1/49 Chapter 6 Equations of Continuity and...

49
1 /49 Chapter 6 Equations of Continuity and Motion Session 6-2 Equation of motion

Transcript of 1/49 Chapter 6 Equations of Continuity and...

  • 1/49

    Chapter 6 Equations of Continuity and Motion

    Session 6-2 Equation of motion

  • 2/49

    Chapter 6 Equations of Continuity and Motion

    Contents

    6.1 Continuity Equation

    6.2 Stream Function in 2-D, Incompressible Flows

    6.3 Rotational and Irrotational Motion

    6.4 Equations of Motion

    6.5 Examples of Laminar Motion

    6.6 Irrotational Motion

    6.7 Frictionless Flow

    6.8 Vortex Motion

  • 3/49

    6.4 Equations of Motion

  • 4/49

    • Apply Newton's 2nd law of motion

    • External forces = surface force + body force

    〮 Surface force:

    ~ normal force + tangential force

    〮 Body forces:

    ~ due to gravitational or electromagnetic fields, no contact

    ~ act at the centroid of the element → centroidal force

    6.4 Equations of Motion

    (A)F ma=∑

    x xF ma∆ = ∆

  • 5/49

    Consider only gravitational force

    6.4 Equations of Motion

    x y zg ig jg kg= + +

    LHS of (A):

    ( )x xF gx y zρ∆ = ∆ ∆ ∆

    xx xy z y zxx

    σσ σ ∂ − ∆ ∆ + ∆ ∆+ ∆ ∂

    yxyx yxx z x zyy

    ττ τ

    ∂ − ∆ ∆ + ∆ ∆+ ∆ ∂

    zxzx zxx y x yzz

    ττ τ ∂ − ∆ ∆ + ∆ ∆+ ∆ ∂

    body force (B)

    normal force

    tangential force

    tangential force

  • 6/49

    6.4 Equations of Motion

    Divide (B) by volume of element

    yxx x zxx

    F gx y z x y z

    τσ τρ∂∆ ∂ ∂

    = + + +∆ ∆ ∆ ∂ ∂ ∂

    (C)

    RHS of (A):

    xx

    ma ax y z

    ρ∆ =∆ ∆ ∆

    (D)

  • 7/49

    6.4 Equations of Motion

    Combine (C) and (D)

    yxx zxx xg ax y z

    τσ τρ ρ∂∂ ∂

    + + + =∂ ∂ ∂

    xy y zyy yg ax y z

    τ σ τρ ρ

    ∂ ∂ ∂+ + + =

    ∂ ∂ ∂

    yzxz zz zg ax y z

    ττ σρ ρ∂∂ ∂

    + + + =∂ ∂ ∂ (6.21)

  • 8/49

    6.4 Equations of Motion

    6.4.1 Navier-Stokes equations– Eq (6.21) ~ general equation of motion

    – For Newtonian fluids (with single viscosity coeff.), use stress-strain

    relation given in (5.29) and (5.30)

    → Navier-Stokes equations

    Eq. (5.29):

    ( )223

    pressure normal stress due to fluid deformation and viscosity

    xup qx

    σ µ µ∂ = − + − ∇ ⋅ ∂

  • 9/49

    6.4 Equations of Motion

    ( )223y

    vp qy

    σ µ µ∂ = − + − ∇ ⋅ ∂

    ( )223z

    wp qz

    σ µ µ∂ = − + − ∇ ⋅ ∂

    Eq. (5.30):

    yx xyv ux y

    τ τ µ∂ ∂ += = ∂ ∂

    yz zyw vy z

    τ τ µ∂ ∂ += = ∂ ∂

    zx xzu wz x

    τ τ µ ∂ ∂ = = + ∂ ∂

    (6.23)

    (6.22)

  • 10/49

    Substitute Eqs. (5.29) & (5.30) into (6.21)

    Assume constant viscosity (neglect effect of pressure and temperature on

    viscosity variation)

