1632 the binomial theorem-02

17

Transcript of 1632 the binomial theorem-02

Page 1: 1632 the binomial theorem-02
Page 2: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-2

Chapter 11: Further Topics in Algebra

11.1 Sequences and Series

11.2 Arithmetic Sequences and Series

11.3 Geometric Sequences and Series

11.4 The Binomial Theorem

11.5 Mathematical Induction

11.6 Counting Theory

11.7 Probability

Page 3: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-3

11.4 The Binomial Theorem

The binomial expansions

reveal a pattern.

0

1

2 2 2

3 3 2 2 3

4 4 3 2 2 3 4

5 5 4 3 2 2 3 4 5

( ) 1

( )

( ) 2

( ) 3 3

( ) 4 6 4

( ) 5 10 10 5

x y

x y x y

x y x xy y

x y x x y xy y

x y x x y x y xy y

x y x x y x y x y xy y

Page 4: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-4

11.4 A Binomial Expansion Pattern

• The expansion of (x + y)n begins with x n and ends with y n .

• The variables in the terms after x n follow the pattern x n-1y , x n-2y2 , x n-3y3 and so on to y n . With each term the exponent on x decreases by 1 and the exponent on y increases by 1.

• In each term, the sum of the exponents on x and y is always n.

• The coefficients of the expansion follow Pascal’s triangle.

Page 5: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-5

11.4 A Binomial Expansion Pattern

Pascal’s Triangle

Row1 0

1 1 11 2 1 2

1 3 3 1 31 4 6 4 1 4

1 5 10 10 5 1 5

Page 6: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-6

11.4 Pascal’s Triangle

• Each row of the triangle begins with a 1 and ends with a 1.

• Each number in the triangle that is not a 1 is the sum of the two numbers directly above it (one to the right and one to the left.)

• Numbering the rows of the triangle 0, 1, 2, … starting at the top, the numbers in row n are the coefficients of x n, x n-1y , x n-2y2 , x n-3y3, … y n in the expansion of (x + y)n.

Page 7: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-7

11.4 n-Factorial

n-Factorial

For any positive integer n,

and! ( 1)( 2) (3)(2)(1),

0! 1 .n n n n

Example Evaluate (a) 5! (b) 7!

Solution (a)

(b)

5! 5 4 3 2 1 120

7! 7 6 5 4 3 2 1 5040

Page 8: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-8

11.4 Binomial Coefficients

Binomial Coefficient

For nonnegative integers n and r, with r < n,

!!( )!n r

n nCr r n r

Page 9: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-9

11.4 Binomial Coefficients

• The symbols and for the binomial

coefficients are read “n choose r”

• The values of are the values in the nth row

of Pascal’s triangle. So is the first number

in the third row and is the third.

n rC nr

nr

30

32

Page 10: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-10

11.4 Evaluating Binomial Coefficients

Example Evaluate (a) (b)

Solution

(a)

(b)

62

80

6 6! 6! 6 5 4 3 2 1 152 2!(6 2)! 2!4! 2 1 4 3 2 1

8 8! 8! 8! 10 0!(8 0)! 0!8! 1 8!

Page 11: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-11

11.4 The Binomial Theorem

Binomial Theorem

For any positive integers n,

1 2 2 3 3

1

( )1 2 3

... ...1

n n n n n

n r r n n

n n nx y x x y x y x y

n nx y xy y

r n

Page 12: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-12

11.4 Applying the Binomial Theorem

Example Write the binomial expansion of .

Solution Use the binomial theorem

9( )x y

9 9 8 7 2 6 3

5 4 4 5 3 6 2 7

8 9

9 9 9( )

1 2 3

9 9 9 94 5 6 7

98

x y x x y x y x y

x y x y x y x y

xy y

Page 13: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-13

11.4 Applying the Binomial Theorem

9 9 8 7 2 6 3

5 4 4 5 3 6 2 7

8 9

9 8 7 2 6 3 5 4 4 5

3 6 2 7 8 9

9! 9! 9!( )1!8! 2!7! 3!6!

9! 9! 9! 9!4!5! 5!4! 6!3! 7!2!9!

8!1!9 36 84 126 126

84 36 9

x y x x y x y x y

x y x y x y x y

xy y

x x y x y x y x y x y

x y x y xy y

Page 14: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-14

11.4 Applying the Binomial Theorem

Example Expand .

Solution Use the binomial theorem with

and n = 5,

5

2ba

2 35 5 4 3 2

4 5

5 5 5( )

1 2 32 2 2 2

54 2 2

b b b ba a a a a

b ba

,2bx a y

Page 15: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-15

11.4 Applying the Binomial Theorem

Solution

2 35 5 4 3 2

4 5

5 4 3 2 2 3 4 5

( ) 5 10 102 2 2 2

52 2

5 5 5 5 12 2 4 16 32

b b b ba a a a a

b ba

a a b a b a b ab b

Page 16: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-16

11.4 rth Term of a Binomial Expansion

rth Term of the Binomial Expansion

The rth term of the binomial expansion of (x + y)n,

where n > r – 1, is

( 1) 1

1n r rn

x yr

Page 17: 1632 the binomial theorem-02

Copyright © 2007 Pearson Education, Inc. Slide 11-17

11.4 Finding a Specific Term of a Binomial Expansion.

Example Find the fourth term of .

Solution Using n = 10, r = 4, x = a, y = 2b in the formula, we find the fourth term is

10( 2 )a b

7 3 7 3 7 310(2 ) 120 8 960 .

3a b a b a b