ 𝝍 π›πŸπ“

*[KUK 2008]

Solution: (i) βˆ‡2𝑓 π‘Ÿ = πœ•2

πœ•π‘₯2 +πœ•2

πœ•π‘¦2 +πœ•2

πœ•π‘§2 𝑓 π‘Ÿ =πœ•

πœ•π‘₯

πœ•

πœ•π‘₯𝑓 π‘Ÿ +

πœ•

πœ•π‘¦

πœ•

πœ•π‘¦π‘“ π‘Ÿ +

πœ•

πœ•π‘§

πœ•

πœ•π‘§π‘“ π‘Ÿ …(1)

And πœ•

πœ•π‘₯

πœ•

πœ•π‘₯𝑓 π‘Ÿ =

πœ•

πœ•π‘₯ 𝑓 β€²(π‘Ÿ)

πœ•π‘Ÿ

πœ•π‘₯ =

πœ•

πœ•π‘₯ 𝑓 β€²(π‘Ÿ)

π‘₯

π‘Ÿ = 𝑓 β€² (π‘Ÿ)

πœ•

πœ•π‘₯ π‘₯

π‘Ÿ +

π‘₯

π‘Ÿ 𝑓 β€²β€²(π‘Ÿ)

πœ•π‘Ÿ

πœ•π‘₯

= 𝑓 β€² (π‘Ÿ) 1

π‘Ÿβˆ’

π‘₯

π‘Ÿ2

πœ•π‘Ÿ

πœ•π‘₯ +

π‘₯

π‘Ÿ 𝑓 β€²β€²(π‘Ÿ)

πœ•π‘Ÿ

πœ•π‘₯

= 𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ π‘₯2 𝑓 β€² π‘Ÿ

π‘Ÿ3+ π‘₯2 𝑓 β€²β€² (π‘Ÿ)

π‘Ÿ2

Similarly πœ•

πœ•π‘¦

πœ•

πœ•π‘¦π‘“ π‘Ÿ =

𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ 𝑦2 𝑓 β€² π‘Ÿ

π‘Ÿ3+ 𝑦2 𝑓 β€²β€² (π‘Ÿ)

π‘Ÿ2

πœ•

πœ•π‘§

πœ•

πœ•π‘§π‘“ π‘Ÿ =

𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ 𝑧2 𝑓 β€² π‘Ÿ

π‘Ÿ3+ 𝑧2 𝑓 β€²β€² (π‘Ÿ)

π‘Ÿ2

Using all these values in (1)

βˆ‡2𝑓 π‘Ÿ = 𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ π‘₯2 𝑓 β€² π‘Ÿ

π‘Ÿ3+ π‘₯2 𝑓 β€²β€²

π‘Ÿ

π‘Ÿ2 +

𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ 𝑦2 𝑓 β€² π‘Ÿ

π‘Ÿ3+ 𝑦2 𝑓 β€²β€²

π‘Ÿ

π‘Ÿ2

+ 𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ 𝑧2 𝑓 β€² π‘Ÿ

π‘Ÿ3+ 𝑧2 𝑓 β€²β€² (π‘Ÿ)

π‘Ÿ2

=3 𝑓 β€² π‘Ÿ

π‘Ÿβˆ’ π‘₯2 + 𝑦2 + 𝑧2

𝑓 β€² π‘Ÿ

π‘Ÿ3+

𝑓 β€²β€² π‘Ÿ

π‘Ÿ2 π‘₯2 + 𝑦2 + 𝑧2

=3 𝑓 β€² (π‘Ÿ)

π‘Ÿβˆ’

𝑓 β€² (π‘Ÿ)

π‘Ÿ+ 𝑓 β€²β€² (π‘Ÿ)

=2 𝑓 β€² (π‘Ÿ)

π‘Ÿ+ 𝑓 β€²β€² (π‘Ÿ)

Hence βˆ‡2𝑓 π‘Ÿ = 𝑓 β€²β€² π‘Ÿ +2

π‘Ÿ 𝑓 β€² (π‘Ÿ) .

(ii) Consider βˆ‡ βˆ™ πœ™ βˆ‡πœ“ βˆ’ πœ“ βˆ‡πœ™ = βˆ‡ βˆ™ πœ™ βˆ‡πœ“ βˆ’ βˆ‡ βˆ™ πœ“ βˆ‡πœ™

= βˆ‡πœ™ βˆ™ βˆ‡πœ“ + πœ™ βˆ‡ βˆ™ βˆ‡πœ“ βˆ’ βˆ‡πœ“ βˆ™ βˆ‡πœ™ + πœ“ βˆ‡ βˆ™ βˆ‡πœ™

= βˆ‡πœ™ βˆ™ βˆ‡πœ“ + πœ™ βˆ‡2πœ“ βˆ’ βˆ‡πœ™ βˆ™ βˆ‡πœ“ βˆ’ πœ“ βˆ‡2πœ™

= πœ™ βˆ‡2πœ“ βˆ’ πœ“ βˆ‡2πœ™

Page 32: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

32

Hence βˆ‡ βˆ™ πœ™ βˆ‡πœ“ βˆ’ πœ“ βˆ‡πœ™ = πœ™ βˆ‡2πœ“ βˆ’ πœ“ βˆ‡2πœ™.

Example 37: Find the value of n for which the vector 𝒓𝒏 𝒓 is solenoidal, where

𝒓 = π’™π’Š + π’šπ’‹ + π’›π’Œ .

Solution: Consider 𝑑𝑖𝑣 π‘Ÿπ‘› π‘Ÿ = βˆ‡ βˆ™ π‘Ÿπ‘› π‘Ÿ = βˆ‡π‘Ÿπ‘› βˆ™ π‘Ÿ + π‘Ÿπ‘› βˆ‡ βˆ™ π‘Ÿ … (1)

But βˆ‡π‘Ÿπ‘› = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ π‘Ÿπ‘› = 𝑛 π‘Ÿπ‘›βˆ’1 𝑖

πœ•π‘Ÿ

πœ•π‘₯+ 𝑗

πœ•π‘Ÿ

πœ•π‘¦+ π‘˜

πœ•π‘Ÿ

πœ•π‘§

= 𝑛 π‘Ÿπ‘›βˆ’1 π‘₯

π‘Ÿπ‘– +

𝑦

π‘Ÿπ‘— +

𝑧

π‘Ÿπ‘˜ = 𝑛 π‘Ÿπ‘›βˆ’2 π‘Ÿ … (2)

And βˆ‡ βˆ™ π‘Ÿ = 3 … (3)

Therefore, 𝑑𝑖𝑣 π‘Ÿπ‘› π‘Ÿ = 𝑛 π‘Ÿπ‘›βˆ’2 π‘Ÿ βˆ™ π‘Ÿ + 3 π‘Ÿπ‘› = 𝑛 π‘Ÿπ‘›βˆ’2 π‘Ÿ βˆ™ π‘Ÿ + 3π‘Ÿπ‘›

= 𝑛 π‘Ÿπ‘›βˆ’2 π‘Ÿ2 + 3π‘Ÿπ‘› = (𝑛 + 3)π‘Ÿπ‘› … (4)

As given the vector π‘Ÿπ‘› π‘Ÿ is solenoidal, so 𝑑𝑖𝑣 π‘Ÿπ‘› π‘Ÿ = 0

So using (4), 𝑛 + 3 π‘Ÿπ‘› = 0 implies that 𝑛 = βˆ’3 (since π‘Ÿ β‰  0)

Example 38: If 𝒂 and 𝒃 are irrotational, prove that 𝒂 Γ— 𝒃 is solenoidal.

Solution: Given π‘Ž and 𝑏 are irrotational, so βˆ‡ Γ— π‘Ž = 0 = βˆ‡ Γ— 𝑏 … (1)

Consider 𝐷𝑖𝑣 π‘Ž Γ— 𝑏 = 𝑏 βˆ™ βˆ‡ Γ— π‘Ž βˆ’ π‘Ž βˆ™ βˆ‡ Γ— 𝑏 = 𝑏 βˆ™ 0 βˆ’ π‘Ž βˆ™ 0 = 0 [using (1)]

Thus π‘Ž Γ— 𝑏 is solenoidal.

Example 39: Show that the vector field 𝒇 = π’›πŸ + πŸπ’™ + πŸ‘π’š π’Š + πŸ‘π’™ + πŸπ’š + 𝒛 𝒋 + (π’š + πŸπ’›π’™)π’Œ is

irrotational but not solenoidal. Also obtain a scalar function βˆ… such that π›βˆ… = 𝒇 .

Solution: Consider πΆπ‘’π‘Ÿπ‘™ 𝑓 = βˆ‡ Γ— 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑧2 + 2π‘₯ + 3𝑦 3π‘₯ + 2𝑦 + 𝑧 𝑦 + 2𝑧π‘₯

= 𝑖 1 βˆ’ 1 βˆ’ 𝑗 2𝑧 βˆ’ 2𝑧 + π‘˜ 3 βˆ’ 3 = 0

So 𝑓 is irrotational vector field.

Also consider 𝑑𝑖𝑣 𝑓 = βˆ‡ βˆ™ 𝑓 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ βˆ™ 𝑓 = 2 + 2 + 2π‘₯ = 2(π‘₯ + 2) β‰  0

So 𝑓 is not solenoidal vector field.

Now π‘‘βˆ… =πœ•βˆ…

πœ•π‘₯ 𝑑π‘₯ +

πœ•βˆ…

πœ•π‘¦ 𝑑𝑦 +

πœ•βˆ…

πœ•π‘§ 𝑑𝑧 = 𝑖

πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ βˆ™ 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 π‘˜

= π‘”π‘Ÿπ‘Žπ‘‘ βˆ… βˆ™ π‘‘π‘Ÿ = 𝑓 βˆ™ π‘‘π‘Ÿ (as 𝑓 = π‘”π‘Ÿπ‘Žπ‘‘ βˆ… )

= 𝑧2 + 2π‘₯ + 3𝑦 𝑖 + 3π‘₯ + 2𝑦 + 𝑧 𝑗 + (𝑦 + 2𝑧π‘₯)π‘˜ βˆ™ 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 π‘˜

= 𝑧2 + 2π‘₯ + 3𝑦 𝑑π‘₯ + 3π‘₯ + 2𝑦 + 𝑧 𝑑𝑦 + (𝑦 + 2𝑧π‘₯)𝑑𝑧

= 𝑧2𝑑π‘₯ + 2𝑧π‘₯ 𝑑𝑧 + 3𝑦 𝑑π‘₯ + 3π‘₯ 𝑑𝑦 + 𝑧 𝑑𝑦 + 𝑦 𝑑𝑧 + 2π‘₯ 𝑑π‘₯ + 2𝑦 𝑑𝑦

= 𝑑 π‘₯𝑧2 + 3𝑑 π‘₯𝑦 + 𝑑 𝑦𝑧 + 𝑑 π‘₯2 + 𝑑(𝑦2)

Integrating both sides, we get

Page 33: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

33

βˆ… = π‘₯𝑧2 + 3π‘₯𝑦 + 𝑦𝑧 + π‘₯2 + 𝑦2 + 𝑐

Example 40: If 𝑽 𝟏 𝐚𝐧𝐝 𝑽 𝟐 be the vectors joining the fixed points π’™πŸ, π’šπŸ, π’›πŸ and π’™πŸ, π’šπŸ, π’›πŸ

respectively to a variable point (𝒙, π’š, 𝒛), prove that *[KUK 2010]

(i) π’…π’Šπ’— 𝑽 𝟏 Γ— 𝑽 𝟐 = 𝟎 *(ii) 𝒄𝒖𝒓𝒍 𝑽 𝟏 Γ— 𝑽 𝟐 = 𝟐(𝑽 𝟏 βˆ’ 𝑽 𝟐) (iii) π’ˆπ’“π’‚π’… 𝑽 𝟏 βˆ™ 𝑽 𝟐 = 𝑽 𝟏 + 𝑽 𝟐.

Solution: Here, 𝑉 1 = π‘₯ βˆ’ π‘₯1 𝑖 + 𝑦 βˆ’ 𝑦1 𝑗 + 𝑧 βˆ’ 𝑧1 π‘˜ and 𝑉 2 = π‘₯ βˆ’ π‘₯2 𝑖 + 𝑦 βˆ’ 𝑦2 𝑗 + 𝑧 βˆ’ 𝑧2 π‘˜

(i) 𝑉 1 Γ— 𝑉 2 = 𝑖 𝑗 π‘˜

π‘₯ βˆ’ π‘₯1 𝑦 βˆ’ 𝑦1 𝑧 βˆ’ 𝑧1

π‘₯ βˆ’ π‘₯2 𝑦 βˆ’ 𝑦2 𝑧 βˆ’ 𝑧2

= 𝑦 βˆ’ 𝑦1 𝑧 βˆ’ 𝑧2 βˆ’ 𝑦 βˆ’ 𝑦2 𝑧 βˆ’ 𝑧1 𝑖 + π‘₯ βˆ’ π‘₯2 𝑧 βˆ’ 𝑧1 βˆ’ π‘₯ βˆ’ π‘₯1 𝑧 βˆ’ 𝑧2 𝑗

+ π‘₯ βˆ’ π‘₯1 𝑦 βˆ’ 𝑦2 βˆ’ π‘₯ βˆ’ π‘₯2 𝑦 βˆ’ 𝑦1 π‘˜

So 𝑑𝑖𝑣 𝑉 1 Γ— 𝑉 2 =πœ•

πœ•π‘₯ 𝑦 βˆ’ 𝑦1 𝑧 βˆ’ 𝑧2 βˆ’ 𝑦 βˆ’ 𝑦2 𝑧 βˆ’ 𝑧1

+πœ•

πœ•π‘¦ π‘₯ βˆ’ π‘₯2 𝑧 βˆ’ 𝑧1 βˆ’ π‘₯ βˆ’ π‘₯1 𝑧 βˆ’ 𝑧2

+πœ•

πœ•π‘§ π‘₯ βˆ’ π‘₯1 𝑦 βˆ’ 𝑦2 βˆ’ π‘₯ βˆ’ π‘₯2 𝑦 βˆ’ 𝑦1 = 0

(ii) π‘π‘’π‘Ÿπ‘™ 𝑉 1 Γ— 𝑉 2 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑦 βˆ’ 𝑦1 𝑧 βˆ’ 𝑧2 βˆ’ 𝑦 βˆ’ 𝑦2 𝑧 βˆ’ 𝑧1 π‘₯ βˆ’ π‘₯2 𝑧 βˆ’ 𝑧1 βˆ’ π‘₯ βˆ’ π‘₯1 𝑧 βˆ’ 𝑧2 π‘₯ βˆ’ π‘₯1 𝑦 βˆ’ 𝑦2 βˆ’ π‘₯ βˆ’ π‘₯2 𝑦 βˆ’ 𝑦1

= π‘₯ βˆ’ π‘₯1 βˆ’ π‘₯ βˆ’ π‘₯2 βˆ’ π‘₯ βˆ’ π‘₯2 + π‘₯ βˆ’ π‘₯1 𝑖

+[ 𝑦 βˆ’ 𝑦1 βˆ’ 𝑦 βˆ’ 𝑦2 βˆ’ 𝑦 βˆ’ 𝑦2 + 𝑦 βˆ’ 𝑦1 ]𝑗

+[ 𝑧 βˆ’ 𝑧1 βˆ’ 𝑧 βˆ’ 𝑧2 βˆ’ 𝑧 βˆ’ 𝑧2 + 𝑧 βˆ’ 𝑧1 ]π‘˜

= 2 π‘₯ βˆ’ π‘₯1 𝑖 + (𝑦 βˆ’ 𝑦1)𝑗 + 𝑧 βˆ’ 𝑧1 π‘˜ βˆ’ 2[ π‘₯ βˆ’ π‘₯2 𝑖 + 𝑦 βˆ’ 𝑦2 𝑗 + 𝑧 βˆ’ 𝑧2 π‘˜ ]

= 2(𝑉 1 βˆ’ 𝑉 2)

(iii) 𝑉 1 βˆ™ 𝑉 2 = π‘₯ βˆ’ π‘₯1 π‘₯ βˆ’ π‘₯2 + 𝑦 βˆ’ 𝑦1 𝑦 βˆ’ 𝑦2 + 𝑧 βˆ’ 𝑧1 𝑧 βˆ’ 𝑧2

So π‘”π‘Ÿπ‘Žπ‘‘ 𝑉 1 βˆ™ 𝑉 2 = 𝑖 πœ•

πœ•π‘₯ π‘₯ βˆ’ π‘₯1 π‘₯ βˆ’ π‘₯2 + 𝑗

πœ•

πœ•π‘¦ 𝑦 βˆ’ 𝑦1 𝑦 βˆ’ 𝑦2 + π‘˜

πœ•

πœ•π‘§ 𝑧 βˆ’ 𝑧1 𝑧 βˆ’ 𝑧2

= 𝑖 π‘₯ βˆ’ π‘₯1 + π‘₯ βˆ’ π‘₯2 + 𝑗 𝑦 βˆ’ 𝑦1 + 𝑦 βˆ’ 𝑦2 + π‘˜ 𝑧 βˆ’ 𝑧1 + 𝑧 βˆ’ 𝑧2

= π‘₯ βˆ’ π‘₯1 𝑖 + 𝑦 βˆ’ 𝑦1 𝑗 + 𝑧 βˆ’ 𝑧1 π‘˜ + π‘₯ βˆ’ π‘₯2 𝑖 + 𝑦 βˆ’ 𝑦2 𝑗 + 𝑧 βˆ’ 𝑧2 π‘˜

= 𝑉 1 + 𝑉 2

Page 34: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

34

Example 41: If 𝒂 is a constant vector and 𝒓 = 𝒙 π’Š + π’š 𝒋 + 𝒛 π’Œ , prove that [KUK 2009]

(i) π’ˆπ’“π’‚π’… 𝒂 βˆ™ 𝒓 = 𝒂 (ii) π’…π’Šπ’— 𝒂 Γ— 𝒓 = 𝟎 (iii) ) 𝒄𝒖𝒓𝒍 𝒂 Γ— 𝒓 = πŸπ’‚ (iv) 𝒄𝒖𝒓𝒍 𝒂 βˆ™ 𝒓 𝒓 = 𝒂 Γ— 𝒓

Solution: Let π‘Ž = π‘Ž1𝑖 + π‘Ž2𝑗 + π‘Ž3 π‘˜ is the constant vector.

