15. Radiation Introduction

35
1 15. RADIATION HEAT TRANSFER Heat conduction and convection - always a fluid which trans fers the heat (gas, liquid, solid) – motion of atoms or molecules Heat conduction and convection is not possible in a vacuum In most practical applications all three modes occur concurrently at varying degrees

Transcript of 15. Radiation Introduction

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 1/35

1

15. RADIATION HEAT TRANSFER

Heat conduction and convection - always a fluid which

transfers the heat (gas, liquid, solid) – motion of atoms ormolecules

Heat conduction and convection is not possible in a vacuum

In most practical applications all three modes occurconcurrently at varying degrees

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 2/35

2

A hot object in a vacuum

chamber looses heat by

radiation only

Unlike conduction and convection, heat

transfer by radiation can occur between two

bodies, even when they are separated by

a medium colder than both of them

  c  o  n  v

  e  c  t   i  o

  n

r   a  d    i   a  t   i   o  n  

What will be a final equilibrium temperature of the body

surface?

Can you write an energy balance equation between the body andsurrounding air and the hot source (fire)?

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 3/35

3

Theoretical foundation of radiation was establishedby Maxwell

 Electromagnetic wave motion or electromagnetic radiation

 Electromagnetic waves travel at the speed of light c in a

vacuum

 Electromagnetic waves are characterized by their frequency f 

or wavelength  λ:  λ=c/f 

c=co /n co light speed in a vacuumn refraction index of a medium (n=1 for air and 

most gases, n=1,5 for glass, 1,33 for water)

In all material medium, there is attenuation of the energy

In a vacuum there is no attenuation of the energy

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 4/35

4

Electromagnetic radiation covers a wide range of wavelengths

Radiation that is related to

heat transfer – 

Thermal radiationλ from 0,1μm to 100 μm

As a result of energy transition

in molecules, atoms andelectrons.

Thermal radiation is emitted by all matter

whose temperature is above absolute zero.

Everything around us emits (and absorbs)

radiation.

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 5/35

5

• Thermal radiation includes entire visible (0,4 to 0,76 μm)

and infrared light and a portion of ultraviolet radiation.

• Bodies start emit visible radiation at 800K (red hot)

and tungsten wire in the lightbulb at 2000K 

(white hot) to emit a significant amount of 

radiation in the visible range.

• Bodies at room temperature emit radiation in

infrared range 0,7 to 100 μm.

• Sun (primary light source) emits solar radiation – 

0,3 to 3 μm – almost half is visible, remaining is

ultraviolet and infrared.

• Body that emits radiation in the visible range is

called light source.

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 6/35

6

Spectral and Directional Distribution

Radiation characteristics vary

with wavelength and direction

• Monochromatic or s pectral : Characteristics at a given λ

• Total : Integrated values over all wavelengths

• Directional : At a given direction

• Diffuse radiation: Uniform in all directions

• Hemispherical : Integrated values over all directions

The assumption of diffuse radiation will be made throughout

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 7/35

7

Emissive Power E , Irradiation G and

Radiosity J 

• Emissive Power (zář ivost):

Radiation emitted from a surface

• Spectral emissive power  λ E  :

λ E 

per unit area per unit wavelength,

= rate of emitted radiation

mW/m2μ 

• Total emissive power E :

 , E = Integration of  λ E  over all values of λ2

W/m :

( ) ( )∫∞

0

, λλ d T  E T  E 

∫∞

=0

λλd  E  E 

λ

λ

10.1Fig.

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 8/35

8

• Irradiation: Radiation energy incident on a surface

• Spectral irradiation λG  :

λG per unit area per unit wavelength,

= rate of radiation energy incident upon a surfacemμW/m

2−

• Total irradiationG :

G = integration of  λG  over all values of λ :

( ) ( )∫∞

=  

0

, λλ d T G T G 

• Radiosity: The sum of emitted and reflected radiation

• Spectral radiosity λ J  :

λ J  = rate of radiation leaving a surface per unit area per

unit wavelength, mμW/m2−

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 9/35

9

In the above definitions, summation in all directions is

implied although the term hemispherical is not used

• Total radiosity J :

( ) ( )∫∞

0

, λλ d T  J T  J 

 J = integration of  λ J  over all values of λ :

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 10/35

10

Characteristics of blackbody:

(1) It absorbs all radiation incident upon it

(2) It emits the maximum energy at a given temperature

and wavelength

(3) Its emission is diffuse

Planck's Law

λb E  = spectral emissive power of a blackbody:

( )1)/exp(

,2

51

T C 

C T  E b

λ

λλλ C 1 and C2 are constants

Blackbody Radiation

 Blackbody: An ideal radiation surface used as standardfor describing radiation of real surfaces

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 11/35

11

Planck's Law

Blackbody Radiation

2879,6 T  λmax  =

Maximum emitted energy at

specific temperatures given by

Wien law:

Note - by qualitative judgment -

energy emitted in visible range

for 2000 K – tungsten wire in

a light bulb.