    6.4 Equations of Motion

    ( )223x x

    v up u u wg aq x yx x y zx z xρ µ µ ρµ µ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +− + + + =− +∇ ⋅ ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂

    ( )223x x

    v up u u wg aq x yx x y zx z xρ µ µ µ ρ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +− + + + =− +∇ ⋅ ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂

    u v wx y z

    ∂ ∂ ∂+ +

    ∂ ∂ ∂

  • 11/49

    6.4 Equations of Motion

    Expand and simplify

    u v wx y zx

    ∂ ∂ ∂∂ + + ∂ ∂ ∂∂

    2 2 2 2 2 2 2 2

    2 2 2 2

    2. . 23x

    p u u v w v u u wL H S gx x x x y x z x y y z x z

    ρ µ µ µ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    = − + − ++ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    2 2 22 2 2

    22 2 2

    13x

    u v wp u u ugx x y x zx x y z

    ρ µ µ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + += − + ++ + ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

    ( )2 2 2

    2 2 2

    13x

    p u u ug qx xx y z

    ρ µ µ ∂ ∂∂ ∂ ∂

    = − + ++ + ∇ ⋅ ∂ ∂∂ ∂ ∂

    normal stress shear stress

    normal stress + shear stress

  • 12/49

    6.4 Equations of Motion

    ( )2 2 2

    2 2 2

    13x x

    p u u ug aqx xx y z

    ρ µ µ ρ ∂ ∂∂ ∂ ∂

    − + + =+ + ∇ ⋅ ∂ ∂∂ ∂ ∂

    ( )2 2 2

    2 2 2

    13y y

    p v v vg aqy yx y z

    ρ µ µ ρ ∂ ∂∂ ∂ ∂

    − + + =+ + ∇ ⋅ ∂ ∂∂ ∂ ∂

    ( )2 2 2

    2 2 2

    13z z

    p w w wg aqz zx y z

    ρ µ µ ρ ∂ ∂∂ ∂ ∂

    − + + =+ + ∇ ⋅ ∂ ∂∂ ∂ ∂

    → Navier-Stokes equation for compressible fluids with constant viscosity

    (6.24)

  • 13/49

    1) For inviscid (ideal) fluid flow, (µ = 0) → viscous forces are neglected.

    6.4 Equations of Motion

    ♦ Vector form

    ( ) ( )23

    qg p q qq qt

    µρ µ ρ ρ∂− ∇ + ∇ + ∇ = +∇ ⋅ ⋅∇∂

    ( )dq qa qqdt t

    ∂= = + ⋅∇

    where --- Eq. (2.5)

    ( )qg p qqt

    ρ ρ ρ∂− ∇ = + ⋅∇∂

    → Euler equations for ideal fluid

  • 14/49

    2) For incompressible fluids, (Continuity Eq.)

    Define acceleration due to gravity as

    6.4 Equations of Motion

    0q∇ ⋅ =

    ( )2 qg p q qqt

    ρ µ ρ ρ∂− ∇ + ∇ = + ⋅∇∂

    (6.25)

    xhg gx

    ∂= −

    yhg gy

    ∂= −

    ∂g g h= − ∇

    zhg gz

    ∂= −

  • 15/49

    where h = vertical direction measured positive upwardFor Cartesian axes oriented so that h and z coincide

    → minus sign indicates that acceleration due to gravity is in the negative

    h directionThen, N-S equation for incompressible fluids and isothermal flows are

    6.4 Equations of Motion

    (6.26)0 , 1x yhg gz

    ∂= = =

    zg g= − (6.27)

  • 16/49

    6.4 Equations of Motion

    2 2 2

    2 2 2

    1u u u u h p u u uu v w gt x y z x x x y z

    µρ ρ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    2 2 2

    2 2 2

    1v v v v h p v v vu v w gt x y z y y x y z

    µρ ρ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    2 2 2

    2 2 2

    1w w w w h p w w wu v w gt x y z z z x y z

    µρ ρ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    (6.28)

    Local acceleration

    Convective acceleration

    Body force per mass

    Pressure force per mass

    Viscosity force per mass

  • 17/49

    Eq. (6.28): unknowns – u, v, w, p→ We need one more equation to obtain a solution when the boundary

    conditions are specified.

    → Eq. of continuity for incompressible fluid

    ♦ Boundary conditions

    1) kinematic BC: velocity normal to any rigid boundary (wall) equal the

    boundary velocity (velocity = 0 for stationary boundary)

    2) physical BC: no slip condition (continuum stick to a rigid boundary)

    → tangential velocity relative to the wall vanish at the wall surface

    6.4 Equations of Motion

    0u v wx y z

    ∂ ∂ ∂+ + =

    ∂ ∂ ∂

  • 18/49

    6.4 Equations of Motion

    ♦ General solutions for Navier-Stocks equations are not available because

    of the nonlinear, 2nd-order nature of the partial differential equations.

    → Only particular solutions may be obtained by simplifications.

    → Numerical solutions are usually sought.

    r - component:2

    r r r rr z

    v vv v v vv vt r r r z

    θ θρθ

    ∂ ∂ ∂ ∂+ + − +

    ∂ ∂ ∂ ∂

    ( ){ } 2 22 2 2 21 21 r rr rp v v vg rvr r r r zr r θρ µ θ θ ∂ ∂ ∂ ∂ ∂∂= − + + − + ∂ ∂ ∂ ∂ ∂∂

    ♦ Navier-Stocks equations in cylindrical coordinates for constant density

    and viscosity

  • 19/49

    θ - component:

    z - component:

    6.4 Equations of Motion

    rr z

    v v v v v v vv vt r r r zθ θ θ θ θ θρ

    θ∂ ∂ ∂ ∂ + + − + ∂ ∂ ∂ ∂

    ( ){ } 2 22 2 2 21 1 21 rp v v vg rvr r r r zr r θ θθ θρ µθ θ θ ∂ ∂ ∂ ∂ ∂∂= − + + + + ∂ ∂ ∂ ∂ ∂∂ z z z z

    r zvv v v vv v

    t r r zθρ

    θ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂

    2 2

    2 2 21 1 z zz

    zp v vvg rz r r r zr

    ρ µθ

    ∂ ∂ ∂ ∂∂ = − + + + ∂ ∂ ∂ ∂∂ (6.29)

  • 20/49

    6.4 Equations of Motion

    Continuity eq. for incompressible fluid

    ( ) ( ) ( )1 1 0r zvrv vr r r zθθ∂ ∂ ∂

    + + =∂ ∂ ∂

    (6.30)

    Normal & shear stresses for constant density and viscosity

    2 rrvpr

    σ µ ∂= − +∂

    12 rv vpr r

    θθσ µ θ

    ∂ = − + + ∂

    2 zzvpz

    σ µ ∂= − +∂

  • 21/49

    6.4 Equations of Motion

    1 rr

    vvrr rr

    θθτ µ θ

    ∂ ∂ = + ∂ ∂

    1 zz

    v vz rθ

    θτ µ θ∂ ∂ = + ∂ ∂

    r zzr

    v vz r

    τ µ ∂ ∂ = + ∂ ∂

  • 22/49

    6.5 Examples of Laminar Motion

    - N-S equations are important in viscous flow problems.

    ♦ Laminar motion

    ~ orderly state of flow in which macroscopic fluid particles move in layers

    ~ viscosity effect is dominant

    ♦ Laminar flow through a tube (pipe) of constant diameter

    ~ instantaneous velocity at any point is always unidirectional (along the

    axis of the tube)

    ~ no-slip condition @ boundary wall

    ~ apply concept of the Newtonian viscosity

    ~ velocity gradient gives rise to viscous force within the fluid

    ~ low Re

  • 23/49

    6.5 Examples of Laminar Motion

    [Re] Reynolds number = inertial force / viscous force = destabilizing force /

    stabilizing force

    ♦ Viscous force

    ~ dissipative

    ~ have a stabilizing or damping effect on the motion

    ~ use Reynolds number

    [Cf] Turbulent flow

    ~ unstable flow

    ~ instantaneous velocity is no longer unidirectional

    ~ destabilizing force > stabilizing force

    ~ high Re

  • 24/49

    2-D flow (x, z)

    steady flow

    parallel flow

    z-axis coincides with h

    6.5.1 Laminar flow between parallel platesConsider the two-dimensional, steady, laminar flow between parallel plates

    in which either of two surfaces is moving at constant velocity and there is

    also an external pressure gradient.

    ♦ Assumptions:

    6.5 Examples of Laminar Motion

    ( )0 ; 0vy

    ∂→ = =

    ∂( ) 0t

    ∂→ =

    ( )0 ; 0ww ∂→ = =

    0 ; 1h h hx y z

    ∂ ∂ ∂→ = = =

    ∂ ∂ ∂

  • 25/49

    6.5 Examples of Laminar Motion

    a

    y

    zaz/a

    0px

    ∂<

    ∂0p

    x∂

    =∂0

    px

    ∂<

    p1 p2

  • 26/49

    6.5 Examples of Laminar Motion

    ♦ External pressure gradient

    1 2p p>

    0px

    ∂< →

    ∂i) pressure gradient assists the viscously induced motion to

    overcome the shear force at the lower surface

    0px

    ∂> →

    ∂ii) pressure gradient resists the motion which is induced by the

    motion of the upper surface

    1 2p p

  • 27/49

    6.5 Examples of Laminar Motion

    Continuity eq. for two-dimensional, parallel flow:

    0u wx z

    ∂ ∂+ =

    ∂ ∂

    ( )

    2

    2

    only

    0ux

    u f z

    ∂=→ ∂

    =

  • 28/49

    6.5 Examples of Laminar Motion

    N-S Eq.:

    . : ux dirt

    ∂−

    ∂uux

    ∂+

    ∂uvy

    ∂+

    ∂uwz

    ∂+

    hgx

    ∂= −

    2

    2

    1 p ux x

    µρ ρ

    ∂ ∂− +

    ∂ ∂

    2

    2u

    y∂

    +∂

    2

    2u

    z ∂

    + ∂

    2

    2

    10 p ux z

    µρ ρ

    ∂ ∂∴ = − + ∂ ∂

    Steady flowContinuity eq. for incompressible fluid

    2D flow

    parallel flow

    (6.31a)

  • 29/49

    6.5 Examples of Laminar Motion

    . : wz dirt

    ∂−

    ∂wux

    ∂+

    ∂wvy

    ∂+

    ∂wwz

    ∂+

    2

    2

    1h p wgz z x

    µρ ρ

    ∂ ∂ ∂= − − +

    ∂ ∂ ∂

    2

    2w

    y∂

    +∂

    2

    2w

    z∂

    +∂

    10 pgzρ

    ∂∴ = − −

    ∂ (6.31b)

    (6.31b): p gz

    ρ γ∂ = − = −∂

    ( )p z f xγ∴ = − + (6.32)

  • 30/49

    → hydrostatic pressure distribution normal to flow

    → For any orientation of z -axis. in case of a parallel flow, pressure is distributed hydrostatically in a direction normal to the flow.

    (6.31a): ~ independent of z

    6.5 Examples of Laminar Motion

    p dpx dx

    ∂→

    (A)2

    2dp udx z

    µ ∂∴ =∂

    Pressuredrop

    Energy loss due toviscosity

  • 31/49

    Integrate (A) twice w.r.t. z

    Use the boundary conditions,

    6.5 Examples of Laminar Motion

    2

    2dp udzdz dzdzdx z

    µ ∂=∂∫∫ ∫∫

    1dp uz dz dz C dzdx z

    µ ∂= +∂∫ ∫ ∫

    2

    1 22dp z u C z Cdx

    µ= + + (6.33)

    i) ( ) 2 20, 0 0 00dpz u C Cdx

    µ= = → × = + ∴ =

  • 32/49

    6.5 Examples of Laminar Motion

    ii) 2

    1, 2dp az a u U U C adx

    µ= = → = +

    2

    11

    2dp aC U

    a dxµ

    ∴ = −

    ∴ (6.33) becomes

    2 212 2

    dp z dp au zUdx a dx

    µ µ = + −

    2

    2 2z dp az zu Ua dx

    µ µ ∴ = − −

  • 33/49

    6.5 Examples of Laminar Motion

    ( ) 12

    U a dp zu z u z za dx aµ

    = = − −

    (6.34)

    Velocitydriven

    Pressuredriven

    i) If 0dpdx

    = Couette flow (plane Couette flow)→

    Uu za

    = (6.35)

    → driving mechanism = (velocity)U

  • 34/49

    6.5 Examples of Laminar Motion

    ii) If 0U = 2-D Poiseuille flow (plane Poiseuille flow)→

    ( ) parabolic1 ~2

    dpu z a zdxµ

    = − (6.36)

    → driving mechanism = external pressure gradient, dpdx

    max @ 2au z =

    2

    max 8a dpu

    dxµ= − (6.37)

  • 35/49

    6.5 Examples of Laminar Motion

    V = average velocity

    (6.38)2

    max23 12

    Q a dpuA dxµ

    = = = −

    [Re] detail

    ( )2 30 0

    1 12 12

    a a dp dpQ u dz z az dz adx dxµ µ

    = = − = −∫ ∫2

    max21

    12 3Q a dpA a V uA dxµ

    = × ∴ = = − =

  • 36/49

    6.5 Examples of Laminar Motion

    [Re] Dimensionless form

    2

    2

    12

    2

    1

    u z a dp z zU a U dx a a

    a dpPU dx

    u z z zPU a a a

    µ

    µ

    = − −

    = −

    = + −

  • 37/49

    6.5 Examples of Laminar Motion

    [Cf] Couette flow in the narrow gap of a journal bearing

    Flow between closely spaced concentric cylinders in which one

    cylinder is fixed and the other cylinder rotates with a constant

    angular velocity, ω

    i

    o i

    U ra r r

    Ua

    ω

    τ µ

    =

    = −

  • 38/49

    → Hagen-Poiseuille flow

    → Poiseuille flow: steady laminar flow due to pressure drop along a tube

    Assumptions:

    – use cylindrical coordinates

    6.5 Examples of Laminar Motion

    6.5.2 Laminar flow in a circular tube of constant diameter0p

    x∂

    <∂

  • 39/49

    6.5 Examples of Laminar Motion

    parallel flow →

    Continuity eq. →

    paraboloid →

    steady flow →

    00

    rvvθ

    ==

    0zvz

    ∂=

    0zvθ

    ∂=

    0zvt

    ∂=

    0zv ≠

    0zvr

    ∂≠

  • 40/49

    Eq. (6.29c) becomes

    By the way,

    independent of r

    6.5 Examples of Laminar Motion

    10 zzp vg rz r r r

    ρ µ∂ ∂ ∂ = − + + ∂ ∂ ∂ (A)

    ( ) ( )zp dg p h p hz z dz

    ρ γ γ∂ ∂

    − + = − = −+ +∂ ∂

    zhg gz

    ρ ρ ∂ = − ∂

    ( )

    comp. Eq.

    01

    0

    r

    rp gr

    p rr

    ρ

    γ

    = −

    −∂

    +∂

    ∂→ + =

  • 41/49

    6.5 Examples of Laminar Motion

    Then (A) becomes

    ( ) 1 zd vp h rdz r r r

    µγ∂ ∂ =+ ∂ ∂

    ( )1 zd vrp h rdz r r

    γµ

    ∂ ∂ =+ ∂ ∂ (B)

    Integrate (B) twice w.r.t. r

    ( )2

    11

    2zd r vr Cp h

    dz rγ

    µ∂

    = ++∂

    (C)

  • 42/49

    6.5 Examples of Laminar Motion

    ( ) 112

    zd v Crp hdz r r

    γµ

    ∂= ++

    ( )2

    1 21 ln

    2 2 zd r v C r Cp hdz

    γµ

    = + ++ (D)

    Using BCs

    → (C) :

    → (D) :

    max0 , z zr v v= = 1 0C =

    0 , 0zr r v= = ( )2

    02

    12 2

    rdC p hdz

    γµ

    = + (D1)

  • 43/49

    6.5 Examples of Laminar Motion

    Then, substitute (D1) into (D) to obtain νzpiezometricpressure

    ( ) ( )2 201

    4zdv r rp hdz

    γµ

    ∴ = − −+

    ( )22

    0

    0

    14zrd rv p h

    dz rγ

    µ = − + −

    (6.39)

    → equation of a paraboloid of revolution

  • 44/49

    (1) maximum velocity,

    (2) mean velocity, Vz

    6.5 Examples of Laminar Motion

    maxzv

    (6.40)max @ 0zv r =

    ( )max

    20

    4zd rv p hdz

    γµ

    = − + (6.41)

    zdQ v dA=

    ( ) ( )2 201 2

    4d rdrr rp hdz

    πγµ

    = − −+

  • 45/49

    6.5 Examples of Laminar Motion

    ( ) ( )0 2 2001 2

    4r dQ rdrr rp h

    dzπγ

    µ = − −+ ∫

    ( )02 4

    202 2 4

    r

    r

    d r rp h rdz

    πγ

    µ = − + −

    ( )4

    0

    8r d p h

    dzπ

    γµ

    = − +

    ( ) max2

    02

    0 8 2z

    z

    vQ Q r dV p hA r dz

    γπ µ

    ∴ = = = =− + (E)

    [Cf] For 2 - D Poiseuille flow max23

    V u=

  • 46/49

    6.5 Examples of Laminar Motion

    (3) Head loss per unit length of pipe

    Total head = piezometric head + velocity head

    Here, velocity head is constant.

    Thus, total head loss = piezometric head change

    ( ) 2 20

    1 8 32f z zh V Vd p hL r Ddz

    µ µγ

    γ γ γ ≡ = =− +

    (E)where 0 diameter2D r= =

    (6.42)

  • 47/49

    6.5 Examples of Laminar Motion

    [Re] Consider Darcy-Weisbach Eq.

    (F)21

    2f z

    h VfL D g

    =

    head loss due to friction= fh

    friction factorf =

    Combine (6.42) and (F)

    2

    232 1

    2z zV Vf

    D D gµ

    γ= (6.43)

  • 48/49

    Differentiate (6.39) w.r.t. r

    6.5 Examples of Laminar Motion

    64 64 64/ Rez z

    fV D V D

    νν

    = = = → For laminar flow (6.44)

    (4) Shear stress

    rzr

    vz

    τ µ ∂=∂

    zz vvrr

    µ ∂∂ =+ ∂∂

    (G)

    ( ) 12

    zv d rp hr dz

    γµ

    ∂= +

    ∂ (H)

  • 49/49

    6.5 Examples of Laminar Motion

    Combine (G) and (H)

    ( )12zr

    d rp hdz

    τ γ= +

    Linear profile

    (6.45)

    At center and walls

    0 , 0zrr τ= =

    ( )max0 0

    1,2zr zr

    dr r rp hdz

    τ τγ= = =+

    Chapter 6 Equations of Continuity and MotionChapter 6 Equations of Continuity and Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.4 Equations of Motion6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion 6.5 Examples of Laminar Motion