(i) π‘Ž βˆ™ π‘Ÿ = π‘Ž1𝑖 + π‘Ž2 𝑗 + π‘Ž3 π‘˜ βˆ™ π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ = π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧

So π‘”π‘Ÿπ‘Žπ‘‘ π‘Ž βˆ™ π‘Ÿ = 𝑖 πœ•

πœ•π‘₯ π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 + 𝑗

πœ•

πœ•π‘¦ π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 + π‘˜

πœ•

πœ•π‘§ π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧

= π‘Ž1𝑖 + π‘Ž2 𝑗 + π‘Ž3 π‘˜ = π‘Ž

(ii) π‘Ž Γ— π‘Ÿ = 𝑖 𝑗 π‘˜

π‘Ž1 π‘Ž2 π‘Ž3

π‘₯ 𝑦 𝑧 = 𝑖 π‘Ž2𝑧 βˆ’ π‘Ž3𝑦 + 𝑗 π‘Ž3π‘₯ βˆ’ π‘Ž1𝑧 + π‘˜ π‘Ž1𝑦 βˆ’ π‘Ž2π‘₯

𝑑𝑖𝑣 π‘Ž Γ— π‘Ÿ =πœ•

πœ•π‘₯ π‘Ž2𝑧 βˆ’ π‘Ž3𝑦 +

πœ•

πœ•π‘¦ π‘Ž3π‘₯ βˆ’ π‘Ž1𝑧 +

πœ•

πœ•π‘§ π‘Ž1𝑦 βˆ’ π‘Ž2π‘₯ = 0

(iii) π‘π‘’π‘Ÿπ‘™ π‘Ž Γ— π‘Ÿ =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

π‘Ž2𝑧 βˆ’ π‘Ž3𝑦 π‘Ž3π‘₯ βˆ’ π‘Ž1𝑧 π‘Ž1𝑦 βˆ’ π‘Ž2π‘₯

= 𝑖 π‘Ž1 + π‘Ž1 + 𝑗 π‘Ž2 + π‘Ž2 + π‘˜ π‘Ž3 + π‘Ž3 = 2 π‘Ž1𝑖 + π‘Ž2𝑗 + π‘Ž3 π‘˜ = 2π‘Ž

(iv) π‘Ž βˆ™ π‘Ÿ π‘Ÿ = π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 π‘₯𝑖 + π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 𝑦𝑗 + π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 𝑧 π‘˜

πΆπ‘’π‘Ÿπ‘™ π‘Ž βˆ™ π‘Ÿ π‘Ÿ =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 π‘₯ π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 𝑦 π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3𝑧 𝑧

= 𝑖 π‘Ž2𝑧 βˆ’ π‘Ž3𝑦 + 𝑗 π‘Ž3π‘₯ βˆ’ π‘Ž1𝑧 + π‘˜ π‘Ž1𝑦 βˆ’ π‘Ž2π‘₯ = π‘Ž Γ— π‘Ÿ [using part (ii)]

Example 42: Find 𝒇 Γ— 𝛁 Γ— π’ˆ at the point (1, -1, 2),

if 𝒇 = π’™π’›πŸ π’Š + πŸπ’š 𝒋 βˆ’ πŸ‘π’™π’› π’Œ , π’ˆ = πŸ‘π’™π’› π’Š + πŸπ’šπ’› 𝒋 βˆ’ π’›πŸ π’Œ .

Solution: βˆ‡ Γ— 𝑔 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

3π‘₯𝑧 2𝑦𝑧 βˆ’π‘§2

= 𝑖 0 βˆ’ 2𝑦 + 𝑗 3π‘₯ βˆ’ 0 + π‘˜ 0 βˆ’ 0 = βˆ’2𝑦 𝑖 + 3π‘₯ 𝑗 + 0 π‘˜

Now 𝑓 Γ— βˆ‡ Γ— 𝑔 = 𝑖 𝑗 π‘˜

π‘₯𝑧2 2𝑦 βˆ’3π‘₯π‘§βˆ’2𝑦 3π‘₯ 0

= 9π‘₯2𝑧 𝑖 + 6π‘₯𝑦𝑧 𝑗 + 3π‘₯2𝑧2 + 4𝑦2 π‘˜

At (1, -1, 2), 𝑓 Γ— βˆ‡ Γ— 𝑔 = 9 1 2(2) 𝑖 + 6 1 βˆ’1 (2) 𝑗 + 3(1)2(2)2 + 4(βˆ’1)2 π‘˜

= 18 𝑖 βˆ’ 12 𝑗 + 16 π‘˜

Example 43: If 𝒇 = π’šπ’›πŸ π’Š βˆ’ πŸ‘π’™π’›πŸ 𝒋 + πŸπ’™π’šπ’› π’Œ , π’ˆ = πŸ‘π’™ π’Š + πŸ’π’› 𝒋 βˆ’ π’™π’š π’Œ and βˆ… = π’™π’šπ’›; find

(i) 𝒇 Γ— π›βˆ… (ii) 𝒇 Γ— 𝛁 βˆ… (iii) 𝛁 Γ— 𝒇 Γ— 𝐠 (iv) 𝐠 βˆ™ 𝛁 Γ— 𝒇

Solution: βˆ‡βˆ… = 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ = 𝑦𝑧 𝑖 + 𝑧π‘₯ 𝑗 + π‘₯𝑦 π‘˜

Page 35: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

35

(i) 𝑓 Γ— βˆ‡βˆ… = 𝑖 𝑗 π‘˜

𝑦𝑧2 βˆ’3π‘₯𝑧2 2π‘₯𝑦𝑧𝑦𝑧 π‘₯𝑧 π‘₯𝑦

= βˆ’5π‘₯2𝑦𝑧2 𝑖 + π‘₯𝑦2𝑧2 𝑗 + 4π‘₯𝑦𝑧3 π‘˜

(ii) 𝑓 Γ— βˆ‡=

𝑖 𝑗 π‘˜

𝑦𝑧2 βˆ’3π‘₯𝑧2 2π‘₯π‘¦π‘§πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

= 𝑖 βˆ’3π‘₯𝑧2 πœ•

πœ•π‘§βˆ’ 2π‘₯𝑦𝑧

πœ•

πœ•π‘¦ + 𝑗 2π‘₯𝑦𝑧

πœ•

πœ•π‘₯βˆ’ 𝑦𝑧2 πœ•

πœ•π‘§ + π‘˜ 𝑦𝑧2 πœ•

πœ•π‘¦+ 3π‘₯𝑧2 πœ•

πœ•π‘₯

Now 𝑓 Γ— βˆ‡ βˆ… = 𝑖 βˆ’3π‘₯𝑧2 πœ•βˆ…

πœ•π‘§βˆ’ 2π‘₯𝑦𝑧

πœ•βˆ…

πœ•π‘¦ + 𝑗 2π‘₯𝑦𝑧

πœ•βˆ…

πœ•π‘₯βˆ’ 𝑦𝑧2 πœ•βˆ…

πœ•π‘§ + π‘˜ 𝑦𝑧2 πœ•βˆ…

πœ•π‘¦+ 3π‘₯𝑧2 πœ•βˆ…

πœ•π‘₯

= 𝑖 βˆ’3π‘₯𝑧2 𝑦π‘₯ βˆ’ 2π‘₯𝑦𝑧 π‘₯𝑧 + 𝑗 2π‘₯𝑦𝑧 𝑦𝑧 βˆ’ 𝑦𝑧2 π‘₯𝑦 + π‘˜ 𝑦𝑧2 π‘₯𝑧 + 3π‘₯𝑧2 𝑦𝑧

= βˆ’5π‘₯2𝑦𝑧2 𝑖 + π‘₯𝑦2𝑧2𝑗 + 4π‘₯𝑦𝑧3 π‘˜

(iii) βˆ‡ Γ— 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑦𝑧2 βˆ’3π‘₯𝑧2 2π‘₯𝑦𝑧

= 2π‘₯𝑧 + 6π‘₯𝑧 𝑖 + 2𝑦𝑧 βˆ’ 2𝑦𝑧 𝑗 + (βˆ’3𝑧2 βˆ’ 𝑧2) π‘˜

= 8π‘₯𝑧 𝑖 + 0 𝑗 βˆ’ 4𝑧2 π‘˜

Now βˆ‡ Γ— 𝑓 Γ— g = 𝑖 𝑗 π‘˜

8π‘₯𝑧 0 βˆ’4𝑧2

3π‘₯ 4𝑧 βˆ’π‘₯𝑦

= 0 + 16𝑧3 𝑖 + βˆ’12π‘₯𝑧2 + 8π‘₯2𝑦𝑧 𝑗 + (32π‘₯𝑧2 βˆ’ 0) π‘˜

= 16𝑧3 𝑖 + βˆ’12π‘₯𝑧2 + 8π‘₯2𝑦𝑧 𝑗 + 32π‘₯𝑧2 π‘˜

g βˆ™ βˆ‡ Γ— 𝑓 = 3π‘₯ 𝑖 + 4𝑧 𝑗 βˆ’ π‘₯𝑦 π‘˜ βˆ™ 8π‘₯𝑧 𝑖 + 0 𝑗 βˆ’ 4𝑧2 π‘˜ = 24π‘₯2𝑧 + 4π‘₯𝑦𝑧2

Example 44: Find the directional derivative of 𝛁 βˆ™ π›βˆ… at the point (1, -2, 1) in the direction of

the normal to the surface π’™π’šπŸπ’› = πŸ‘π’™ + π’›πŸ where βˆ… = πŸπ’™πŸ‘π’šπŸπ’›πŸ’. [Raipur 2005]

Solution: Given βˆ… = 2π‘₯3𝑦2𝑧4

So βˆ‡βˆ… = 𝑖 πœ•βˆ…

πœ•π‘₯+ 𝑗

πœ•βˆ…

πœ•π‘¦+ π‘˜

πœ•βˆ…

πœ•π‘§ = 𝑖 6π‘₯2𝑦2𝑧4 + 𝑗 (4π‘₯3𝑦𝑧4) + π‘˜ (8π‘₯3𝑦2𝑧3)

And 𝑓 = βˆ‡ βˆ™ βˆ‡βˆ… = πœ•

πœ•π‘₯ 6π‘₯2𝑦2𝑧4 +

πœ•

πœ•π‘¦(4π‘₯3𝑦𝑧4) +

πœ•

πœ•π‘§(8π‘₯3𝑦2𝑧3)

= 12π‘₯𝑦2𝑧4 + 4π‘₯3𝑧4 + 24 π‘₯3𝑦2𝑧2

Consider π‘”π‘Ÿπ‘Žπ‘‘ 𝑓 = βˆ‡π‘“ = 𝑖 πœ•π‘“

πœ•π‘₯+ 𝑗

πœ•π‘“

πœ•π‘¦+ π‘˜

πœ•π‘“

πœ•π‘§

= 𝑖 12𝑦2𝑧4 + 12π‘₯2𝑧4 + 72π‘₯3𝑦2𝑧2 + 𝑗 24π‘₯𝑦𝑧4 + 48π‘₯3𝑦𝑧2

+ π‘˜ (48π‘₯𝑦2𝑧3 + 16π‘₯3𝑧3 + 48π‘₯3𝑦2𝑧)

At point (1, -2, 1)

π‘”π‘Ÿπ‘Žπ‘‘ 𝑓 = 𝑖 (48 + 12 + 288) + 𝑗 βˆ’48 βˆ’ 96 + π‘˜ 192 + 16 + 192

= 348 𝑖 βˆ’ 144 𝑗 + 400 π‘˜

Now consider the surface 𝑔 = π‘₯𝑦2𝑧 βˆ’ 3π‘₯ βˆ’ 𝑧2 = 0

Page 36: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

36

So, βˆ‡π‘” = 𝑖 πœ•π‘”

πœ•π‘₯+ 𝑗

πœ•π‘”

πœ•π‘¦+ π‘˜

πœ•π‘”

πœ•π‘§ = 𝑖 𝑦2𝑧 βˆ’ 3 + 𝑗 2π‘₯𝑦𝑧 + π‘˜ π‘₯𝑦2 βˆ’ 2𝑧

The vector normal to the surface (1) at point (1, -2, 1) is given by

𝑛 = 𝑖 βˆ’ 4𝑗 + 2π‘˜

And 𝑛 = 1 + 16 + 4 = 21

So the direction derivative of 𝑓 = βˆ‡ βˆ™ βˆ‡βˆ… at the point (1, -2, 1) in the direction of the normal to the

surface (1) is π‘”π‘Ÿπ‘Žπ‘‘ 𝑓 .𝑛

𝑛

= 348 𝑖 βˆ’ 144 𝑗 + 400 π‘˜ .1

21 𝑖 βˆ’ 4𝑗 + 2π‘˜

=1

21 348 + 576 + 800

= πŸπŸ•πŸπŸ’/ 𝟐𝟏

Example 45: If r is the distance of a point (x, y, z) from the origin, prove that

𝒄𝒖𝒓𝒍 π’Œ Γ— π’ˆπ’“π’‚π’… 𝟏

𝒓 + π’ˆπ’“π’‚π’… π’Œ βˆ™ π’ˆπ’“π’‚π’…

𝟏

𝒓 = 𝟎 where π’Œ is the unit vector in the direction of OZ.

Solution: Here π‘Ÿ = π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ so that π‘Ÿ = π‘₯2 + 𝑦2 + 𝑧2

Now π‘”π‘Ÿπ‘Žπ‘‘ 1

π‘Ÿ= 𝑖

πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§

1

π‘Ÿ= 𝑖

πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ π‘₯2 + 𝑦2 + 𝑧2 βˆ’

1

2

= βˆ’1

2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’

3

2(2π‘₯ 𝑖 + 2𝑦 𝑗 + 2𝑧 π‘˜ ) = βˆ’1

π‘Ÿ3 π‘Ÿ

π‘”π‘Ÿπ‘Žπ‘‘ π‘˜ βˆ™ π‘”π‘Ÿπ‘Žπ‘‘ 1

π‘Ÿ = π‘”π‘Ÿπ‘Žπ‘‘ βˆ’

1

π‘Ÿ3 𝑧 = βˆ’π‘”π‘Ÿπ‘Žπ‘‘ 𝑧

π‘₯2+𝑦2+𝑧2 3/2

=3𝑧π‘₯

π‘₯2+𝑦2+𝑧2 5/2𝑖 +

3𝑧𝑦

π‘₯2+𝑦2+𝑧2 5/2𝑗 +

π‘₯2+𝑦2βˆ’2𝑧2

π‘₯2+𝑦2+𝑧2 5/2π‘˜ … (1)

And π‘π‘’π‘Ÿπ‘™ π‘˜ Γ— π‘”π‘Ÿπ‘Žπ‘‘ 1

π‘Ÿ = π‘π‘’π‘Ÿπ‘™ π‘˜ Γ— βˆ’

1

π‘Ÿ3 π‘Ÿ = π‘π‘’π‘Ÿπ‘™ 1

π‘Ÿ3 𝑦 𝑖 βˆ’ π‘₯ 𝑗

= βˆ’3𝑧π‘₯

π‘₯2+𝑦2+𝑧2 5/2𝑖 βˆ’

3𝑧𝑦

π‘₯2+𝑦2+𝑧2 5/2𝑗 βˆ’

π‘₯2+𝑦2βˆ’2𝑧2

π‘₯2+𝑦2+𝑧2 5/2π‘˜ … (2)

Adding (1) and (2), π‘π‘’π‘Ÿπ‘™ π‘˜ Γ— π‘”π‘Ÿπ‘Žπ‘‘ 1

π‘Ÿ + π‘”π‘Ÿπ‘Žπ‘‘ π‘˜ βˆ™ π‘”π‘Ÿπ‘Žπ‘‘

1

π‘Ÿ = 0 .

Example 46: Prove that 𝒂 βˆ™ 𝛁 𝒃 βˆ™ π›πŸ

𝒓 =

πŸ‘(𝒂 βˆ™π’“ )(𝒃 βˆ™π’“ )

π’“πŸ“βˆ’

𝒂 βˆ™π’ƒ

π’“πŸ‘, where 𝒂 and 𝒃 are constant vectors.

Solution: From example 45, βˆ‡1

π‘Ÿ= βˆ’

1

π‘Ÿ3 π‘Ÿ = βˆ’ π‘₯2 + 𝑦2 + 𝑧2 βˆ’3

2(π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ )

Let the constant vectors are π‘Ž = π‘Ž1 𝑖 + π‘Ž2 𝑗 + π‘Ž3 π‘˜ and 𝑏 = 𝑏1 𝑖 + 𝑏2 𝑗 + 𝑏3 π‘˜

So βˆ‡ 𝑏 βˆ™ βˆ‡1

π‘Ÿ = βˆ‡ βˆ’ π‘₯2 + 𝑦2 + 𝑧2 βˆ’

3

2 𝑏1π‘₯ + 𝑏2𝑦 + 𝑏3𝑧

= βˆ’ π‘₯2 + 𝑦2 + 𝑧2 βˆ’3

2 βˆ‡ 𝑏1π‘₯ + 𝑏2𝑦 + 𝑏3𝑧 βˆ’ 𝑏1π‘₯ + 𝑏2𝑦 + 𝑏3𝑧 βˆ‡ π‘₯2 + 𝑦2 + 𝑧2 βˆ’3

2

= βˆ’ π‘₯2 + 𝑦2 + 𝑧2 βˆ’3

2 𝑏1 𝑖 + 𝑏2 𝑗 + 𝑏3 π‘˜ +3 𝑏1π‘₯ + 𝑏2𝑦 + 𝑏3𝑧 π‘₯2 + 𝑦2 + 𝑧2 βˆ’5

2(π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ )

= βˆ’π‘

π‘Ÿ3+

3 𝑏 βˆ™π‘Ÿ π‘Ÿ

π‘Ÿ5

Page 37: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

37

Now π‘Ž βˆ™ βˆ‡ 𝑏 βˆ™ βˆ‡1

π‘Ÿ = π‘Ž βˆ™ βˆ’

𝑏

π‘Ÿ3 +3 𝑏 βˆ™π‘Ÿ π‘Ÿ

π‘Ÿ5 =3(π‘Ž βˆ™π‘Ÿ )(𝑏 βˆ™π‘Ÿ )

π‘Ÿ5 βˆ’π‘Ž βˆ™π‘

π‘Ÿ3

Hence Proved.

ASSIGNMENT 4

1. If 𝑓 = π‘₯ + 𝑦 + 1 𝑖 + 𝑗 βˆ’ (π‘₯ + 𝑦)π‘˜ , show that 𝑓 βˆ™ π‘π‘’π‘Ÿπ‘™ 𝑓 = 0.

2. Evaluate (a) 𝑑𝑖𝑣 3π‘₯2𝑖 + 5π‘₯𝑦2𝑗 + π‘₯𝑦𝑧3π‘˜ at the point (1, 2, 3).

(b) π‘π‘’π‘Ÿπ‘™ [𝑒π‘₯𝑦𝑧 𝑖 + 𝑗 + π‘˜ ].

3. Find the value of β€˜a’ if the vector π‘Žπ‘₯2𝑦 + 𝑦𝑧 𝑖 + π‘₯𝑦2 βˆ’ π‘₯𝑧2 𝑗 + 2π‘₯𝑦𝑧 βˆ’ 2π‘₯2𝑦2 π‘˜ has zero

divergence. Find the curl of above vector which has zero divergence .

4. If 𝑣 = π‘Ÿ / π‘₯2 + 𝑦2 + 𝑧2, show that βˆ‡ βˆ™ 𝑣 = 2/ π‘₯2 + 𝑦2 + 𝑧2 and βˆ‡ Γ— 𝑣 = 0 .

5. If 𝑒 = π‘₯2 + 𝑦2 + 𝑧2 and 𝑣 = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ , show that 𝑑𝑖𝑣 𝑒 𝑣 = 5𝑒.

6. Show that each of following vectors are solenoidal:

(a) π‘₯ + 3𝑦 𝑖 + 𝑦 βˆ’ 3𝑧 𝑗 + π‘₯ βˆ’ 2𝑧 π‘˜ (b) 3𝑦4𝑧2𝑖 + 4π‘₯3𝑧2𝑗 + 3π‘₯2𝑦2π‘˜ (c) βˆ‡u Γ— βˆ‡π‘£

7. If π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ and π‘Ÿ = π‘Ÿ β‰  0, show that

(a) βˆ‡ 1/π‘Ÿ2 = βˆ’2π‘Ÿ /π‘Ÿ4; βˆ‡ βˆ™ π‘Ÿ /π‘Ÿ2 = 1/π‘Ÿ2 (b) βˆ‡ βˆ™ π‘Ÿπ‘›π‘Ÿ = (𝑛 + 3)π‘Ÿπ‘› ; βˆ‡ Γ— π‘Ÿπ‘›π‘Ÿ = 0 .

(c) βˆ‡ βˆ‡ βˆ™π‘Ÿ

π‘Ÿ = βˆ’

2

π‘Ÿ3 π‘Ÿ

8. Prove that (a) βˆ‡π‘Ž 2 = 2 π‘Ž βˆ™ βˆ‡ π‘Ž + 2π‘Ž Γ— βˆ‡ Γ— π‘Ž , where π‘Ž is the constant vector.

(b) βˆ‡ Γ— π‘Ÿ Γ— 𝑒 = π‘Ÿ βˆ‡ βˆ™ u βˆ’ 2𝑒 βˆ’ π‘Ÿ βˆ™ βˆ‡ 𝑒 .

9. (a) If βˆ… = π‘₯2 + 𝑦2 + 𝑧2 βˆ’π‘› , find the 𝑑𝑖𝑣 π‘”π‘Ÿπ‘Žπ‘‘ βˆ… and determine n if 𝑑𝑖𝑣 π‘”π‘Ÿπ‘Žπ‘‘ βˆ… = 0.

(b) Show that π‘”π‘Ÿπ‘Žπ‘‘ π‘Ÿπ‘› = 𝑛(𝑛 + 1)π‘Ÿπ‘›βˆ’2 , where π‘Ÿ2 = π‘₯2 + 𝑦2 + 𝑧2.

10. In electromagnetic theory, we have βˆ‡ βˆ™ 𝐷 = 𝜌, βˆ‡ βˆ™ 𝐻 = 0, βˆ‡ Γ— 𝐷 = βˆ’1

𝑐

πœ•π»

πœ•π‘‘, βˆ‡ Γ— 𝐻 =

1

𝑐 πœŒπ‘‰ +

πœ•π·

πœ•π‘‘ .

Prove that βˆ‡2𝐻 βˆ’1

𝑐2

πœ•2𝐻

πœ•π‘‘ 2 = βˆ’1

π‘βˆ‡ Γ— πœŒπ‘‰ and βˆ‡2𝐷 βˆ’

1

𝑐2

πœ•2𝐷

πœ•π‘‘ 2 = βˆ‡πœŒ +1

𝑐2

πœ•

πœ•π‘‘ πœŒπ‘‰ .

11. If 𝑒 = π‘₯2𝑦𝑧, 𝑣 = π‘₯𝑦 βˆ’ 3𝑧2 , find (i) βˆ‡ βˆ‡π‘’ βˆ™ βˆ‡π‘£ (ii) βˆ‡ βˆ™ βˆ‡π‘’ Γ— βˆ‡π‘£ .

12. For a solenoidal vector 𝑓 , show that π‘π‘’π‘Ÿπ‘™ π‘π‘’π‘Ÿπ‘™ π‘π‘’π‘Ÿπ‘™ π‘π‘’π‘Ÿπ‘™ 𝑓 = βˆ‡4𝑓 .

13. Calculate (i) π‘π‘’π‘Ÿπ‘™ π‘”π‘Ÿπ‘Žπ‘‘ 𝑓 , given 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯2 + 𝑦2 βˆ’ 𝑧 [BPTU 2006]

(ii) π‘π‘’π‘Ÿπ‘™(π‘π‘’π‘Ÿπ‘™ π‘Ž ), given π‘Ž = π‘₯2𝑦 𝑖 + 𝑦2𝑧 𝑗 + 𝑧2𝑦 π‘˜

14. Show that each of the following vectors are solenoidal:

(i) βˆ’π‘₯2 + 𝑦𝑧 𝑖 + 4𝑦 βˆ’ 𝑧2π‘₯ 𝑗 + (2π‘₯𝑧 βˆ’ 4𝑧) π‘˜

(ii) 3𝑦4𝑧2 𝑖 + 4π‘₯3𝑧2 𝑗 + 3π‘₯2𝑦2 π‘˜

(iii) βˆ‡πœ™ Γ— βˆ‡πœ“

INTEGRAL VECTOR CALCULUS

Page 38: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

38

17.9 INTEGRATION OF VECTORS

If two vector functions 𝑓 (𝑑) and 𝑔 (𝑑) be such that 𝑑

𝑑𝑑 𝑔 (𝑑) = 𝑓 (𝑑), then 𝑔 (𝑑) is called an integral

of 𝑓 (𝑑) with respect to a scalar variable t and we can write 𝑓 (𝑑)𝑑𝑑 = 𝑔 (𝑑).

Indefinite Integral

If 𝑐 be an arbitrary constant vector and 𝑓 𝑑 =𝑑

𝑑𝑑 𝑔 (𝑑) =

𝑑

𝑑𝑑 𝑔 𝑑 + 𝑐 , then 𝑓 (𝑑)𝑑𝑑 = 𝑔 𝑑 + 𝑐 .

This is called the indefinite integral of 𝑓 (𝑑).

Definite Integral

If 𝑑

𝑑𝑑 𝑔 (𝑑) = 𝑓 𝑑 for all values of 𝑑 in the interval π‘Ž, 𝑏 , then the definite integral of 𝑓 𝑑 between

π‘Ž and 𝑏 is defined and denoted by 𝑓 𝑑 𝑑𝑑𝑏

π‘Ž= 𝑔 (𝑑) π‘Ž

𝑏 = 𝑔 𝑏 βˆ’ 𝑔 π‘Ž .

Example 47: If π’…πŸπ’‡

π’…π’•πŸ= πŸ”π’• π’Š βˆ’ πŸπŸπ’•πŸ 𝒋 + πŸ’ 𝐜𝐨𝐬 𝒕 π’Œ , find 𝒇 , given that

𝒅𝒇

𝒅𝒕= βˆ’ π’Š βˆ’ πŸ‘ π’Œ and

𝒇 = 𝟐 π’Š + 𝒋 at 𝒕 = 𝟎.

Solution: Given that 𝑑2𝑓

𝑑𝑑2= 6𝑑 𝑖 βˆ’ 12𝑑2 𝑗 + 4 cos 𝑑 π‘˜ … (1)

Integrating (1) with respect to t,

𝑑2𝑓

𝑑𝑑2 𝑑𝑑 = 6𝑑 𝑖 βˆ’ 12𝑑2 𝑗 + 4 cos 𝑑 π‘˜ 𝑑𝑑

Implying 𝑑𝑓

𝑑𝑑 = 3𝑑2 𝑖 βˆ’ 4𝑑3 𝑗 + 4 sin 𝑑 π‘˜ + 𝑐 1 … (2)

Now, integrating (2) with respect to t,

𝑑𝑓

𝑑𝑑𝑑𝑑 = 3𝑑2 𝑖 βˆ’ 4𝑑3 𝑗 + 4 sin 𝑑 π‘˜ + 𝑐 1 𝑑𝑑

Implying 𝑓 = 𝑑3 𝑖 βˆ’ 𝑑4 𝑗 βˆ’ 4 cos 𝑑 π‘˜ + 𝑐 1𝑑 + 𝑐 2 … (3)

Also we are given that at 𝑑 = 0, 𝑑𝑓

𝑑𝑑= βˆ’ 𝑖 βˆ’ 3 π‘˜ … (4)

𝑓 = 2 𝑖 + 𝑗 … (5)

Using (2) and (4), 𝑐 1 = βˆ’ 𝑖 βˆ’ 3 π‘˜

Using (3) and (5), βˆ’4 π‘˜ + 𝑐 2 = 2 𝑖 + 𝑗 => 𝑐 2 = 2 𝑖 + 𝑗 + 4 π‘˜

Putting the values of the constant vectors 𝑐 1 & 𝑐 2 in (3), we get

𝑓 = 𝑑3 𝑖 βˆ’ 𝑑4 𝑗 βˆ’ 4 cos 𝑑 π‘˜ + βˆ’ 𝑖 βˆ’ 3 π‘˜ 𝑑 + 2 𝑖 + 𝑗 + 4 π‘˜

= 𝑑3 βˆ’ 𝑑 + 2 𝑖 + 1 βˆ’ 𝑑4 𝑗 βˆ’ 4 cos 𝑑 + 3 𝑑 + 4 π‘˜

ASSIGNMENT 5

1. For given 𝑓 𝑑 = 5𝑑2 βˆ’ 3𝑑 𝑖 + 6𝑑3 𝑗 βˆ’ 7𝑑 π‘˜ , evaluate 𝑓 𝑑 𝑑𝑑4

2.

2. Given π‘Ÿ 𝑑 = 3𝑑2 𝑖 + 𝑑 𝑗 βˆ’ 𝑑3 π‘˜ , evaluate π‘Ÿ ×𝑑2π‘Ÿ

𝑑𝑑 2 𝑑𝑑1

0.

Page 39: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

39

X O

Y

Z

3. If π‘Ÿ 𝑑 = 2 𝑖 βˆ’ 𝑗 + 2 π‘˜ , 𝑀𝑕𝑒𝑛 𝑑 = 1

3 𝑖 βˆ’ 2𝑗 + 4 π‘˜ , 𝑀𝑕𝑒𝑛 𝑑 = 2 , show that π‘Ÿ βˆ™

π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑 = 10

2

1.

4. The acceleration of a particle at any time 𝑑 β‰₯ 0 is given by 12 cos 2𝑑 𝑖 βˆ’ 8 sin 2𝑑 𝑗 + 16𝑑 π‘˜ , the

displacement and velocity are initially zero. Find the velocity and displacement at any time.

17.10 LINE INTEGRAL

Let kuzjuyiuxur

)()()()( defines a curve C joining points P1 and P2 where )(ur

is the

position vector of ),,( zyx and the value of u at P1 and P2 is u1 and u2, respectively.

Now if kAjAiAzyxA

321),,( be vector function of defined position and continuous along C,

then the integral of the tangential component of A along C from P1 to P2 written as 2

1

.P

PrdA

is

known as the line integral. Also in terms of Cartesian components, we have

2

1

2

1

)(.)(. 321

P

P

P

PkdzjdyidxkAjAiArdA

)()( 321321

2

1

C

P

PdzAdyAdxAdzAdyAdxA

If A

(vector function of the position) represents the force F

on a particle moving along C, then the

line integral represents the work done by the force F

. If C is a simple closed curve, then the integral

around C is generally written as

1P 2P

C

Fig 17.11

)(. 321 dzAdyAdxArdA

In Fluid Mechanics and Aerodynamics, the above integral is called circulation of A

about C, where

A

represents the velocity of the fluid.

Let gradA , then we have

Q

P

Q

PrdrdA

.)(.

Q

Pdzkdyjdxi

zk

yj

xi )(.

Page 40: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

40

Q

Pdz

zdy

ydx

x

PQ

Q

P

Q

Pd ][ … (1)

We see that the integral Q

PrdA

. depends on the value of at the end P and Q and not on the

particular path. In case is single valued and the integral is taken round a closed curve, the terminal

points P and Q coincide and PB .

[Because function is uniform]

The integration along a closed curve is denoted by the sign of circle in the mid of the integral sign

i.e. for a uniform function, we have

C

rd 0.)(

… (2)

The converse of the above result is also true i.e. if there exists a vector A

and its integral round

every closed curve in the region under consideration vanishes, then there exist a point function

such that gradA

.

To prove this consider any closed curve ABCD such that the integral round it is zero, so integral along

ABC must be equal to that along ADC. Similarly, the integral along ABC must be equal to that along

any curve joining A to C, i.e. independent of the path from A to C with A be a fixed point and C a

variable point. Then due to the fact that line integral is independent of the path chosen, the value of

the line integral from A to C must be a scalar point function, say i.e. C

ArdA

.

Now if d is the increment in due to a small displacement π‘‘π‘Ÿ of π‘Ÿ , then we have rdAd

.

But we already know that rdd

. , so ,.)(. rdrdA

,0.)( rdA

which is true for all rd

and hence A

.

The vector A

is called a potential vector (or gradient vector), and in cartesian component; the

condition that dzAdyAdxArdA 321.

be a perfect differential can be thrown easily into the

form

0,0,0 211332

x

A

y

A

z

A

x

A

y

A

z

A … (3)

Circulation: If A

represents the velocity of a fluid particle, then the line integral CrdA

. is called

the circulation of A

along C.

The vector point function A

, is said to be irrotational in a region, if its circulation along every

closed curve in the region is zero i.e. 0. CrdA

Page 41: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

41

Theorem: The necessary and sufficient condition for a vector point function A

to be irrotaional in a

simply connected region is the 0Acurl

at every point of the region.

Work: If A

represents the force acting on a particle moving along an arc PQ then the work done

during the small displacement rd

is equal to rdA

. . Therefore, the total work done by A

during the

displacement from P to Q is given by the line integral Q

PrdA

. .

Example 48: Evaluate the line integral (π’™πŸ + π’™π’š)𝒅𝒙 + (π’™πŸ + π’šπŸ)π’…π’š , where π‘ͺ is the square

formed by the lines π’š = ±𝟏 and 𝒙 = ±𝟏.

Solution: Curve 𝐢 is square in the π‘₯𝑦 plane where 𝑧 = 0

∴ π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 in π‘₯𝑦 plane

π‘‘π‘Ÿ = 𝑑π‘₯𝑖 + 𝑑𝑦𝑗 … (1)

Now 𝐹. π‘‘π‘Ÿ 𝐢

= π‘₯2 + π‘₯𝑦 𝑑π‘₯ + π‘₯2 + 𝑦2 𝑑𝑦

Path of the integration is shown in figure 17.12, it consists of lines

AB, BC, CD and DA. As curve C is a square, then

On AB, 𝑦 = βˆ’1 β‡’ 𝑑𝑦 = 0 and π‘₯ varies from βˆ’1 to 1

On BC, π‘₯ = 1 β‡’ 𝑑π‘₯ = 0 and 𝑦 varies from βˆ’1 to 1

On CD, 𝑦 = 1 β‡’ 𝑑𝑦 = 0 and π‘₯ varies from 1 to βˆ’1

On DA, π‘₯ = βˆ’1 β‡’ 𝑑π‘₯ = 0 and 𝑦 varies from 1 to βˆ’1

𝐹 . π‘‘π‘Ÿ 𝐢

= π‘₯2 βˆ’ π‘₯ 𝑑π‘₯𝐴𝐡

+ 1 + 𝑦2 𝑑𝑦𝐡𝐢

+ π‘₯2 + π‘₯ 𝑑π‘₯𝐢𝐷

+ 1 + 𝑦2 𝑑𝑦𝐷𝐴

= π‘₯2 βˆ’ π‘₯ 𝑑π‘₯1

βˆ’1+ 1 + 𝑦2 𝑑𝑦

1

βˆ’1+ π‘₯2 + π‘₯ 𝑑π‘₯

βˆ’1

1+ 1 + 𝑦2 𝑑𝑦

βˆ’1

1

= π‘₯3

3βˆ’

π‘₯2

2 βˆ’1

1

+ 1 + 𝑦2 𝑑𝑦1

βˆ’1+

π‘₯3

3+

π‘₯2

2

1

βˆ’1

βˆ’ 1 + 𝑦2 𝑑𝑦1

βˆ’1

= 1

3βˆ’

1

2+

1

3+

1

2 + βˆ’

1

3+

1

2βˆ’

1

3βˆ’

1

2 = 0

Example 49: If 𝑭 = πŸ‘π’™π’š π’Š βˆ’ π’šπŸπ’‹ , evaluate 𝑭 . 𝒅𝒓 π‘ͺ

where π‘ͺ is the arc of the parabola π’š = πŸπ’™πŸ

from (𝟎, 𝟎) to (𝟏, 𝟐).

Solution: Because the integration is performed in the π‘₯𝑦-plane (𝑧 = 0), we take

π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 so that π‘‘π‘Ÿ = 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗

∴ 𝐹 . π‘‘π‘Ÿ = 3π‘₯𝑦 𝑖 βˆ’ 𝑦2𝑗 . 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 = 3π‘₯𝑦 𝑑π‘₯ βˆ’ 𝑦2𝑑𝑦

On the curve C: 𝑦 = 2π‘₯2 from (0, 0) to (1, 2)

Page 42: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

42

𝐹 . π‘‘π‘Ÿ = 3π‘₯ 2π‘₯2 𝑑π‘₯ βˆ’ 2π‘₯2 24π‘₯ 𝑑π‘₯ = (6π‘₯3 βˆ’ 16π‘₯5)𝑑π‘₯

Also x varies from 0 to 1.

𝐹 . π‘‘π‘Ÿ 𝐢

= (6π‘₯3 βˆ’ 16π‘₯5)𝑑π‘₯1

0=

6π‘₯4

4βˆ’

16π‘₯6

6

0

1

=3

2βˆ’

8

3= βˆ’

7

6

Note: If the curve is traversed in the opposite direction, that is from (1, 2) to (0, 0), the value of the integral

would be 7

6.

Example 50: A vector field is given by 𝑭 = π¬π’π§π’š π’Š + 𝒙(𝟏 + 𝐜𝐨𝐬 π’š)𝒋 . Evaluate the line integral

over the circular path given by π’™πŸ + π’šπŸ = π’‚πŸ, 𝒛 = 𝟎. [PTU 2003]

Solution: The parametric equations of the circular path are π‘₯ = π‘Ž cos 𝑑 , 𝑦 = π‘Ž sin 𝑑 , 𝑧 = 0 where 𝑑

varies from 0 to 2πœ‹. Since the particle moves in the π‘₯𝑦-plane (𝑧 = 0), we can take π‘Ÿ = π‘₯ 𝑖 + 𝑦 𝑗 .

𝐹 . π‘‘π‘Ÿ 𝐢

= sin 𝑦 𝑖 + π‘₯(1 + cos 𝑦)𝑗 𝐢

. 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗

= sin 𝑦 𝑑π‘₯ + π‘₯ 1 + cos 𝑦 𝑑𝑦 𝐢

= sin 𝑦 𝑑π‘₯ + π‘₯ cos 𝑦 𝑑𝑦 + π‘₯ 𝑑𝑦 𝐢

= 𝑑(π‘₯ sin 𝑦)𝐢

+ π‘₯ 𝑑𝑦𝐢

= 𝑑 a cos 𝑑 sin a sin 𝑑 𝑑𝑑 + a cos 𝑑 . a cos 𝑑 𝑑𝑑2πœ‹

0

2πœ‹

0

= a cos 𝑑 sin(a sin 𝑑) 02πœ‹ + π‘Ž2 cos2 𝑑 𝑑𝑑

2πœ‹

0

=π‘Ž2

2 (1 + cos 2𝑑)𝑑𝑑

2πœ‹

0=

π‘Ž2

2 𝑑 +

sin 2𝑑

2

0

2πœ‹

=π‘Ž2

2 2πœ‹ = πœ‹π‘Ž2

Example 51: Compute the line integral (π’šπŸπ’…π’™ βˆ’ π’™πŸπ’…π’š)π‘ͺ

about the triangle whose vertices are

(𝟏, 𝟎), (0, 1) and (βˆ’πŸ, 𝟎). [NIT Uttrakhand 2011]

Solution: Here the closed curve C is a triangle ABC.

On AB: Equation of line AB is

𝑦 βˆ’ 0 =1βˆ’0

0βˆ’1(π‘₯ βˆ’ 1) β‡’ 𝑦 = 1 βˆ’ π‘₯

∴ 𝑑𝑦 = βˆ’π‘‘π‘₯ and π‘₯ varies from 1 to 0.

On BC: Equation of line BC is

𝑦 βˆ’ 1 =0βˆ’1

βˆ’1βˆ’0(π‘₯ βˆ’ 0) β‡’ 𝑦 = 1 + π‘₯

∴ 𝑑𝑦 = 𝑑π‘₯ and π‘₯ varies from 0 to -1.

On CA: 𝑦 = 0. Therefore, 𝑑𝑦 = 0 and π‘₯ varies from -1 to 1.

𝑦2𝑑π‘₯ βˆ’ π‘₯2𝑑𝑦 = 𝑦2𝑑π‘₯ βˆ’ π‘₯2𝑑𝑦 𝐴𝐡𝐢

+ 𝑦2𝑑π‘₯ βˆ’ π‘₯2𝑑𝑦 𝐡𝐢

+ 𝑦2𝑑π‘₯ βˆ’ π‘₯2𝑑𝑦 𝐢𝐴

= (1 βˆ’ π‘₯)2𝑑π‘₯ βˆ’ π‘₯2(βˆ’π‘‘π‘₯) 0

1+ (1 + π‘₯)2𝑑π‘₯ βˆ’ π‘₯2𝑑π‘₯ + 0 𝑑π‘₯

1

βˆ’1

βˆ’1

0

Page 43: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

43

= 2π‘₯2 βˆ’ 2π‘₯ + 1 𝑑π‘₯0

1+ 2π‘₯ + 1 𝑑π‘₯

βˆ’1

0+ 0

= 2π‘₯3

3βˆ’

2π‘₯2

2+ π‘₯

1

0

+ 2π‘₯2

2+ π‘₯

0

βˆ’1

= βˆ’2

3+ 1 βˆ’ 1 + 1 βˆ’ 1 = βˆ’

2

3

Example 52: If 𝑭 = πŸ‘π’™πŸ + πŸ”π’š π’Š βˆ’ πŸπŸ’π’šπ’›π’‹ + πŸπŸŽπ’™π’›πŸπ’Œ , evaluate 𝑭 . 𝒅𝒓 π‘ͺ

where

(i) π‘ͺ is the line joining the point (𝟎, 𝟎, 𝟎) to (𝟏, 𝟏, 𝟏)

(ii) π‘ͺ is given by 𝒙 = 𝒕, π’š = π’•πŸ, 𝒛 = π’•πŸ‘ from the point (𝟎, 𝟎, 𝟎) to (𝟏, 𝟏, 𝟏).

Solution: (i) Equation of line joining (0,0,0) to (1,1,1) is

π‘₯βˆ’0

1βˆ’0=

π‘¦βˆ’0

1βˆ’0=

π‘§βˆ’0

1βˆ’0= 𝑑 (say)

∴ Parametric equations of the line C are π‘₯ = 𝑑, 𝑦 = 𝑑, 𝑧 = 𝑑; 0 ≀ 𝑑 ≀ 1

∴ π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ = 𝑑𝑖 + 𝑑𝑗 + π‘‘π‘˜

β‡’ π’…π‘Ÿ

𝒅𝒕= 𝑖 + 𝑗 + π‘˜

Now 𝐹 = 3π‘₯2 + 6𝑦 𝑖 βˆ’ 14𝑦𝑧𝑗 + 20π‘₯𝑧2π‘˜ = 3𝑑2 + 6𝑑 𝑖 βˆ’ 14𝑑2𝑗 + 20𝑑3π‘˜

𝐹 . π‘‘π‘Ÿ 𝐢

= 𝐹 .π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝐢

= 3𝑑2 + 6𝑑 𝑖 βˆ’ 14𝑑2𝑗 + 20𝑑3π‘˜ . 𝑖 + 𝑗 + π‘˜ 𝑑𝑑𝐢

= 3𝑑2 + 6𝑑 βˆ’ 14𝑑2 + 20𝑑3 𝑑𝑑1

0

= 3𝑑3

3+

6𝑑2

2βˆ’

14𝑑3

3+

20𝑑4

4

0

1

= 1 + 3 βˆ’14

3+ 5 =

13

3

(ii) Here the curve C is given by π‘₯ = 𝑑, 𝑦 = 𝑑2 , 𝑧 = 𝑑3 from the point (0,0,0) to (1,1,1)

∴ π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ = 𝑑𝑖 + 𝑑2𝑗 + 𝑑3π‘˜

β‡’ π’…π‘Ÿ

𝒅𝒕= 𝑖 + 2𝑑 𝑗 + 3𝑑2 π‘˜

Now 𝐹 = 3π‘₯2 + 6𝑦 𝑖 βˆ’ 14𝑦𝑧𝑗 + 20π‘₯𝑧2π‘˜ = 9𝑑2𝑖 βˆ’ 14𝑑5𝑗 + 20𝑑7π‘˜

𝐹 . π‘‘π‘Ÿ 𝐢

= 𝐹 .π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝐢

= 9𝑑2𝑖 βˆ’ 14𝑑5𝑗 + 20𝑑7π‘˜ . 𝑖 + 2𝑑 𝑗 + 3𝑑2 π‘˜ 𝑑𝑑𝐢

= 9𝑑2 βˆ’ 28𝑑6 + 60𝑑9 𝑑𝑑1

0

= 9𝑑3

3βˆ’

28𝑑7

7+

60𝑑10

10

0

1

= 3 βˆ’ 4 + 6 = 5

Example 53: Find the circulation of 𝑭 around the curve π‘ͺ where 𝑭 = π’šπ’Š + 𝒛𝒋 + π’™π’Œ and π‘ͺ is the

circle π’™πŸ + π’šπŸ = 𝟏, 𝒛 = 𝟎.

Page 44: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

44

Solution: Circulation of 𝐹 along the curve 𝐢 is 𝐹 . π‘‘π‘Ÿ 𝐢

Equation of circle is π‘₯2 + 𝑦2 = 1, 𝑧 = 0

Its parameteric equations are π‘₯ = cos ΞΈ , 𝑦 = sin ΞΈ , 𝑧 = 0

Now π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜ = cos ΞΈ 𝑖 + sin ΞΈ 𝑗 + 0π‘˜ so that

π‘‘π‘Ÿ = βˆ’ sin ΞΈ 𝑖 + cos ΞΈ 𝑗 + 0π‘˜ 𝑑θ

Also 𝐹 = 𝑦𝑖 + 𝑧𝑗 + π‘₯π‘˜ = sin ΞΈ 𝑖 + 0𝑗 + cos ΞΈπ‘˜

∴ 𝐹 . π‘‘π‘Ÿ 𝐢

= sin ΞΈ 𝑖 + 0𝑗 + cos ΞΈπ‘˜ .𝐢

βˆ’ sin ΞΈ 𝑖 + cos ΞΈ 𝑗 + 0π‘˜ 𝑑θ

= βˆ’ sin2 ΞΈ2πœ‹

0 π‘‘πœƒ (since along the circle, πœƒ varies from 0 to 2πœ‹)

= βˆ’ 1βˆ’cos 2ΞΈ

2

2πœ‹

0𝑑θ = βˆ’

ΞΈ

2βˆ’

sin 2ΞΈ

4

0

2Ο€

= βˆ’ 2Ο€

2βˆ’ 0 βˆ’ (0 βˆ’ 0) = βˆ’Ο€

Example 54: Find the work done in moving a particle once round a circle π‘ͺ in the π’™π’š plane, if

the circle has its centre at the origin and radius 2 units and the force field is given as

𝑭 = πŸπ’™ βˆ’ π’š + πŸπ’› π’Š + 𝒙 + π’š βˆ’ 𝒛 𝒋 + (πŸ‘π’™ βˆ’ πŸπ’š βˆ’ πŸ“π’›)π’Œ .

Solution: Equation of a circle having centre (0, 0) with radius 2 in π‘₯𝑦 plane is π‘₯2 + 𝑦2 = 4 .

Parametric equations of this circle are π‘₯ = 2 cos 𝑑 , 𝑦 = 2 sin 𝑑 , 𝑧 = 0.

Since integration is to be performed around a circle in π‘₯𝑦 plane,

∴ π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 = 2 cos 𝑑 𝑖 + 2 sin 𝑑 𝑗 β‡’ π‘‘π‘Ÿ

𝑑𝑑= βˆ’2 sin 𝑑 𝑖 + 2 cos 𝑑 𝑗

Work done, 𝐹 .π‘‘π‘Ÿ

𝑑𝑑 𝑑𝑑

𝐢

= 2π‘₯ βˆ’ 𝑦 + 2𝑧 𝑖 + π‘₯ + 𝑦 βˆ’ 𝑧 𝑗 + (3π‘₯ βˆ’ 2𝑦 βˆ’ 5𝑧)π‘˜ . βˆ’2 sin 𝑑 𝑖 + 2 cos 𝑑 𝑗 𝑑𝑑

= 4 cos 𝑑 βˆ’ 2 sin 𝑑 𝑖 + 2 cos 𝑑 + 2 sin 𝑑 𝑗 + (6 cos 𝑑 βˆ’ 4 sin 𝑑)π‘˜ . βˆ’2 sin 𝑑 𝑖 + 2 cos 𝑑 𝑗 𝑑𝑑

In moving round the circle, 𝑑 varies from 0 to 2πœ‹

∴ Work done = 4 cos 𝑑 βˆ’ 2 sin 𝑑 (βˆ’2 sin 𝑑) + 2 cos 𝑑 + 2 sin 𝑑 (2 cos 𝑑) 2πœ‹

0𝑑𝑑

= βˆ’8 cos 𝑑 sin 𝑑 + 4 sin2 𝑑 + 4 cos2 𝑑 + 4 sin 𝑑 cos 𝑑 2πœ‹

0𝑑𝑑

= 4 βˆ’ 4 sin 𝑑 cos 𝑑 2πœ‹

0𝑑𝑑 = 4𝑑 βˆ’ 4

sin 2 𝑑

2

0

2πœ‹

= 8πœ‹ βˆ’ 2 sin2 2πœ‹ βˆ’ (0 βˆ’ 0) = 8πœ‹

ASSIGNMENT 6

Page 45: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

45

1. Using the line integral, compute the work done by the force 𝐹 = 2𝑦 + 3 𝑖 + π‘₯𝑧 𝑗 + (𝑦𝑧 βˆ’ π‘₯)π‘˜ ,

when it moves a particle from (0,0,0) to (2,1,1) along the curve π‘₯ = 2𝑑2 , 𝑦 = 𝑑, 𝑧 = 𝑑3.

2. Find the work done in moving a particle in the force field 𝐹 = 3π‘₯2𝑖 + 2π‘₯𝑧 βˆ’ 𝑦 𝑗 + π‘§π‘˜ , along

(a) the straight line from (0,0,0) to (2,1,3).

(b) the curve defined by π‘₯2 = 4𝑦, 3π‘₯3 = 8𝑧 from π‘₯ = 0 to π‘₯ = 2.

3. If C is a simple closed curve in the π‘₯𝑦 plane not enclosing the origin, show that 𝐹 . π‘‘π‘Ÿ 𝐢

= 0,

where 𝐹 =𝑦𝑖 βˆ’π‘₯𝑗

π‘₯2+𝑦2.

4. If 𝑓 = 5π‘₯𝑦 βˆ’ 6π‘₯2 𝑖 + 2𝑦 βˆ’ 4π‘₯ 𝑗 , evaluate 𝑓 . π‘‘π‘Ÿ 𝐢

along the curve C in xy-plane, 𝑦 = π‘₯3

from the point 1, 1 to (2, 8).

5. Evaluate (π‘₯𝑦 + 𝑧2)𝑑𝑠𝐢

where C is the arc of the helix π‘₯ = cos 𝑑 , 𝑦 = sin 𝑑 , 𝑧 = 𝑑 which joins

the points 1, 0, 0 π‘Žπ‘›π‘‘ (βˆ’1, 0, πœ‹).

6. If 𝐹 = 2𝑦𝑖 βˆ’ 𝑧𝑗 + π‘₯π‘˜ , evaluate 𝐹 𝐢

Γ— π‘‘π‘Ÿ along the curve π‘₯ = cos 𝑑, 𝑦 = sin 𝑑, 𝑧 = 2 cos 𝑑 from

𝑑 = 0 to 𝑑 =πœ‹

2.

17.11 SURFACE INTEGRALS AND FLUX

An integral which is to be evaluated over a surface is called a surface integral. Suppose 𝑆 is a surface

of finite area. Divide the area 𝑆 into n sub-areas 𝛿𝑆1, 𝛿𝑆2, …… , 𝛿𝑆𝑛 .

In each area 𝛿𝑆𝑖 , choose an arbitrary point 𝑃𝑖 π‘₯𝑖 , 𝑦𝑖 , 𝑧𝑖 . Let πœ‘ define

a scalar point function over the area 𝑆.

Now from the sum πœ‘ 𝑃𝑖 𝛿𝑆𝑖𝑛𝑖=1 , where πœ‘ 𝑃𝑖 = πœ‘ π‘₯𝑖 , 𝑦𝑖 , 𝑧𝑖

Now let us take the limit of the sum as 𝑛 β†’ ∞, each sub-area 𝛿𝑆𝑖

reduces to a point and the limit if it exists is called the surface

integral of πœ‘ over 𝑆 and is denoted by π‘‘π‘†πœ‘

.

Note: If 𝑆 is piecewise smooth then the function πœ‘ π‘₯, 𝑦, 𝑧 is continuous over 𝑆 and then the limit exists and is

independent of sub-divisions and choice of the point 𝑃𝑖 .

Flux: Suppose 𝑆 is a piecewise smooth surface so that the vector function 𝐹 defined over 𝑆 is

continuous over 𝑆. Let 𝑃 be any point of the surface 𝑆 and suppose 𝑛 is a unit vector at 𝑃 in the

direction of outward drawn normal to the surface 𝑆 at 𝑃. Then the component of 𝐹 along 𝑛 is 𝐹 . 𝑛 and

the integral of 𝐹 . 𝑛 over 𝑆 is called the surface integral of 𝐹 over 𝑆 and is denoted by 𝐹 . 𝑛 𝑑𝑆𝑆

. It is

also called flux of 𝐹 over 𝑆.

Different Forms of Surface Integral

(i) Flux of 𝐹 over 𝑆 = 𝐹 . 𝑛 𝑑𝑆𝑆

… (1)

Page 46: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

46

Now let 𝑑𝑆 denote a vector (called vector area) whose magnitude is that of differential of

surface area i.e., 𝑑𝑆 and whose direction is that of 𝑛 . Then clearly

𝑑𝑆 = 𝑛 𝑑𝑆

From (1), flux of 𝐹 over 𝑆 = 𝐹 . 𝑑𝑆 𝑆

…. (2)

(ii) Suppose outward drawn normal to the surface 𝑆 at 𝑃 makes angles 𝛼, 𝛽, 𝛾 with the

positive direction of axes and if 𝑙, π‘š, 𝑛 denote the direction cosines of this outward drawn

normal, then

𝑙 = cos 𝛼 , π‘š = cos 𝛽 , 𝑛 = cos 𝛾

Therefore, 𝑛 = cos 𝛼 𝑖 + cos 𝛽 𝑗 + cos 𝛾 π‘˜

If 𝐹 = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3π‘˜ then 𝐹 . 𝑛 = 𝐹1 cos 𝛼 + 𝐹2 cos 𝛽 + 𝐹3 cos 𝛾

∴ From (1), flux of 𝐹 over 𝑆 = 𝐹1 cos 𝛼 + 𝐹2 cos 𝛽 + 𝐹3 cos 𝛾 𝑑𝑆𝑆

… (3)

Now 𝑑𝑆 cos 𝛼 is the projection of area 𝑑𝑆 on the 𝑦𝑧 plane, therefore 𝑑𝑆 cos 𝛼 = 𝑑𝑦𝑑𝑧.

Similarly 𝑑𝑆 cos 𝛽 and 𝑑𝑆 cos 𝛾 are the projections of the area 𝑑𝑆 on the 𝑧π‘₯ and π‘₯𝑦 plane

respectively and therefore 𝑑𝑆 cos 𝛽 = 𝑑𝑧𝑑π‘₯, 𝑑𝑆 cos 𝛾 = 𝑑π‘₯𝑑𝑦.

∴ From (3), 𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 1𝑑𝑦𝑑𝑧 + 𝐹 2𝑑𝑧𝑑π‘₯ + 𝐹 3𝑑π‘₯𝑑𝑦𝑆

… (4)

Note: In order to evaluate surface integral it is convenient to express them as double integrals by

taking the projection of surface 𝑆 on one of the coordinate planes. This will happen only if any line

perpendicular to co-ordinate plane chosen meets the surface in one point and not more than one

point. Surface S is divided into sub surfaces, if above requirement is not met, so that sub surfaces

may satisfy the above requirement.

(iii) Suppose surface 𝑆 is such that any line

perpendicular to π‘₯𝑦 plane does not meet 𝑆 in more

than one point. Let the equation of surface 𝑆 be

𝑍 = 𝑕(π‘₯, 𝑦).

Let 𝑅1 denotes the orthogonal projection of 𝑆 on the

π‘₯𝑦 plane. Then projection of 𝑑𝑆 on the π‘₯𝑦 plane

= 𝑑𝑆 cos 𝛾 , where 𝛾 is the acute angle which the

normal to the surface 𝑆 makes with positive

direction of Z-axis.

∴ 𝑑𝑆 cos 𝛾 = 𝑑π‘₯𝑑𝑦 … (5)

But cos 𝛾 = 𝑛 .π‘˜

𝑛 = 𝑛 . π‘˜

Therefore from (5), 𝑑𝑆 =𝑑π‘₯ 𝑑𝑦

𝑛 .π‘˜ … (6)

Thus 𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 . 𝑛 𝑅1

𝑑π‘₯ 𝑑𝑦

𝑛 .π‘˜ … (7)

Similarly we have, 𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 . 𝑛 𝑅2

𝑑𝑦 𝑑𝑧

𝑛 .𝑖 … (8)

𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 . 𝑛 𝑅3

𝑑𝑧 𝑑π‘₯

𝑛 .𝑗 … (9)

where 𝑅2, 𝑅3 are the projections of 𝑆 on 𝑧π‘₯ and π‘₯𝑦 planes, respectively.

Page 47: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

47

Example 55: Evaluate 𝑭 . 𝒏 𝒅𝑺𝑺

where 𝑭 = 𝒛 π’Š + 𝒙 𝒋 + πŸ‘π’šπŸπ’› π’Œ and S is the surface of the

cylinder π’™πŸ + π’šπŸ = πŸπŸ” included in the first octant between 𝒛 = 𝟎 and 𝒛 = πŸ“.

Solution: A vector normal to the surface 𝑆 is given by

𝑛 = βˆ‡ π‘₯2 + 𝑦2 = 2π‘₯ 𝑖 + 2𝑦 𝑗 … (1)

∴ 𝑛 = unit vector normal to surface 𝑆 at any point π‘₯, 𝑦, 𝑧 =2π‘₯𝑖 +2𝑦𝑗

4π‘₯2+4𝑦2 … (2)

∡ π‘₯2 + 𝑦2 = 16, therefore 𝑛 =2π‘₯𝑖 +2𝑦𝑗

4(π‘₯2+𝑦2)=

2π‘₯𝑖 +2𝑦𝑗

8=

π‘₯

4𝑖 +

𝑦

4𝑗 … (3)

Now 𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 . 𝑛 𝑑π‘₯ 𝑑𝑧

𝑛 .𝑗 𝑅

(projection on π‘₯𝑦 plane can’t be taken as the surface 𝑠 is peerpendicular to π‘₯𝑦 plane)

= π‘₯𝑧

4+

π‘₯𝑦

4

𝑑π‘₯ 𝑑𝑧𝑦

4𝑅

= π‘₯𝑧

𝑦+ π‘₯ 𝑑π‘₯ 𝑑𝑧

𝑅, since from 3 , 𝑛 . 𝑗 =

𝑦

4

= π‘₯𝑧

16βˆ’π‘₯2+ π‘₯ 𝑑π‘₯ 𝑑𝑧

4

π‘₯=0

5

𝑧=0=

βˆ’π‘§

2(βˆ’2π‘₯)

16βˆ’π‘₯2+ π‘₯ 𝑑π‘₯ 𝑑𝑧

4

π‘₯=0

5

𝑧=0

= βˆ’π‘§

2

16βˆ’π‘₯2

1 2 +

π‘₯2

2 π‘₯=0

4

𝑑𝑧5

𝑧=0= (4𝑧 + 8)𝑑𝑧

5

𝑧=0=

4𝑧2

2+ 8𝑧

𝑧=0

5

= 90

Example 56: Evaluate 𝑭 . 𝒏 𝒅𝑺𝑺

where 𝑭 = πŸ”π’› π’Š βˆ’ πŸ’ 𝒋 + π’š π’Œ and S is the portion of the plane

πŸπ’™ + πŸ‘π’š + πŸ”π’› = 𝟏𝟐 in the first octant.

Solution: Vector normal to surface 𝑆 is given by

βˆ‡ 2π‘₯ + 3𝑦 + 6𝑧 = 2𝑖 + 3𝑗 + 6π‘˜

∴ 𝑛 = unit vector normal to surface 𝑆 at any point (π‘₯, 𝑦, 𝑧) =2𝑖 +3𝑗 +6π‘˜

4+9+36=

2

7𝑖 +

3

7𝑗 +

6

7π‘˜

Now 𝐹 . 𝑛 = 6𝑧 𝑖 βˆ’ 4 𝑗 + 𝑦 π‘˜ . 2

7𝑖 +

3

7𝑗 +

6

7π‘˜ =

12

7𝑧 βˆ’

12

7+

6

7𝑦

Taking projection on π‘₯𝑦 plane

𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 . 𝑛 𝑑π‘₯ 𝑑𝑦

𝑛 .π‘˜ 𝑅= 𝐹 . 𝑛

𝑑π‘₯ 𝑑𝑦

6 7 𝑅 … (1)

where 𝑅 is the region of projection of 𝑆 on π‘₯𝑦 plane. 𝑅 is bounded by x-axis, y-axis and the line

2π‘₯ + 3𝑦 = 12, 𝑧 = 0. In order to evaluate double integral in (1), y varies from 0 to 4 and x varies

from 0 to 12βˆ’3𝑦

2. Therefore from (1)

𝐹 . 𝑛 𝑑𝑆𝑆

= 2𝑧 βˆ’ 2 + 𝑦 𝑑π‘₯ 𝑑𝑦,12βˆ’3𝑦

2π‘₯=0

4

𝑦=0 Find 𝑧 from 2π‘₯ + 3𝑦 + 6𝑧 = 12

= 2 2 βˆ’π‘₯

3βˆ’

𝑦

2 βˆ’ 2 + 𝑦 𝑑π‘₯ 𝑑𝑦

12βˆ’3𝑦

2π‘₯=0

4

𝑦=0

Page 48: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

48

= 2 βˆ’2π‘₯

3 𝑑π‘₯ 𝑑𝑦

12βˆ’3𝑦

2π‘₯=0

4

𝑦=0= 2π‘₯ βˆ’

π‘₯2

3 π‘₯=0

12βˆ’3𝑦

2𝑑𝑦

4

0

= 2 Γ—12βˆ’3𝑦

2βˆ’

1

3

12βˆ’3𝑦

2

2

𝑑𝑦4

0

= 12βˆ’3𝑦 2

βˆ’6+

12βˆ’3𝑦 3

108 𝑦=0

4

=144

6βˆ’

1728

108= 24 βˆ’ 16 = 8

Example 57: 𝝋𝑺

𝒏 𝒅𝑺 where 𝝋 =πŸ‘

πŸ–π’™π’šπ’› and 𝑺 is the surface of cylinder π’™πŸ + π’šπŸ = πŸπŸ”

included in the first octant between 𝒛 = 𝟎 to 𝒛 = πŸ“.

Solution: A vector normal to the surface 𝑆 is given by

𝑛 = βˆ‡ π‘₯2 + 𝑦2 = 2π‘₯𝑖 + 2𝑦𝑗

∴ 𝑛 = unit vector normal to surface 𝑆 at any point (π‘₯, 𝑦, 𝑧) =2π‘₯𝑖 +2𝑦𝑗

4π‘₯2+4𝑦2

𝑛 =2π‘₯𝑖 +2𝑦𝑗

4(π‘₯2+𝑦2)=

2π‘₯𝑖 +2𝑦𝑗

8=

π‘₯

4𝑖 +

𝑦

4𝑗 ∡ π‘₯2 + 𝑦2 = 16

Now πœ‘ 𝑛 𝑑𝑆𝑆

= 3

8π‘₯𝑦𝑧

π‘₯

4𝑖 +

𝑦

4𝑗

𝑑π‘₯ 𝑑𝑧

𝑛 .𝑗 𝑅 …(1)

where 𝑅 is the region of projection of 𝑆 on 𝑧π‘₯ plane. Therefore, from (1)

πœ‘ 𝑛 𝑑𝑆𝑆

= 3

32π‘₯2𝑦𝑧 𝑖 +

3

32π‘₯𝑦2𝑧 𝑗

4

π‘₯=0

5

𝑧=0

𝑑π‘₯ 𝑑𝑧

𝑦 4 , where 𝑦2 = 16 βˆ’ π‘₯2

= 3

8π‘₯2𝑧 𝑖 +

3

8π‘₯𝑧 16 βˆ’ π‘₯2 𝑗

4

π‘₯=0

5

𝑧=0𝑑π‘₯ 𝑑𝑧

=3

8

π‘₯3𝑧

3 𝑖 βˆ’

𝑧

2

16βˆ’π‘₯2 3 2

3 2 𝑗

π‘₯=0

45

𝑧=0𝑑𝑍

=3

8

64

3𝑧 𝑖 +

64

3𝑧 𝑗

5

𝑧=0𝑑𝑧 = 8

𝑧2

2𝑖 +

𝑧2

2𝑗

𝑧=0

5

= 100 𝑖 + 100 𝑗

Example 58: Evaluate 𝑭 . 𝒅𝑺𝑺

where 𝑭 = π’™π’Š βˆ’ π’›πŸ βˆ’ 𝒛𝒙 𝒋 βˆ’ π’™π’šπ’Œ and 𝑺 is the triangular

surface with vertices 𝟐, 𝟎, 𝟎 , (𝟎, 𝟐, 𝟎) and (𝟎, 𝟎, πŸ’).

Solution:The triangular surface 𝑆 with vertices 2,0,0 , (0,2,0), and (0,0,4) is given by the equation

π‘₯

2+

𝑦

2+

𝑧

4= 1 β‡’ 2π‘₯ + 2𝑦 + 𝑧 = 4 … (1)

Vector normal to surface 𝑆 is given by βˆ‡ 2π‘₯ + 2𝑦 + 𝑧 = 2𝑖 + 2𝑗 + π‘˜

∴ 𝑛 = unit vector normal to surface 𝑆 at any point (π‘₯, 𝑦, 𝑧) =2𝑖 +2𝑗 +π‘˜

4+4+1=

2

3𝑖 +

2

3𝑗 +

1

3π‘˜

Now 𝐹 . 𝑛 = π‘₯𝑖 βˆ’ 𝑧2 βˆ’ 𝑧π‘₯ 𝑗 βˆ’ π‘₯π‘¦π‘˜ . 2

3𝑖 +

2

3𝑗 +

1

3π‘˜ =

2

3π‘₯ βˆ’

2

3 𝑧2 βˆ’ 𝑧π‘₯ βˆ’

1

3π‘₯𝑦

Taking projection on π‘₯𝑦 plane

Page 49: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

49

𝐹 . 𝑛 𝑑𝑆𝑆

= 𝐹 . 𝑛 𝑑π‘₯ 𝑑𝑦

𝑛 .π‘˜ 𝑅= 𝐹 . 𝑛

𝑑π‘₯ 𝑑𝑦

1 3 𝑅 … (2)

where 𝑅 is the region of projection of 𝑆 on π‘₯𝑦 plane. 𝑅 is bounded by x-axis, y-axis and the line

2π‘₯ + 2𝑦 = 4 i.e., π‘₯ + 𝑦 = 2, 𝑧 = 0. In order to integrate double integral in (2), y varies from 0 to 2

and x varies from 0 to 2 βˆ’ 𝑦. Therefore from (2)

𝐹 . 𝑛 𝑑𝑆𝑆

= 2

3π‘₯ βˆ’

2

3 𝑧2 βˆ’ 𝑧π‘₯ βˆ’

1

3π‘₯𝑦 𝑑π‘₯ 𝑑𝑦

2βˆ’π‘¦

π‘₯=0

2

𝑦=0 Find 𝑧 from 2π‘₯ + 2𝑦 + 𝑧 = 4

= 2

3π‘₯ βˆ’

2

3 4 βˆ’ 2π‘₯ βˆ’ 2𝑦 2 βˆ’ 4 βˆ’ 2π‘₯ βˆ’ 2𝑦 π‘₯ βˆ’

1

3π‘₯𝑦 𝑑π‘₯ 𝑑𝑦

2βˆ’π‘¦

π‘₯=0

2

𝑦=0

=1

3 2π‘₯ βˆ’ 2 16 + 4π‘₯2 + 4𝑦2 βˆ’ 16π‘₯ + 8π‘₯𝑦 βˆ’ 16𝑦 βˆ’ 4π‘₯ + 2π‘₯2 + 2π‘₯𝑦 βˆ’ π‘₯𝑦 𝑑π‘₯ 𝑑𝑦

2βˆ’π‘¦

π‘₯=0

2

𝑦=0

=1

3 βˆ’12π‘₯2 βˆ’ 8𝑦2 + 42π‘₯ + 32𝑦 βˆ’ 21π‘₯𝑦 βˆ’ 32 𝑑π‘₯ 𝑑𝑦

2βˆ’π‘¦

π‘₯=0

2

𝑦=0

=1

3 βˆ’4π‘₯3 βˆ’ 8π‘₯𝑦2 + 21π‘₯2 + 32π‘₯𝑦 βˆ’ 21

π‘₯2𝑦

2βˆ’ 32π‘₯

π‘₯=0

2βˆ’π‘¦

𝑑𝑦2

𝑦=0

=1

3 βˆ’4 2 βˆ’ 𝑦 3 βˆ’ 8 2 βˆ’ 𝑦 𝑦2 + 21 2 βˆ’ 𝑦 2 + 32 2 βˆ’ 𝑦 𝑦 βˆ’ 21

2βˆ’π‘¦ 2𝑦

2 βˆ’ 32 2 βˆ’ 𝑦 𝑑𝑦

2

𝑦=0

=1

3

3

2𝑦3 + 9𝑦2 + 18𝑦 βˆ’ 12 𝑑𝑦

2

𝑦=0= 38

Example 59: Evalutate 𝒇 βˆ™ 𝒏 𝑺

𝒅𝒔 where 𝒇 = πŸπ’™πŸπ’š π’Š βˆ’ π’šπŸ 𝒋 + πŸ’π’™π’›πŸ π’Œ and S is closed surface of

the region in the first octant bounded by the cylinder π’šπŸ + π’›πŸ = πŸ— and the planes 𝒙 = 𝟎, 𝒙 = 𝟐,

π’š = 𝟎 𝐚𝐧𝐝 𝒛 = 𝟎.

Solution: The given closed surface S is piecewise smooth and is

comprised of S1 –the rectangular face OAEB in xy-plane; S2 –the

rectangular face OADC in xz-plane; S3 – the circular quadrant ABC

in yz-plane; S4 – the circular quadrant AED and S5 – the curved

surface BCDE of the cylinder in the first octant (see Fig. 17.16).

∴ 𝑓 βˆ™ 𝑛 𝑆

𝑑𝑠 = 𝑓 βˆ™ 𝑛 𝑆1

𝑑𝑠 + 𝑓 βˆ™ 𝑛 𝑆2

𝑑𝑠 + 𝑓 βˆ™ 𝑛 𝑆3

𝑑𝑠

+ 𝑓 βˆ™ 𝑛 𝑆4

𝑑𝑠 + 𝑓 βˆ™ 𝑛 𝑆5

𝑑𝑠 … (1)

Now 𝑓 βˆ™ 𝑛 𝑆1

𝑑𝑠 = 2π‘₯2𝑦 𝑖 βˆ’ 𝑦2 𝑗 + 4π‘₯𝑧2 π‘˜ βˆ™ βˆ’π‘˜ 𝑆1

𝑑𝑠 = βˆ’4 π‘₯𝑧2𝑆1

𝑑𝑠 = 0

(π‘Žπ‘  𝑧 = 0 𝑖𝑛 π‘₯𝑦 βˆ’ π‘π‘™π‘Žπ‘›π‘’)

Similarly, 𝑓 βˆ™ 𝑛 𝑆2

𝑑𝑠 = 0 and 𝑓 βˆ™ 𝑛 𝑆3

𝑑𝑠

𝑓 βˆ™ 𝑛 𝑆4

𝑑𝑠 = 2π‘₯2𝑦 𝑖 βˆ’ 𝑦2 𝑗 + 4π‘₯𝑧2 π‘˜ βˆ™ 𝑖 𝑆4

𝑑𝑠 = 2π‘₯2𝑦𝑆4

𝑑𝑠

= 8𝑦 𝑑𝑦𝑑𝑧 9βˆ’π‘§2

0

3

0= 4 (9 βˆ’ 𝑧2)𝑑𝑧

3

0= 72

To find 𝑛 in S5 , we note that βˆ‡ 𝑦2 + 𝑧2 βˆ’ 9 = 2𝑦 𝑗 + 2π‘§π‘˜ ,

Implying 𝑛 =2𝑦 𝑗 +2π‘§π‘˜

4 𝑦2+𝑧2 =

𝑦 𝑗 +π‘§π‘˜

3 and 𝑛 βˆ™ π‘˜ =

𝑧

3 so that 𝑑𝑠 = 𝑑π‘₯𝑑𝑦/(𝑧/3) (π‘Žπ‘  𝑦2 + 𝑧2 = 9)

Page 50: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

50

𝑓 βˆ™ 𝑛 𝑆5

𝑑𝑠 = βˆ’π‘¦3+4π‘₯𝑧3

3 𝑑π‘₯𝑑𝑦/(𝑧/3)

3

0

2

0=

βˆ’π‘¦3

𝑧+ 4π‘₯𝑧2 𝑑π‘₯𝑑𝑦

3

0

2

0

Now putting 𝑦 = 3 sin πœƒ , 𝑧 = 3 cos πœƒ ∴ 𝑑𝑦 = 3 cos πœƒ π‘‘πœƒ

βˆ’27 sin 3 πœƒ

3 cos πœƒ+ 4π‘₯ (9 cos2 πœƒ) 3 cos πœƒ π‘‘πœƒπ‘‘π‘₯

πœ‹

20

2

0

ASSIGNMENT 7

1. If velocity vector is 𝐹 = 𝑦 𝑖 + 2 𝑗 + π‘₯𝑧 π‘˜ m/sec., show that the flux of water through the

parabolic cylinder 𝑦 = π‘₯2, 0 ≀ π‘₯ ≀ 3, 0 ≀ 𝑧 ≀ 2 is 69 π‘š3/𝑠𝑒𝑐.

2. Evaluate 𝐹 . 𝑛 𝑑𝑆𝑆

where 𝐹 = π‘₯ + 𝑦2 𝑖 βˆ’ 2π‘₯ 𝑗 + 2𝑦𝑧 π‘˜ and S is the surface of the plane

2π‘₯ + 𝑦 + 2𝑧 = 6 in the first octant.

3. If 𝐹 = 4π‘₯𝑧 𝑖 βˆ’ 𝑦2 𝑗 + 𝑦𝑧 π‘˜ ; evaluate 𝐹 . 𝑛 𝑑𝑆𝑆

, where S is the surface of the cube bounded by

π‘₯ = 0, π‘₯ = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1.

4. If 𝐹 = 2𝑦 𝑖 βˆ’ 3 𝑗 + π‘₯2 π‘˜ and S is the surface of the parabolic cylinder 𝑦2 = 8π‘₯ in the first

octant bounded by the planes 𝑦 = 4 and 𝑧 = 6, show that 𝐹 βˆ™ 𝑛 𝑆

𝑑𝑠 = 132.

5. Evaluate 𝐹 βˆ™ 𝑛 𝑆

𝑑𝑠 where 𝐹 = 6𝑧 𝑖 βˆ’ 4 𝑗 + 𝑦 π‘˜ and S is the portion of the plane

2π‘₯ + 3𝑦 + 6𝑧 = 12 in the first octant.

17.12 VOLUME INTEGRALS

Suppose 𝑉 is the volume bounded by a surface 𝑆. Divide the volume 𝑉 into sub-volumes 𝛿𝑉1, 𝛿𝑉2,

…, 𝛿𝑉𝑛 . In each 𝛿𝑉𝑖 , choose an arbitrary point 𝑃𝑖 whose coordinates are (π‘₯𝑖 , 𝑦𝑖 , 𝑧𝑖). Let πœ‘ be a single

valued function defined over 𝑉. Form the sum πœ‘ 𝑃𝑖 𝛿𝑉𝑖 , where πœ‘ 𝑃𝑖 = πœ‘ π‘₯𝑖 , 𝑦𝑖 , 𝑧𝑖 .

Now let us take the limit of the sum as 𝑛 β†’ ∞, then the limit, if exists, is called the volume integral

of πœ‘ over 𝑉 and is denoted as πœ‘π‘‰

𝑑𝑉.

Likewise if 𝐹 is a vector point function defined in the given region of volume 𝑉 then vector volume

integral of 𝐹 over 𝑉 is 𝐹 𝑉

𝑑𝑉.

Note: Above volume integral becomes πœ‘π‘‰

𝑑π‘₯ 𝑑𝑦 𝑑𝑧 if we subdivide the volume 𝑉 into small

cuboids by drawing lines parallel to three co-ordinate axes because in that case 𝑑𝑉 = 𝑑π‘₯𝑑𝑦𝑑𝑧.

Example 60: If 𝑭 = πŸπ’™πŸ βˆ’ πŸ‘π’› π’Š βˆ’ πŸπ’™π’šπ’‹ βˆ’ πŸ’π’™π’Œ , evualuate 𝛁 Γ— 𝑭 𝒅𝑽𝑽

where 𝑽 is the region

bounded by the co-ordinate planes and the plane πŸπ’™ + πŸπ’š + 𝒛 = πŸ’.

Solution: Consider

Page 51: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

51

βˆ‡ Γ— 𝐹 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

2π‘₯2 βˆ’ 3𝑧 βˆ’2π‘₯𝑦 βˆ’4π‘₯

= 0 𝑖 + 𝑗 βˆ’ 2𝑦 π‘˜

Region bounded by 2π‘₯ + 2𝑦 + 𝑧 = 4 and coordinate planes such that

2π‘₯ ≀ 4, 2π‘₯ + 2𝑦 ≀ 4, 2π‘₯ + 2𝑦 + 𝑧 ≀ 4

i.e. π‘₯ ≀ 2, 𝑦 ≀ 2 βˆ’ π‘₯, 𝑧 ≀ 4 βˆ’ 2π‘₯ βˆ’ 2𝑦

∴ βˆ‡ Γ— 𝐹 𝑑𝑉𝑉

= 𝑗 βˆ’ 2𝑦 π‘˜ 𝑑𝑧 𝑑𝑦 𝑑π‘₯4βˆ’2π‘₯βˆ’2𝑦

𝑧=0

2βˆ’π‘₯

𝑦=0

2

π‘₯=0

= 𝑧 𝑗 βˆ’ 2𝑦𝑧 π‘˜ 𝑧=0

𝑧=4βˆ’2π‘₯βˆ’2𝑦 𝑑𝑦 𝑑π‘₯

2βˆ’π‘₯

𝑦=0

2

π‘₯=0

= (4 βˆ’ 2π‘₯ βˆ’ 2𝑦) 𝑗 βˆ’ 2𝑦(4 βˆ’ 2π‘₯ βˆ’ 2𝑦) π‘˜ 𝑑𝑦 𝑑π‘₯2βˆ’π‘₯

𝑦=0

2

π‘₯=0

= 4𝑦 βˆ’ 2π‘₯𝑦 βˆ’ 𝑦2 𝑗 βˆ’ 4𝑦2 βˆ’ 2π‘₯𝑦2 βˆ’4

3𝑦3 π‘˜

𝑦=0

𝑦=2βˆ’π‘₯2

π‘₯=0𝑑π‘₯

= 8 βˆ’ 4π‘₯ βˆ’ 2π‘₯ 2 βˆ’ π‘₯ βˆ’ 2 βˆ’ π‘₯ 2 𝑗 βˆ’

4(2 βˆ’ π‘₯)2 βˆ’ 2π‘₯(2 βˆ’ π‘₯)2 βˆ’4

3(2 βˆ’ π‘₯)3 π‘˜

2

π‘₯=0𝑑π‘₯

= 4 βˆ’ 4π‘₯ + π‘₯2 𝑗 βˆ’ βˆ’2

3π‘₯3 + 4π‘₯2 βˆ’ 8π‘₯ +

16

3 π‘˜

2

π‘₯=0𝑑π‘₯

= 4π‘₯ βˆ’ 2π‘₯2 +π‘₯3

3 π‘₯=0

π‘₯=2

𝑗 βˆ’ βˆ’1

6π‘₯4 +

4

3π‘₯3 βˆ’ 4π‘₯2 +

16

3π‘₯

π‘₯=0

π‘₯=2

π‘˜

=8

3𝑗 βˆ’

8

3π‘˜ =

8

3(𝑗 βˆ’ π‘˜ )

ASSIGNMENT 8

1. Evaluate Ο† 𝑑𝑉𝑉

where πœ‘ = 45π‘₯2𝑦 and 𝑉 is the region bounded by the planes 4π‘₯ + 2𝑦 + 𝑧 =

8, π‘₯ = 0, 𝑦 = 0, 𝑧 = 0.

2. If 𝐹 = 2π‘₯𝑧 𝑖 βˆ’ π‘₯ 𝑗 + 𝑦2 π‘˜ ; evaluate F 𝑑𝑉𝑉

where 𝑉 is the region bounded by the planes

π‘₯ = 0, 𝑦 = 0, π‘₯ = 2, 𝑦 = 6, 𝑧 = π‘₯2 , 𝑧 = 4.

17.13 STOKE’S THEOREM (Relation between Line and Surface Integral)

Statement: Let S be a piecewise smooth open surface bounded by a piecewise smooth simple curve

𝐢 . If 𝑓 (π‘₯, 𝑦, 𝑧) be a continuous vector function which has continuous first partial derivative in a

region of space which contains 𝑆 , then 𝑓 . π‘‘π‘Ÿ 𝐢

= π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 𝐢

𝑑𝑆 , where 𝑛 is the unit normal

vector at any point of 𝑆 and 𝐢 is trasversed in positive direction.

Direction of 𝐢 is positive if an observer walking on the boundary of 𝑆 in this direction with its head

pointing in the direction of outward normal 𝑛 to 𝑆 has the surface on the left.

We may put the statement of Stoke’s theorem in words as under:

Page 52: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

52

The line integral of the tangential component of a vector 𝑓 taken around a simple closed curve 𝐢 is

equal to the surface integral of normal component of curl of 𝑓 taken over 𝑆 having 𝐢 as its boundary.

Stoke’s Theorem in Cartesian Form:

a) Cartesian Form of Stoke’s Theorem in Plane (or Green’s Theorem in Plane)

Choose system of coordinate axes such that the plane of the surface is in π‘₯𝑦 plane and normal to the

surface 𝑆 lies along the z-axis. Normal vector is constant in this case.

Suppose 𝑓 = 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3 π‘˜

∴ 𝑓 . π‘‘π‘Ÿ 𝐢

= 𝑓 .π‘‘π‘Ÿ

𝑑𝑠 𝑑𝑠

𝐢= 𝑓 . 𝑑 𝑑𝑠

𝐢 where 𝑑 =

π‘‘π‘Ÿ

𝑑𝑠 is unit vector tangent to 𝐢.

∴ 𝑓 . π‘‘π‘Ÿ 𝐢

= 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3 π‘˜ . 𝑖 𝑑π‘₯

𝑑𝑠+ 𝑗

𝑑𝑦

𝑑𝑠+ π‘˜

𝑑𝑧

𝑑𝑠 𝑑𝑠

𝐢

= 𝑓1 𝑑π‘₯

𝑑𝑠+ 𝑓2

𝑑𝑦

𝑑𝑠+ 𝑓3

𝑑𝑧

𝑑𝑠 𝑑𝑠

𝐢

But tangent at any point lies in the π‘₯𝑦 plane, so 𝑑𝑧

𝑑𝑠= 0

∴ 𝑓 . π‘‘π‘Ÿ 𝐢

= 𝑓1 𝑑π‘₯

𝑑𝑠+ 𝑓2

𝑑𝑦

𝑑𝑠 𝑑𝑠

𝐢 … (1)

Now π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 𝑆

𝑑𝑆 = π‘π‘’π‘Ÿπ‘™ 𝑓 . π‘˜ 𝑆

𝑑𝑆 (Here normal is along Z-axis)

= πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦

𝑆𝑑π‘₯𝑑𝑦 … (2)

Using (1) and (2), Stoke’s theorem is

𝑓1𝑑π‘₯ + 𝑓2𝑑𝑦 𝐢

= πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦

𝑆𝑑π‘₯𝑑𝑦

b) Cartesian Form of Stoke’s Theorem in Space

Suppose 𝑓 = 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3π‘˜ and 𝑛 is an outward drawn normal unit vector of 𝑆 making angles 𝛼,

𝛽, 𝛾 with positive direction of axes.

∴ 𝑛 = cos 𝛼 𝑖 + cos 𝛽 𝑗 + cos 𝛾 π‘˜

Now, βˆ‡ Γ— 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑓1 𝑓2 𝑓3

𝑖. 𝑒. π‘π‘’π‘Ÿπ‘™ 𝑓 = πœ•π‘“3

πœ•π‘¦βˆ’

πœ•π‘“2

πœ•π‘§ 𝑖 +

πœ•π‘“1

πœ•π‘§βˆ’

πœ•π‘“3

πœ•π‘₯ 𝑗 +

πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦ π‘˜

∴ π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 = πœ•π‘“3

πœ•π‘¦βˆ’

πœ•π‘“2

πœ•π‘§ cos 𝛼 +

πœ•π‘“1

πœ•π‘§βˆ’

πœ•π‘“3

πœ•π‘₯ cos 𝛽 +

πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦ cos 𝛾 … (1)

Also 𝑓 . π‘‘π‘Ÿ = 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3π‘˜ . 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 π‘˜

Page 53: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

53

or 𝑓 . π‘‘π‘Ÿ = 𝑓1 𝑑π‘₯ + 𝑓2 𝑑𝑦 + 𝑓3 𝑑𝑧

Then Stoke’s theorem is

𝑓1 𝑑π‘₯ + 𝑓2 𝑑𝑦 + 𝑓3 𝑑𝑧 𝐢

= πœ•π‘“3

πœ•π‘¦βˆ’

πœ•π‘“2

πœ•π‘§ cos 𝛼 +

πœ•π‘“1

πœ•π‘§βˆ’

πœ•π‘“3

πœ•π‘₯ cos 𝛽 +

πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦ cos 𝛾

𝑆𝑑𝑆

Example 61: Verify Stoke’s theorem for 𝒇 = πŸπ’™ βˆ’ π’š π’Š βˆ’ π’šπ’›πŸπ’‹ βˆ’ π’šπŸπ’›π’Œ when 𝑺 is the upper half

of the surface of the sphere π’™πŸ + π’šπŸ + π’›πŸ = 𝟏 and π‘ͺ is its boundary.

Solution: The boundary 𝐢 of the upper half of the sphere 𝑆 is circle in the π‘₯𝑦 plane. Therefore,

parametric equations of 𝐢 are π‘₯ = cos 𝑑 , 𝑦 = sin 𝑑 , 𝑧 = 0 when 0 ≀ t ≀ 2Ο€

Now, 𝑓 . π‘‘π‘Ÿ 𝐢

= 𝑓1 𝑑π‘₯ + 𝑓2 𝑑𝑦 + 𝑓3 𝑑𝑧 𝐢

= 2π‘₯ βˆ’ 𝑦 𝑑π‘₯ βˆ’ 𝑦𝑧2𝑑𝑦 βˆ’ 𝑦2𝑧 𝑑𝑧𝐢

= 2 cos 𝑑 βˆ’ sin 𝑑 (βˆ’ sin 𝑑) 𝑑𝑑𝐢

∡ π‘₯ = cos 𝑑 , ∴ 𝑑π‘₯ = βˆ’ sin 𝑑 𝑑𝑑 and other terms of integrand become zero as 𝑧 = 0

= 2 cos 𝑑 βˆ’ sin 𝑑 + sin2 𝑑 𝑑𝑑2πœ‹

𝑑=0= 2

cos 2 𝑑

2 𝑑=0

2πœ‹

+ sin2 𝑑 𝑑𝑑2πœ‹

𝑑=0

= 1 βˆ’ 1 + 4 sin2 𝑑 π‘‘π‘‘πœ‹ 2

𝑑=0 (Property of definite integral)

= 0 + 4.1

2.πœ‹

2= πœ‹ … (1)

Now, π‘π‘’π‘Ÿπ‘™ 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

2π‘₯ βˆ’ 𝑦 βˆ’π‘¦π‘§2 βˆ’π‘¦2𝑧

= βˆ’2𝑦𝑧 + 2𝑦𝑧 𝑖 + 0 βˆ’ 0 𝑗 + 0 + 1 π‘˜ = π‘˜

Now, π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 𝑑𝑆 = π‘˜ 𝑆

. 𝑛 𝑑𝑆

= π‘˜ 𝑅

. 𝑛 𝑑π‘₯ 𝑑𝑦

𝑛 .π‘˜ [where 𝑅 is the projection of S on π‘₯𝑦 βˆ’ plane]

= 𝑑π‘₯ 𝑑𝑦𝑅

Now projection of 𝑆 on π‘₯𝑦 plane is circle π‘₯2 + 𝑦2 = 1.

= 𝑑π‘₯ 1βˆ’π‘₯2

𝑦=βˆ’ 1βˆ’π‘₯2 𝑑𝑦1

π‘₯=βˆ’1= 4 𝑑π‘₯

1βˆ’π‘₯2

𝑦=0𝑑𝑦

1

π‘₯=0 [By definite integral]

= 4 1 βˆ’ π‘₯21

π‘₯=0𝑑π‘₯ = 4

π‘₯ 1βˆ’π‘₯2

2+

1

2sinβˆ’1 π‘₯

π‘₯=0

1

= 4 1

2sinβˆ’1 1 = 4 Γ—

πœ‹

4 = πœ‹ … (2)

From (1) and (2), Stoke’s theorem is verified.

Example 62: Verify Stoke’s theorem for the function 𝒇 = π’™πŸ + π’šπŸ π’Š βˆ’ πŸπ’™π’š 𝒋 taken round the

rectangle bounded by 𝒙 = ±𝒂, π’š = 𝟎, π’š = 𝒃. [KUK 2006]

Page 54: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

54

O B A

D C

𝑦 = 0

𝑦 = 𝑏

π‘₯ = π‘Ž π‘₯ = βˆ’π‘Ž

X

Y

Solution: Given 𝑓 = π‘₯2 + 𝑦2 𝑖 βˆ’ 2π‘₯𝑦 𝑗

Therefore, 𝑓 . π‘‘π‘Ÿ = π‘₯2 + 𝑦2 𝑖 βˆ’ 2π‘₯𝑦 𝑗 . 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 = π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦

Fig. 17.17

∴ 𝑓 . π‘‘π‘Ÿ 𝐢

= π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐢

= π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐷𝐴

+ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐴𝐡

+ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐡𝐢

+ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐢𝐷

… (1)

On DA: π‘₯ = βˆ’π‘Ž, ∴ 𝑑π‘₯ = 0

∴ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐷𝐴

= βˆ’2 βˆ’π‘Ž 𝑦 𝑑𝑦𝐷𝐴

= 2π‘Žπ‘¦ 𝑑𝑦0

𝑦=𝑏= π‘Žπ‘¦2 𝑏

0 = βˆ’π‘Žπ‘2

On AB: 𝑦 = 0, ∴ 𝑑𝑦 = 0

∴ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐴𝐡

= π‘₯2 𝑑π‘₯𝐴𝐡

= π‘₯2π‘Ž

βˆ’π‘Žπ‘‘π‘₯ =

2

3π‘Ž3

On BC: π‘₯ = π‘Ž, ∴ 𝑑π‘₯ = 0

∴ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐡𝐢

= βˆ’2π‘Žπ‘¦ 𝑑𝑦𝐡𝐢

= βˆ’2π‘Žπ‘¦ 𝑑𝑦𝑏

𝑦=0= βˆ’π‘Žπ‘2

On CD: 𝑦 = 𝑏, ∴ 𝑑𝑦 = 0

∴ π‘₯2 + 𝑦2 𝑑π‘₯ βˆ’ 2π‘₯𝑦 𝑑𝑦𝐢𝐷

= π‘₯2 + 𝑏2 𝑑π‘₯𝐢𝐷

= π‘₯2 + 𝑏2 𝑑π‘₯βˆ’π‘Ž

π‘₯=π‘Ž

= π‘₯3

3+ 𝑏2π‘₯

π‘₯=π‘Ž

βˆ’π‘Ž

= βˆ’2 π‘Ž3

3+ 𝑏2π‘Ž

Substituting these values in (1), we get

𝑓 . π‘‘π‘Ÿ 𝐢

= βˆ’π‘Žπ‘2 +2

3π‘Ž3 βˆ’ π‘Žπ‘2 βˆ’ 2

π‘Ž3

3+ 𝑏2π‘Ž = βˆ’4π‘Žπ‘2 … (2)

Now, π‘π‘’π‘Ÿπ‘™ 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

π‘₯2 + 𝑦2 βˆ’2π‘₯𝑦 0

= 0 𝑖 + 0 𝑗 + βˆ’2𝑦 βˆ’ 2𝑦 π‘˜ = βˆ’4𝑦 π‘˜

Since Surface lies in xy-plane, therefore 𝑛 = π‘˜ .

Page 55: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

55

X

Y

B (1,1,0)

O (0,0,0) X

∴ π‘π‘’π‘Ÿπ‘™ 𝑓 𝑆

. 𝑛 𝑑𝑆 = βˆ’4𝑦 π‘˜ . π‘˜ 𝑆

𝑑𝑆 = βˆ’4π‘¦π‘Ž

π‘₯=βˆ’π‘Žπ‘‘π‘¦

𝑏

𝑦=0𝑑π‘₯ = βˆ’4π‘Žπ‘2 … (3)

Hence from (2) and (3), theorem is verified.

Example 63: Evaluate by Stoke’s theorem π’šπ’› 𝒅𝒙 + 𝒙𝒛 π’…π’š + π’™π’šπ’…π’› π‘ͺ

, where π‘ͺ is the curve

π’™πŸ + π’šπŸ = 𝟏, 𝒛 = π’šπŸ.