Thermal radiation 0,1 to 100 μm

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 12/35

12

Stefan-Boltzmann Law

Based on:

• Experimental data by Stefan (1879)

• Theoretical derivation by Boltzmann (1884)4T  E b σ =

b E  = total blackbody emissive power (all wavelengthsand all directions), [W/m2]

428-K W/m105.67 − is the Stefan-Boltzmann

constant 

It can also be arrived at using Planck's law

 Stefan-Boltzmann law

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 13/35

13

( ) ( )

4

 

02

51

 

0b λb

T σ 

d  λ1 )T  /  λC ( exp

 λC 

dx  λ ,T  E T  E 

=

∫ =−

=

=∫=

∞ −

• Stefan-Boltzmann law gives the total radiation emitted from

a black body at all wavelengths from λ =0 to λ =∞.• Often an interest in radiation over some wavelength band – 

light bulb – how much is emitted in

the visible range?• We use a procedure to determine E b,0- λ

∫=−

 λ

0

b λ λb,0 T)d  λ(  E (T) E  ,λ 

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 14/35

14

Define a dimensionless quantity f  λ(T):

4

 λ

0 b, λ

 λσ T 

(T)d  λ E (T) f 

∫=

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 15/35

15

Want to know how energy is emitted

in the visible range 0,40 to 0,76 μm.

 λ1T=0,40.2500=1000 ⇒ f  λ1 = 0,000321

 λ2T=0, 76.2500=1900 ⇒  f  λ2 = 0,053035

 f  λ2 - f  λ1 = 0,0527 

Only about 5% of radiation is emitted

in the visible range. The remaining

95% is in the infrared region in theform of heat.

Light bulb.

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 16/35

16

Radiation of Real Surfaces

Objective: Develop a methodology for determining

radiation heat exchange between real surfaces.

• Surface radiation properties

• The graybody

• Kirchhoff's law

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 17/35

17

Absorptivity a, Reflectivity r , Transmissivity t 

G G   E 

 J 

10.2Fig.

rG 

tG 

Irradiation incident on a real surface can

be absorbed, reflected and transmitted.

Remind: radiosity J (total radiation leaving

the surface) is a sum of 

emitted E and reflected rG radiation.

a = total absorptivity = fraction absorbed

r = total reflectivity = fraction reflected

t = total transmissivity = fraction transmitted

G G t rG aG  =++

1=++ t r a

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 18/35

18

Similarly

1=++ λ λ λ  t r a

a λ

= spectral absorptivity

r  λ = spectral reflectivity

t  λ

= spectral transmissivity

Opaque material: 0== λ t t 

Simplification:  1=+ r a

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 19/35

19

Emissivity (emisivita, poměrná zářivost)

Total emissivity ε (T):

Ratio of emissive power of a

surface to that of a blackbodyat the same temperature:

( )

( )T  E 

T  E T 

b

)(=ε 

 Spectral emissivity λ :

Ratio of the spectral emissive power of a surface to that

of a blackbody at the same temperature:

( ))

( )T  E 

T  E T 

b,

,,

λ 

λ λ ε 

λ 

λ λ  =

λ

λ E 

10.3Fig.

blackbody

surfacereal

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 20/35

20

Kirchhoff's Law

It is much easier to determine emissivity ε  than absorptivity a.

By experiments. But how we can determine absorptivity?

Kirchhoff’s law says that under certain

conditions:

( ) ( )T T  α ε  =Total

( ) ( )T T  ,, λλ=Spectral

Kirchhoff’s law is used to determine a λ(  λ ,T) from experimental

data on ε  λ(  λ ,T)

Equality of emissivity and absorptivity

Quite different physical quantities

Just numerical equality

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 21/35

21

Graybody Approximation

The graybody concept is introduced to simplify theanalysis of radiation exchange between bodies

Graybody: An ideal surface for which the

spectral emissivity ελ is independent of λ

λ

λ E 

10.3Fig.

blackbody

surfacereal

gray body

λ

λ E 

10.3Fig.

blackbody

bodygray

approx. 0,75 E b

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 22/35

22

Thus: =)(),( T T  ελ constant independent of λ

It follows from Kirchhoff's Law that

( ) ( )  graybodya for T T   =

NOTE:

(1) Radiation properties ε  , a and r are assigned single

values instead of a spectrum of values

(2) Data on ε give r and a for opaque surface.