Solution: 𝑦𝑧 𝑑π‘₯ + π‘₯𝑧 𝑑𝑦 + π‘₯𝑦𝑑𝑧 𝐢

= 𝑦𝑧 𝑖 + π‘₯𝑧 𝑗 + π‘₯𝑦 π‘˜ 𝐢

. 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 π‘˜

= 𝑓 𝐢

. π‘‘π‘Ÿ , where 𝑓 = 𝑦𝑧 𝑖 + π‘₯𝑧 𝑗 + π‘₯𝑦 π‘˜

Now, π‘π‘’π‘Ÿπ‘™ 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑦𝑧 𝑧π‘₯ π‘₯𝑦

= π‘₯ βˆ’ π‘₯ 𝑖 + (𝑦 βˆ’ 𝑦) 𝑗 + 𝑧 βˆ’ 𝑧 π‘˜ = 0

∴ 𝑓 𝐢

. π‘‘π‘Ÿ = π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 𝑆

𝑑𝑆 = 0 ∡ π‘π‘’π‘Ÿπ‘™ 𝑓 = 0

Example 64: Evaluate 𝒇 π‘ͺ

. 𝒅𝒓 by Stoke’s theorem, where 𝒇 = π’šπŸ π’Š + π’™πŸ 𝒋 βˆ’ 𝒙 + 𝒛 π’Œ and π‘ͺ is

the boundary of triangle with vertices at (𝟎, 𝟎, 𝟎), (𝟏, 𝟎, 𝟎), (𝟏, 𝟏, 𝟎).

Solution: Here,

π‘π‘’π‘Ÿπ‘™ 𝑓 =

𝑖 𝑗 π‘˜

πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§

𝑦2 π‘₯2 βˆ’(π‘₯ + 𝑧)

= 0 𝑖 + 𝑗 + 2 π‘₯ βˆ’ 𝑦 π‘˜

Fig. 17.18

Here triangle is in the xy plane as z co-ordinate of each vertex of the triangle is zero.

∴ 𝑛 = π‘˜

∴ π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 = 0 𝑖 + 𝑗 + 2 π‘₯ βˆ’ 𝑦 π‘˜ . π‘˜ = 2 π‘₯ βˆ’ 𝑦

By Stoke’s theorem, 𝑓 𝐢

. π‘‘π‘Ÿ = π‘π‘’π‘Ÿπ‘™ 𝑓 . 𝑛 𝑆

𝑑𝑆

= 2 π‘₯ βˆ’ 𝑦 𝑆

𝑑𝑦 𝑑π‘₯

Note here the equation of OB is 𝑦 = π‘₯, thus for 𝑆, x varies from 0 to 1 and 𝑦 from 0 to π‘₯.

A (1,0,0)

Page 56: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

56

∴ 𝑓 𝐢

. π‘‘π‘Ÿ = 2(π‘₯ βˆ’ 𝑦)π‘₯

𝑦=0𝑑𝑦

1

π‘₯=0𝑑π‘₯ = 2 π‘₯𝑦 βˆ’

𝑦2

2 𝑦=0

π‘₯

𝑑π‘₯1

π‘₯=0

= 2 π‘₯2 βˆ’π‘₯2

2 𝑑π‘₯

1

π‘₯=0= π‘₯2𝑑π‘₯

1

π‘₯=0=

1

3

Note: Green’s Theorem in plane is special case of Stoke’s Theorem: If R is the region in xy plane

bounded by a closed curve 𝐢 then this is a special case of Stoke’s theorem. In this case 𝑛 = π‘˜ and it

is called vector form of Green’s theorem in plane. Vector form of Green’s theorem can be written as

βˆ‡ Γ— 𝑓 𝑅

. π‘˜ 𝑑𝑅 = 𝑓 𝐢

. π‘‘π‘Ÿ

Example 65: Evaluate π’š βˆ’ 𝐬𝐒𝐧 𝒙 𝒅𝒙 + 𝐜𝐨𝐬 π’™π’…π’š π‘ͺ

, where π‘ͺ is the triangle having vertices

𝟎, 𝟎 , 𝝅

𝟐, 𝟎 and

𝝅

𝟐, 𝟏 (i) directly (ii) by using Green’s theorem in plane [KUK 2011]

Solution:

(i) Here 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝐢

= 𝑦 βˆ’ sin π‘₯ 𝑖 + cos π‘₯ 𝑗 . (𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 𝐢

)

= 𝑓 𝐢

. π‘‘π‘Ÿ

where 𝑓 = 𝑦 βˆ’ sin π‘₯ 𝑖 + cos π‘₯ 𝑗 and π‘‘π‘Ÿ = 𝑑π‘₯ 𝑖 + 𝑑𝑦 𝑗 and

C is triangle OAB

Now 𝑓 𝐢

. π‘‘π‘Ÿ = 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝐢

= 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝑂𝐴

+ 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝐴𝐡

+ 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝐡𝑂

… (1)

On OA: 𝑦 = 0, ∴ 𝑑𝑦 = 0

∴ 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝑂𝐴

= βˆ’ sin π‘₯ 𝑑π‘₯ 𝑂𝐴

= βˆ’ sin π‘₯ 𝑑π‘₯πœ‹ 2

π‘₯=0= βˆ’1

On AB: π‘₯ =πœ‹

2, ∴ 𝑑π‘₯ = 0

∴ 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝐴𝐡

= 0

On BO: 𝑦 =2

πœ‹π‘₯, ∴ 𝑑𝑦 =

2

πœ‹π‘‘π‘₯

∴ 𝑦 βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝐡𝑂

= 2

πœ‹π‘₯ βˆ’ sin π‘₯ 𝑑π‘₯ + cos π‘₯

2

πœ‹π‘‘π‘₯

0

π‘₯=πœ‹ 2

= 2

πœ‹

π‘₯2

2+ cos π‘₯ +

2

πœ‹sin π‘₯

π‘₯=πœ‹ 2

0

= 1 βˆ’ πœ‹

4+

2

πœ‹

Page 57: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

57

Substituting these values in (1), we get

𝑓 𝐢

. π‘‘π‘Ÿ = βˆ’1 + 0 + 1 βˆ’πœ‹

4βˆ’

2

πœ‹= βˆ’

πœ‹

4+

2

πœ‹

(ii) By Green’s Theorem

𝑓1𝑑π‘₯ + 𝑓2𝑑𝑦 𝐢

= πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦

𝑆𝑑π‘₯𝑑𝑦

= βˆ’ sin π‘₯ βˆ’ 1 𝑑𝑦2π‘₯ πœ‹

𝑦=0𝑑π‘₯

πœ‹ 2

π‘₯=0= βˆ’ sin π‘₯ βˆ’ 1 𝑦 𝑦=0

2π‘₯ πœ‹ 𝑑π‘₯

πœ‹ 2

π‘₯=0

= βˆ’2

πœ‹π‘₯ sin π‘₯ + 1 𝑑π‘₯

πœ‹ 2

π‘₯=0= βˆ’

2

πœ‹ π‘₯ sin π‘₯ + π‘₯ 𝑑π‘₯

πœ‹ 2

π‘₯=0

= βˆ’2

πœ‹ π‘₯ βˆ’ cos π‘₯ + sin π‘₯ +

π‘₯2

2 π‘₯=0

πœ‹ 2

= βˆ’2

πœ‹ βˆ’0 + 1 +

πœ‹2

8 βˆ’ (0 + 0 + 0)

= βˆ’ 2

πœ‹+

πœ‹

4

Example 66: Verify Green’s theorem in the plane for π’™π’š + π’šπŸ 𝒅𝒙 + π’™πŸπ’…π’šπ‘ͺ

, where π‘ͺ is the

closed curve of the region bounded by π’š = 𝒙 and π’š = π’™πŸ.

Solution:

π‘₯𝑦 + 𝑦2 𝑑π‘₯ + π‘₯2𝑑𝑦𝐢

= π‘₯𝑦 + 𝑦2 𝑑π‘₯ + π‘₯2𝑑𝑦 𝑂𝐡𝐴

+ π‘₯𝑦 + 𝑦2 𝑑π‘₯ + π‘₯2𝑑𝑦 𝑂𝐴

… (1)

Along curve OBA: 𝑦 = π‘₯2 ∴ 𝑑𝑦 = 2π‘₯ 𝑑π‘₯

∴ π‘₯𝑦 + 𝑦2 𝑑π‘₯ + π‘₯2𝑑𝑦 𝑂𝐡𝐴

= π‘₯3 + π‘₯4 𝑑π‘₯ + 2π‘₯3𝑑π‘₯ 1

π‘₯=0=

19

20

Along curve AO: 𝑦 = π‘₯ ∴ 𝑑𝑦 = 𝑑π‘₯

∴ π‘₯𝑦 + 𝑦2 𝑑π‘₯ + π‘₯2𝑑𝑦 𝐴𝑂

= π‘₯2 + π‘₯2 𝑑π‘₯ + π‘₯2𝑑π‘₯ 𝐴𝑂

= 3π‘₯2 𝑑π‘₯0

π‘₯=1= βˆ’1

∴ from (1), π‘₯𝑦 + 𝑦2 𝑑π‘₯ + π‘₯2𝑑𝑦𝐢

=19

20βˆ’ 1 = βˆ’

1

20 … (2)

Here 𝑓1 = π‘₯𝑦 + 𝑦2, 𝑓2 = π‘₯2

β‡’ πœ•π‘“1

πœ•π‘¦= π‘₯ + 2𝑦,

πœ•π‘“2

πœ•π‘₯= 2π‘₯

By Green’s theorem,

𝑓1 𝑑π‘₯ + 𝑓2 𝑑𝑦 𝐢

= πœ•π‘“2

πœ•π‘₯βˆ’

πœ•π‘“1

πœ•π‘¦

𝑆𝑑𝑦 𝑑π‘₯

= 2π‘₯ βˆ’ π‘₯ βˆ’ 2𝑦 𝑆

𝑑𝑦 𝑑π‘₯

= π‘₯ βˆ’ 2𝑦 𝑑𝑦𝑦=π‘₯

𝑦=π‘₯2 𝑑π‘₯1

π‘₯=0 = π‘₯𝑦 βˆ’ 𝑦2

𝑦=π‘₯2𝑦=π‘₯

𝑑π‘₯1

π‘₯=0

= π‘₯4 βˆ’ π‘₯3 𝑑π‘₯1

π‘₯=0=

x5

5βˆ’

x4

4

x=0

x=1

=1

5βˆ’

1

4= βˆ’

1

20 … (3)

Equation (2) and (3) verify the result.

Page 58: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

58

ASSIGNMENT 9

1. Verify Green’s theorem for 3π‘₯ βˆ’ 8𝑦2 𝑑π‘₯ + 4𝑦 βˆ’ 6π‘₯𝑦 𝑑𝑦 𝐢

where C is the boundary of the

region bounded by 0,0 yx and 1 yx . [KUK 2007]

2. Verify Green’s theorem in plane for 3π‘₯2 βˆ’ 8𝑦2 𝑑π‘₯ + 4𝑦 βˆ’ 6π‘₯𝑦 𝑑𝑦 𝐢

, where C is the

boundary of the region defined by xy and 2xy . [KUK 2008]

3. Apply Green’s theorem to evaluate 2π‘₯2 βˆ’ 𝑦2 𝑑π‘₯ + π‘₯2 + 𝑦2 𝑑𝑦 𝐢

, where C is the boundary

of the area enclosed by x-axis and the upper half of the circle 122 yx . [KUK 2010]

4. Evaluate the surface integral SdSnFcurl Λ†.

by transforming it into a line integral, S being that

part of the surface of the paraboloid 𝑧 = (1 βˆ’ π‘₯2 βˆ’ 𝑦2) for which 0z and kxjziyF Λ†Λ†Λ†

.

[KUK 2008]

5. Using Stoke’s theorem, evaluate π‘₯ + 𝑦 𝑑π‘₯ + 2π‘₯ βˆ’ 𝑧 𝑑𝑦 + 𝑦 + 𝑧 𝑑𝑧 𝐢

, where C is the

boundary of the triangle with vertices )0,0,2( , )0,3,0( and )6,0,0( . [KUK 2009]

6. Verify Stoke’s theorem for a vector field defined by 𝑓 = βˆ’π‘¦3 𝑖 + π‘₯3 𝑗 , in the region

π‘₯2 + 𝑦2 ≀ 1, 𝑧 = 0.

17.14 GAUSS’S DIVERGENCE THEOREM (Relation between Volume and Surface Integral)

Statement: Suppose 𝑉 is the volume bounded by a closed piecewise smooth surface S. Suppose

𝑓 (π‘₯, 𝑦, 𝑧) is a vector function which is continuous and has continuous first partial derivatives in

𝑉.Then

βˆ‡. 𝑓 𝑉

𝑑𝑉 = 𝑓 . 𝑛 𝑑𝑆

where 𝑛 is the outward unit normal to the surface 𝑆.

In other words: The surface integral of the normal component of a vector 𝑓 taken over a closed

surface is equal to the integral of the divergence of 𝑓 over the volume enclosed by the surface.

Divergence Theorem in Cartesian Coordinates

If 𝑓 = 𝑓1𝑖 + 𝑓2𝑗 + 𝑓3π‘˜ then 𝑑𝑖𝑣 𝑓 = βˆ‡. 𝑓 =πœ•π‘“1

πœ•π‘₯+

πœ•π‘“2

πœ•π‘¦+

πœ•π‘“3

πœ•π‘§ . Suppose 𝛼, 𝛽, 𝛾 are the angles made by

the outward drawn unit normal with the positive direction of axes, then

𝑛 = cos 𝛼 𝑖 + cos 𝛽 𝑗 + cos 𝛾 π‘˜

Now, 𝑓 . 𝑛 = 𝑓1 cos 𝛼 + 𝑓2 cos 𝛽 + 𝑓3 cos 𝛾

Then divergence theorem is

πœ•π‘“1

πœ•π‘₯+

πœ•π‘“2

πœ•π‘¦+

πœ•π‘“3

πœ•π‘§ 𝑑π‘₯ 𝑑𝑦 𝑑𝑧

𝑉= 𝑓1 cos 𝛼 + 𝑓2 cos 𝛽 + 𝑓3 cos 𝛾 𝑑𝑆

𝑆

= 𝑓1𝑑𝑦𝑑𝑧 + 𝑓2 𝑑𝑧𝑑π‘₯ + 𝑓3𝑑π‘₯𝑑𝑦 𝑆

∡ cos 𝛼 𝑑𝑆 = 𝑑𝑦𝑑𝑧 𝑒𝑑𝑐.

Page 59: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

59

Proof: Let 𝑓 = 𝑓1𝑖 + 𝑓2𝑗 + 𝑓3π‘˜ where 𝑓1, 𝑓2 and 𝑓3 and their derivatives in any direction are finite

and continuouos.

Suppose 𝑆 is a closed surface such that it is possible to

choose rectangular cartesian co-ordinate system such that

any line drawn parallel to coordinate axes does not cut 𝑆

in more than two points.

Let 𝑅 be the orthogonal projection of 𝑆 on the xy-plane.

Any line parallel to z-axis through a point of 𝑅 meets the

boundary of S in two points. Let 𝑆1 and 𝑆2 be the lower

and upper portions of 𝑆 . Let the equations of these

portions be

𝑧 = 𝛷1(π‘₯, 𝑦) and 𝑧 = 𝛷2(π‘₯, 𝑦)

where 𝛷1(π‘₯, 𝑦) β‰₯ 𝛷2(π‘₯, 𝑦)

Consider the volume integral

πœ•π‘“3

πœ•π‘§ 𝑑𝑉 =

𝑉

πœ•π‘“3

πœ•π‘§ 𝑑π‘₯ 𝑑𝑦 𝑑𝑧 =

πœ•π‘“3

πœ•π‘§π‘‘π‘§

𝑧=𝛷1(π‘₯ ,𝑦)

𝑧=𝛷2(π‘₯ ,𝑦) 𝑑π‘₯ 𝑑𝑦

πœ•π‘“3

πœ•π‘§ 𝑑𝑉 =

𝑉 𝑓3(π‘₯, 𝑦, 𝑧) 𝛷2(π‘₯ ,𝑦)

𝛷1(π‘₯ ,𝑦)𝑑π‘₯ 𝑑𝑦 = 𝑓3 π‘₯, 𝑦, 𝛷1 βˆ’ 𝑓3 π‘₯, 𝑦, 𝛷2 𝑑π‘₯ 𝑑𝑦 …(1)

Let 𝑛 1 be the unit outward drawn vector making an acute angle 𝛾1 with π‘˜ for the upper position 𝑆1 as

shown in the figure.

Now projection 𝑑π‘₯ 𝑑𝑦 of 𝑑𝑆1 on the π‘₯𝑦 plane is given as 𝑑π‘₯𝑑𝑦 = 𝑑𝑆1 cos 𝛾 = 𝑑𝑆1 π‘˜ . 𝑛 1 = π‘˜ . 𝑛 1𝑑𝑆1

Now 𝑓3 π‘₯, 𝑦, 𝛷1 𝑅𝑑π‘₯𝑑𝑦 = 𝑓3 π‘˜ . 𝑛 1𝑑𝑆1𝑆1

… (2)

Similarly if 𝑛 2 be the unit outward drawn normal to the lower surface 𝑆2 making an angle 𝛾2 with π‘˜ .

Obviously 𝛾2 is an obtuse angle

∴ 𝑑π‘₯𝑑𝑦 = 𝑑𝑆2 cos πœ‹ βˆ’ 𝛾2 = βˆ’π‘‘π‘†2 cos 𝛾2 = βˆ’π‘˜ . 𝑛 2 𝑑𝑆2

∴ 𝑓3 π‘₯, 𝑦, 𝛷2 𝑅𝑑π‘₯ 𝑑𝑦 = βˆ’ 𝑓3 π‘˜ . 𝑛 2𝑑𝑆2𝑆2

… (3)

From (1), (2) and (3), we have

πœ•π‘“3

πœ•π‘§ 𝑑𝑉

𝑉= 𝑓3 π‘˜ . 𝑛 1𝑑𝑆1𝑆1

+ 𝑓3 π‘˜ . 𝑛 2𝑑𝑆2𝑆2= 𝑓3 π‘˜ . 𝑛 𝑑𝑆

𝑆 … (4)

Similarly by projecting 𝑆 on the other coordinate planes

πœ•π‘“2

πœ•π‘¦ 𝑑𝑉

𝑉= 𝑓2 𝑗 . 𝑛 𝑑𝑆

𝑆 … (5)

And πœ•π‘“1

πœ•π‘₯ 𝑑𝑉

𝑉= 𝑓1 𝑖 . 𝑛 𝑑𝑆

𝑆 … (6)

Page 60: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

60

Adding (4), (5) and (6), we get

πœ•π‘“1

πœ•π‘₯+

πœ•π‘“2

πœ•π‘¦+

πœ•π‘“3

πœ•π‘§ 𝑑𝑉

𝑉= 𝑓1 𝑖 + 𝑓2 𝑗 + 𝑓3 π‘˜ . 𝑛 𝑑𝑆

𝑆 = 𝑓 . 𝑛 𝑑𝑆

𝑆

Note: With the help of this theorem we can express volume integral as surface integral or vice versa.

17.15 GREEN’S THEOREM (For Harmonic Functions)

Statement: If 𝛷 and πœ“ are two scalar point functions having continuous second order derivatives in a

region 𝑉 bounded by a closed surface 𝑆, then

π›·βˆ‡2πœ“ βˆ’ πœ“βˆ‡2𝛷 𝑉

𝑑𝑉 = 𝛷 βˆ‡πœ“ βˆ’ πœ“ βˆ‡π›· . 𝑛 𝑑𝑆𝑆

Proof: By Gauss’s divergence theorem,

βˆ‡. 𝑓 𝑑𝑉𝑉

= 𝑓 . 𝑛 𝑆

𝑑𝑆 … (1)

Take 𝑓 = 𝛷 βˆ‡πœ“ so that βˆ‡. 𝑓 = βˆ‡. 𝛷 βˆ‡πœ“

= 𝛷 βˆ‡. βˆ‡πœ“ + βˆ‡π›·. βˆ‡πœ“

= π›·βˆ‡2πœ“ βˆ’ βˆ‡π›·. βˆ‡πœ“ … (2)

Now 𝑓 . 𝑛 = 𝛷 βˆ‡πœ“ . 𝑛 . Using this and (2) in (1), we get

𝛷 βˆ‡2πœ“ βˆ’ βˆ‡π›·. βˆ‡πœ“ 𝑑𝑉𝑉

= 𝛷 βˆ‡πœ“ . 𝑛 𝑆

𝑑𝑆 … (3)

Again starting as above by interchanging 𝛷 and πœ“, we obtain as in (3)

πœ“ βˆ‡2𝛷 βˆ’ βˆ‡πœ“. βˆ‡π›· 𝑑𝑉𝑉

= πœ“ βˆ‡π›· . 𝑛 𝑆

𝑑𝑆 … (4)

Subtracting (4) from (3), we get

π›·βˆ‡2πœ“ βˆ’ πœ“βˆ‡2𝛷 𝑉

𝑑𝑉 = 𝛷 βˆ‡πœ“ βˆ’ πœ“ βˆ‡π›· . 𝑛 𝑑𝑆𝑆

… (5)

Another Form of Green’s Theorem:

πœ•π›·

πœ•π‘› and

πœ•πœ“

πœ•π‘› denote the direction of derivative of 𝛷 and πœ“ along the outward drawn normal at any point

of 𝑆.

βˆ‡π›· =πœ•π›·

πœ•π‘›π‘› and βˆ‡πœ“ =

πœ•πœ“

πœ•π‘›π‘›

∴ 𝛷 βˆ‡πœ“ βˆ’ πœ“ βˆ‡π›· = π›·πœ•πœ“

πœ•π‘› 𝑛 βˆ’ πœ“

πœ•π›·

πœ•π‘› 𝑛

or 𝛷 βˆ‡πœ“ βˆ’ πœ“ βˆ‡π›· . 𝑛 = π›·πœ•πœ“

πœ•π‘›π‘› βˆ’ πœ“

πœ•π›·

πœ•π‘›π‘› . 𝑛 = 𝛷

πœ•πœ“

πœ•π‘›βˆ’ πœ“

πœ•π›·

πœ•π‘›

∴ Equation (5) becomes

π›·βˆ‡2πœ“ βˆ’ πœ“βˆ‡2𝛷 𝑉

𝑑𝑉 = π›·πœ•πœ“

πœ•π‘›βˆ’ πœ“

πœ•π›·

πœ•π‘›

𝑆𝑑𝑆

Page 61: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

61

Example 67: Evaluate 𝒇 . 𝒏 𝒅𝑺𝑺

where 𝒇 = πŸ’π’™π’š π’Š + π’šπ’› 𝒋 βˆ’ 𝒛𝒙 π’Œ and 𝑺 is the surface of the

cube bounded by the planes 𝒙 = 𝟎, 𝒙 = 𝟐, π’š = 𝟎, π’š = 𝟐, 𝒛 = 𝟎, 𝒛 = 𝟐.

Solution: Here 𝑓 = 4π‘₯𝑦 𝑖 + 𝑦𝑧 𝑗 βˆ’ 𝑧π‘₯ π‘˜ . By Gauss’s divergence theorem

𝑓 . 𝑛 𝑑𝑆𝑆

= βˆ‡. 𝑓 𝑑𝑉𝑉

= 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§

𝑉. 4π‘₯𝑦 𝑖 + 𝑦𝑧 𝑗 βˆ’ 𝑧π‘₯ π‘˜ 𝑑𝑉

= 4𝑦 + 𝑧 βˆ’ π‘₯ 𝑑𝑉𝑉

= 4𝑦 + 𝑧 βˆ’ π‘₯ 𝑑𝑧 𝑑𝑦 𝑑π‘₯2

𝑧=0

2

𝑦=0

2

π‘₯=0

= 4𝑦𝑧 +𝑧2

2βˆ’ π‘₯𝑧

𝑧=0

𝑧=22

𝑦=0

2

π‘₯=0 𝑑𝑦 𝑑π‘₯

= 8𝑦 + 2 βˆ’ 2π‘₯ 2

𝑦=0𝑑𝑦

2

π‘₯=0𝑑π‘₯

= 4𝑦2 + 2𝑦 βˆ’ 2π‘₯𝑦 𝑦=0𝑦=2

𝑑π‘₯2

π‘₯=0= 20 βˆ’ 4π‘₯ 𝑑π‘₯

2

π‘₯=0

= 20π‘₯ βˆ’ 2π‘₯2 π‘₯=0π‘₯=2 = 32

Example 68: Use Gauss theorem to show that π’™πŸ‘ βˆ’ π’šπ’› π’Š βˆ’ πŸπ’™πŸπ’š 𝒋 + πŸπ’Œ . 𝒏 𝒅𝑺𝑺

=π’‚πŸ“

πŸ‘

where S denotes the surface of the cube bounded by the planes, 𝒙 = 𝟎, 𝒙 = 𝒂, π’š = 𝟎, π’š = 𝒂,

𝒛 = 𝟎, 𝒛 = 𝒂 .

Solution: By Gauss’s divergence theorem

π‘₯3 βˆ’ 𝑦𝑧 𝑖 βˆ’ 2π‘₯2𝑦 𝑗 + 2π‘˜ . 𝑛 𝑑𝑆𝑆

= βˆ‡.𝑉

π‘₯3 βˆ’ 𝑦𝑧 𝑖 βˆ’ 2π‘₯2𝑦 𝑗 + 2π‘˜ 𝑑𝑉

= 3π‘₯2 βˆ’ 2π‘₯2 𝑑π‘₯π‘Ž

0𝑑𝑦

π‘Ž

0𝑑𝑧

π‘Ž

0

= π‘₯2𝑑π‘₯π‘Ž

0 𝑑𝑦

π‘Ž

0𝑑𝑧

π‘Ž

0=

π‘₯3

3

0

π‘Ž

π‘‘π‘¦π‘Ž

0𝑑𝑧

π‘Ž

0

= π‘Ž3

3 𝑑𝑦

π‘Ž

0𝑑𝑧

π‘Ž

0=

π‘Ž3

3𝑦

0

π‘Ž

π‘‘π‘§π‘Ž

0=

π‘Ž4

3𝑑𝑧

π‘Ž

0=

π‘Ž4

3 𝑧 0

π‘Ž =π‘Ž5

3

Example 69: Evaluate 𝒇 . 𝒏 𝑺

𝒅𝑺 with the help of Gauss theorem for 𝒇 = πŸ”π’› π’Š + πŸπ’™ + π’š 𝒋 βˆ’

𝒙 π’Œ taken over the region 𝑺 bounded by the surface of the cylinder π’™πŸ + π’›πŸ = πŸ— included

between 𝒙 = 𝟎, π’š = 𝟎, 𝒛 = 𝟎 and π’š = πŸ–.

Solution: 𝑓 = 6𝑧 𝑖 + 2π‘₯ + 𝑦 𝑗 βˆ’ π‘₯ π‘˜

βˆ‡. 𝑓 = 𝑖 πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§ . 6𝑧 𝑖 + 2π‘₯ + 𝑦 𝑗 βˆ’ π‘₯ π‘˜ = 1

By Gauss’s divergence theorem,

𝑓 . 𝑛 𝑆

𝑑𝑆 = 1 𝑑π‘₯ 𝑑𝑦 𝑑𝑧𝑉

Page 62: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

62

= 𝑑𝑧 9βˆ’π‘₯2

𝑧=0𝑑𝑦

8

𝑦=0𝑑π‘₯

3

π‘₯=0= 𝑧 𝑧=0

𝑧= 9βˆ’π‘₯2𝑑𝑦

8

𝑦=0𝑑π‘₯

3

π‘₯=0

= 9 βˆ’ π‘₯2 𝑑𝑦8

𝑦=0𝑑π‘₯

3

π‘₯=0

= 9 βˆ’ π‘₯2 𝑦 𝑦=0

8𝑑π‘₯

3

π‘₯=0= 8 9 βˆ’ π‘₯2 𝑑π‘₯

3

π‘₯=0

= 8 π‘₯ 9βˆ’π‘₯2

2+

9

2sinβˆ’1 π‘₯

3 π‘₯=0

3

= 18 πœ‹

Example 70: Evaluate (π’™π’…π’šπ’…π’› + π’šπ’…π’›π’…π’™ + π’›π’…π’™π’…π’š)𝑺

where 𝑺 is the surface of the sphere

π’™πŸ + π’šπŸ + π’›πŸ = π’‚πŸ. [KUK 2011, 2009]

Solution: By Gauss’s divergence theorem

(π‘₯𝑑𝑦𝑑𝑧 + 𝑦𝑑𝑧𝑑π‘₯ + 𝑧𝑑π‘₯𝑑𝑦)𝑆

= πœ•π‘₯

πœ•π‘₯+

πœ•π‘¦

πœ•π‘¦+

πœ•π‘§

πœ•π‘§ 𝑑π‘₯ 𝑑𝑦 𝑑𝑧 =

𝑉 3 𝑑π‘₯ 𝑑𝑦 𝑑𝑧

𝑉

= 3 𝑑π‘₯ 𝑑𝑦 𝑑𝑧𝑉

= 3 Γ— volume of the sphere x2 + y2 + z2 = a2

= 3 Γ—4

3Ο€a3 = 4Ο€a3

Example 71: Show that 𝒏 𝑺

𝒅𝑺 = 𝟎 for any closed surface 𝑺.

Solution: Let 𝐢 be any closed vector.

∴ 𝐢 𝑛 𝑆

𝑑𝑆 = 𝐢.𝑆

𝑛 𝑑𝑆 = 𝑑𝑖𝑣 𝐢𝑉

𝑑𝑉

∴ 𝐢 𝑛 𝑆

𝑑𝑆 = 0 ∡ 𝐢 is constant, therfore 𝑑𝑖𝑣 𝐢 = 0

β‡’ 𝑛 𝑆

𝑑𝑆 = 0

Example 72: Prove that 𝟏

π’“πŸπ’…π‘½

𝑽=

𝒓 .𝒏

π’“πŸπ’…π‘Ί

𝑺, where 𝒓 = 𝒙 π’Š + π’š 𝒋 + 𝒛 π’Œ and 𝒓 = 𝒓.

Solution: π‘Ÿ .𝑛

π‘Ÿ2 𝑑𝑆𝑆

= π‘Ÿ

π‘Ÿ2 . 𝑛 𝑑𝑆𝑆

= βˆ‡.π‘Ÿ

π‘Ÿ2 𝑉𝑑𝑉 … (1)

Now, βˆ‡. π‘Ÿ

π‘Ÿ2 =1

π‘Ÿ2 βˆ‡. π‘Ÿ + π‘Ÿ . βˆ‡

1

π‘Ÿ2 … (2)

Also, π‘Ÿ = π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ β‡’ π‘Ÿ2 = π‘₯2 + 𝑦2 + 𝑧2

∴ 2π‘Ÿπœ•π‘Ÿ

πœ•π‘₯= 2π‘₯; 2π‘Ÿ

πœ•π‘Ÿ

πœ•π‘¦= 2𝑦; 2π‘Ÿ

πœ•π‘Ÿ

πœ•π‘§= 2𝑧

β‡’ πœ•π‘Ÿ

πœ•π‘₯=

π‘₯

π‘Ÿ;

πœ•π‘Ÿ

πœ•π‘¦=

𝑦

π‘Ÿ;

πœ•π‘Ÿ

πœ•π‘§=

𝑧

π‘Ÿ … (3)

Now, βˆ‡ 1

π‘Ÿ2 = 𝑖

πœ•

πœ•π‘₯+ 𝑗

πœ•

πœ•π‘¦+ π‘˜

πœ•

πœ•π‘§

1

π‘Ÿ2 =

βˆ’2

π‘Ÿ3 𝑖

πœ•π‘Ÿ

πœ•π‘₯+ 𝑗

πœ•π‘Ÿ

πœ•π‘¦+ π‘˜

πœ•π‘Ÿ

πœ•π‘§ using (3)

=βˆ’2

π‘Ÿ4 π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ =

βˆ’2

π‘Ÿ4π‘Ÿ

Page 63: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

63

Also, βˆ‡. π‘Ÿ = 1 + 1 + 1 = 3

Substituting these values in (2), we have

βˆ‡. π‘Ÿ

π‘Ÿ2 =1

π‘Ÿ2 . 3 + π‘Ÿ . βˆ’2

π‘Ÿ4 π‘Ÿ =3

π‘Ÿ2 βˆ’2

π‘Ÿ4 π‘Ÿ2 =1

π‘Ÿ2 ∡ π‘Ÿ . π‘Ÿ = π‘Ÿ2

∴ From 1 , π‘Ÿ .𝑛

π‘Ÿ2𝑑𝑆

𝑆=

1

π‘Ÿ2𝑑𝑉

𝑉

ASSIGNMENT 10

1. Find SdSnF Λ†.

where kzyjyxzizxF Λ†)2(Λ†)(Λ†)2( 2

and S is the surface of the sphere

having centre )2,1,3( and radius 3 units. [KUK 2006]

2. Use Divergence theorem to evaluate SSdF

. where kzjyixF Λ†Λ†Λ† 333

and S is the outer

surface of the sphere 1222 zyx . [KUK 2007]

3. Verify Divergence theorem for kxyzjzxyiyzxF Λ†)(Λ†)(Λ†)( 222

taken over rectangular

parallelopiped ,0 ax ,0 by .0 cz [KUK 2010]

ANSWERS

ASSIGNMENT 1

1. βˆ’4(𝑖 + 2𝑗 ) 3. π‘₯ βˆ’ π‘Ž/ 2 = 𝑦 βˆ’ π‘Ž/ 2 = 𝑧 βˆ’π‘Žπœ‹

4tan 𝛼 / 2 π‘‘π‘Žπ‘› 𝛼

4. 𝑑 𝑖 + 2𝑗 βˆ’ 2𝑑 βˆ’ 3 π‘˜ / (5𝑑2 βˆ’ 12𝑑 + 13) ; 1

3(2 𝑖 + 2𝑗 + π‘˜ )

5. (a) 𝑒 π‘Ž2 sec 𝛼 (b) π‘Ž3 tan 𝛼; (βˆ’ cos 𝛼 sin 𝑑 𝑖 + cos 𝛼 cos 𝑑 𝑗 + sin 𝛼 π‘˜ )

6. (a) 𝑝 𝑖 + 𝑝 + 2π‘ž 𝑗 + 𝑝 + π‘ž π‘˜ ; 1

6 βˆ’π‘– βˆ’ 𝑗 + 2 π‘˜ (b) 𝑝 + π‘ž 𝑖 + π‘ž 𝑗 + 2π‘ž π‘˜ ;

1

5 2𝑗 βˆ’ π‘˜

17. (a) π‘Žπ‘/ π‘Ž2 sin2 𝑑 + 𝑏2 cos2 𝑑 3/2 (b) 1/4 2

ASSIGNMENT 2

1. 𝑣 = 37 and π‘Ž = 325 at 𝑑 = 0 3. 8

7 14 ;

1

7 14 4. π‘Ž = Β±

1

6 7.

70

29;

436

29

8. 21.29 knots/hr. in the direction 740 47’ South of East 9. 17 meter per hour in the direction

tanβˆ’1 0.25 North of East

ASSIGNMENT 3

1. (a) 2(π‘₯ 𝑖 + 𝑦 𝑗 + 𝑧 π‘˜ )/ (π‘₯2 + 𝑦2 + 𝑧2) 3. 15

17 4.

37

3 5.

1

3(2 𝑖 + 2 𝑗 βˆ’ π‘˜ ) 6. 11

7. cosβˆ’1 βˆ’1

30 8. cosβˆ’1 1/ 22 9. cosβˆ’1

8

3 21 10. πœ† = 4 π‘Žπ‘›π‘‘ πœ‡ = 1

Page 64: 17. Vector Calculus with Applications Vector Calculus with applications.pdf17. Vector Calculus with Applications 17.1 INTRODUCTION In vector calculus, we deal with two types of functions:

64

ASSIGNMENT 4

2. (a) 80 (b) 𝑒π‘₯𝑦𝑧 π‘₯ 𝑧 βˆ’ 𝑦 𝑖 + 𝑦 π‘₯ βˆ’ 𝑧 𝑗 + 𝑧 𝑦 βˆ’ π‘₯ π‘˜

3. π‘Ž = βˆ’2; 4π‘₯ 𝑧 βˆ’ π‘₯𝑦 𝑖 + 𝑦 1 βˆ’ 2𝑧 + 4π‘₯𝑦 𝑗 + (2π‘₯2 + 𝑦2 βˆ’ 𝑧2 βˆ’ 𝑧)π‘˜

9. (a) 2𝑛 2π‘›βˆ’1

π‘₯2+𝑦2+𝑧2 𝑛+1; 𝑛 =

1

2

11. (i) 2 𝑦3 + 3π‘₯2𝑦 βˆ’ 6π‘₯𝑦2 𝑧 𝑖 + 2 3π‘₯𝑦2 + π‘₯3 βˆ’ 6π‘₯2𝑦 𝑧 𝑗 + 2 π‘₯𝑦2 + π‘₯3 βˆ’ 3π‘₯2𝑦 𝑦 π‘˜ (ii) Zero

13. (i) 0 (ii) 2 π‘₯ + 𝑧 𝑗 + 2𝑦 π‘˜

ASSIGNMENT 5

1. 226

3 𝑖 + 360 𝑗 βˆ’ 42 π‘˜ 2. βˆ’2 𝑖 + 3 𝑗 βˆ’ 3 π‘˜

4. 𝑣 = 6 sin 2𝑑 𝑖 + 4(cos 2𝑑 βˆ’ 1) 𝑗 + 8𝑑2 π‘˜ and π‘Ÿ = 3 1 βˆ’ cos 2𝑑 𝑖 + 2 sin 2𝑑 𝑗 +8𝑑3

3 π‘˜

ASSIGNMENT 6

1. 88

35 2. 16, 16 4. 35 5.

πœ‹3 2

3

6. 2 βˆ’πœ‹

4 𝑖 βˆ’ πœ‹ βˆ’

1

2 𝑗

ASSIGNMENT 7

2. 81 3. 3/2 5. 8

ASSIGNMENT 8

1. 128 2. 128𝑖 βˆ’ 24𝑗 + 384π‘˜

ASSIGNMENT 9

3. 4/3 5. 21

ASSIGNMENT 10

1. 108Ο€ 2. 56Ο€a2/9