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 23/35

23

Radiation Exchange Between Black Surfaces

Two black surfaces with

areas 1 S  and 2 S  at

temperatures1

T  and2

Objective: Determine the net

heat transfer 21Q −& between the two surfaces

21 T T  >

1T 

2T 

1 S 

2 S 

1 E 2 E 

12Q&

1

2

Important factors:• Configuration

• Surface area

• Surface temperature• Radiation properties (for gray body)

• Surrounding surfaces

• Space medium

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 24/35

24

The View Factor

(1) Definition and use:

• It is a geometric factor

• Also known as shape factor and configuration factor 

The view factor is the fraction of radiation energy

leaving surface S 1 which is intercepted by S 2

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 25/35

25

1Q& = rate of radiation energy leaving surface 1, = S 1 E 1

2Q& = rate of radiation energy leaving surface 2, = S 2 E 2

21Q −& = net radiation energy exchanged between 1 and 2

21−F  = fraction of radiation energy leaving 1 andreaching 2

12−F  = fraction of radiation energy leaving 2 andreaching 1

1T 

2T 

1 S 

2 S 

1 E 

2 E 

21Q −&

1

2

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 26/35

26

For black surfaces:

The net energy exchanged between the surfaces 1 and 2:

21-2212-112-1 bb  E F  S  E F  S Q −=& (a)

Radiation that leaves the surface 1: 111 b E  S Q =&

1121 b E  S F −and is intercepted by the surface 2:

222 b E  S Q=&

Radiation that leaves the surface 2:

2212 b E  S F −and is intercepted by the surface 1:

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 27/35

27

If  21 T T  = then 21 bb  E  E  = and 12Q&

= 0.

( ) 44212-11212-112-1 T T F  S  E  E F  S Q bb −=−= σ &

122211 −− = F  S  S  (b)

Combine (a) and (b) and use Stefan-Boltzmann law

:

4

T  E b σ =

Reciprocal rule (vztah recoprocity)

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 28/35

28

(2) Rules:

• Reciprocal rule can be generalizedi  j  j  j i i  F  S F  S  −− =

• Additive rule: Conservation of energy - see the figure.

( ) 3-12-132-1 F F F  +=+

Multiply by 1 S 

3-112-113)21 F  S F  S F  S  +=+−(1

Use the reciprocal rule

1-331-221-3)+(232 )( F  S F  S F  S  S  +=+

10.5Fig.

1

2

3

12

3

n

(i=1 to n, j=1 to n)

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 29/35

29

• Enclosure or summation rule: All energy leaving one

surface must be received by some or all other surfaces

11131211 =nF F F  K

ni F n

 j 

 j i  ,,3,2,1 1=

1=

K

• Conclusion: ii = 0 for a plane or convex surface and

ii F  ≠ 0 for a concave surface

(3) Determination of view factors:

• Simple configurations: By physical reasoning:

n

4

3

2

1

6.10Fig.

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 30/35

30

2

1 A 2 A

1

112 =F 

Apply the reciprocal rule

211122 −− = F  S F  S 

21212112 /)/(  S  S F  S  S F  == −−

• Other methods:

• Surface integration method: Can involve tediousdouble integrals

• View factor algebra method: Known factors are used

in a superposition scheme together with the threeview factor rules to construct factors for other

configurations

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 31/35

31

 

View factor for parallel rectangles

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 32/35

32

View factor for perpendicular rectangles

with a common side

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 33/35

33

Examples of the View factor algebra method:

Determine F1-3 and F3-3

(i) Figure (a): F 1-2 is given in Jícha: P ř enos tepla a látky P ř íloha 2-3a, (př ípad 3 )

Apply summation rule to surface 1

 1131211 =F F F 

But 11 = 0

∴ 1213 1 F F  −

1

2

3

Figure (a)

To determine F 33

apply summation rule to surface 3:

1333231 =F F F 

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 34/35

34

Symmetry, 3231 F 

Thus, 3133 21F  −

Reciprocal rule:1-333-11

F  S F  S  =

∴ 3-1313-3 21 F  S  S F  )(−=

7/28/2019 15. Radiation Introduction

http://slidepdf.com/reader/full/15-radiation-introduction 35/35

35

( ) 44212-11212-112-1 T T F  S  E  E F  S Q bb −=−= σ &

Just to remind the equation for radiation heat exchangebetween two black objects with a view factor F 1-2: