14-Zeislmar

37
1 Präsentation / presentation UNTERNEHMEN/ COMPANY REEL-LAYING SIMULATION BY MEANS OF A FOUR-POINT-BENDING TEST 16 th Biennial Joint Technical Meeting on Pipeline Research, 16. - 20. April 2007, Canberra Presented by U. Zeislmair (V&M) Authors: M. Erdelen-Peppler, A. Meißner T. Schmidt (V&M)

Transcript of 14-Zeislmar

Page 1: 14-Zeislmar

1 Präsentation / presentationUNTERNEHMEN/ COMPANY

REEL-LAYING SIMULATION BY MEANS OF A FOUR-POINT-BENDING TEST

16th Biennial Joint Technical Meeting on Pipeline Research, 16. - 20. April 2007, Canberra

Presented

by

U. Zeislmair (V&M)Authors: M. Erdelen-Peppler, A. Meißner

T. Schmidt (V&M)

Page 2: 14-Zeislmar

2 Reel-laying Simulation16. - 20. April 2007, Canberra

•• IntroductionIntroduction•• Pipeline installation methods & requirementsPipeline installation methods & requirements

•• Physical phenomenaPhysical phenomena

•• Finite element analysisFinite element analysis•• Real reelingReal reeling

•• Full scale reeling simulation testsFull scale reeling simulation tests

•• Experimental detailsExperimental details•• Full scale reeling simulation tests Full scale reeling simulation tests –– 4 point bending4 point bending

•• Small scale reeling simulation testsSmall scale reeling simulation tests

•• Mechanical testing after reeling simulationMechanical testing after reeling simulation

•• Results & discussionResults & discussion

Page 3: 14-Zeislmar

3 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

influence on mechanical propertiesand subsequent service of line pipe

material

pipe

laying e.g.

J-layingS-layingreel-laying

plastic deformation and ageing

importance for ...importance for ...production of V&M seamless line pipe

image: Salzgitter AG, annual

report

2005

PIPELINE INSTALLATIONPIPELINE INSTALLATION

Page 4: 14-Zeislmar

4 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

control of mechanical properties of the linepipe material

tests, e.g. with reference to DNV-OS-F101

small scale reeling simulation tests

where required: full scale reeling simulation tests (cost-, time-intensive!)

uniaxial

tension and compression in

steps corresponding to those of the installation process

artificial ageing at 250

°C for one hour

mechanical testing (tensile tests, Charpy

V-notch impact toughness testing etc.)

REQUIREMENTSREQUIREMENTS

Page 5: 14-Zeislmar

5 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

REEL LAYING: STRAIN CONTROLLED BENDING PROCESSREEL LAYING: STRAIN CONTROLLED BENDING PROCESS

Curvature

Ben

ding

Mom

ent

step Istep IIstep IIIstep IV

I

II

III

IV

I.

reeling onto drum (onshore)II.

unreeling

III.

aligningIV.

straightening

Page 6: 14-Zeislmar

6 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

PHYSICAL PHENOMENAPHYSICAL PHENOMENA

I.I. strain hardening: strain hardening: increase of dislocation densityII.II. residual stresses:residual stresses: Bauschinger

effect

III.III. strain ageing:strain ageing: interaction interstitial atoms ↔ dislocations

……occurring during real reeling, full andoccurring during real reeling, full and small scale reeling simulation testssmall scale reeling simulation tests

Page 7: 14-Zeislmar

7 Reel-laying Simulation16. - 20. April 2007, Canberra

Approach

finite element analysis

full and small scale reeling simulation tests

mechanical testingaccording DNV-OS-F101

Page 8: 14-Zeislmar

8 Reel-laying Simulation16. - 20. April 2007, Canberra

Approach FEA

finite element analysis

real reeling

simulation of I. load step

bending rig test 4 point bending

Page 9: 14-Zeislmar

9 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

REAL REELING PROCESSREAL REELING PROCESS

loadingloadingbending momentaxial force

information from pipe layers:axial force ≈

1.5 Mp

/ RDrum

Page 10: 14-Zeislmar

10 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

BENDING RIG TESTBENDING RIG TEST

loadingloadingbending momentlateral force

bendbend formerformer

FL

straightstraight pipepipe

pipepipe afterafter I. I. bendingbending stepstep

Page 11: 14-Zeislmar

11 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

4 POINT BENDING TEST4 POINT BENDING TEST

loadingloadingpure bending moment

pipea

bending moment diagramMB = F × a

F F

F F

inner supportouter support

Page 12: 14-Zeislmar

12 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

equivalent plastic strain distribution

evaluation of stress and strain distribution over the pipe cross section

FEA REAL REELING PROCESSFEA REAL REELING PROCESS

Page 13: 14-Zeislmar

13 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

axial force = 110 kNaxial force = 110 kN axial force = 500 kN axial force = 500 kN

axial stress

σmax

= 558 MPa

σmin

= -573 MPa

σmax

= 569 MPa

σmin

= -586 MPa

σmax

= 115 MPa

σmin

= -126 MPa

σmax

= 153 MPa

σmin

= -176 MPa

STRESS DISTRIBUTION OVER PIPE CROSS SECTIONSTRESS DISTRIBUTION OVER PIPE CROSS SECTION

circum- ferential stress12:00

12:00

12:0012:00

6:006:00

6:006:00

Page 14: 14-Zeislmar

14 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

0 100 200 300 400 500

Axial Load in kN

ε pl i

n A

xial

Dir

ectio

n

axial load duringreal reeling

INFLUENCE OF AXIAL FORCE ON PLASTIC STRAININFLUENCE OF AXIAL FORCE ON PLASTIC STRAIN

minor influence of axial load on axial plastic strain

Page 15: 14-Zeislmar

15 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

-2,5%

-2,0%

-1,5%

-1,0%

-0,5%

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

Real Reeling Bending Rig 4 Point Bending

Plas

tic S

trai

n ε p

l in

%

max axial tension max circumferential tensionmax axial compression max circumferential compression

REAL REELING PROCESS VS. REELING SIMULATION TESTSREAL REELING PROCESS VS. REELING SIMULATION TESTS

Page 16: 14-Zeislmar

16 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

RESULTS FROM FE SIMULATIONSRESULTS FROM FE SIMULATIONS

longitudinal force during real reeling (I. step) of minor importance

similar results concerning stress and strain evolution by

real reeling

four point bending

bending rig test

Page 17: 14-Zeislmar

17 Reel-laying Simulation16. - 20. April 2007, Canberra

Mechanical Testing

full scale reeling simulation tests

artificial ageing

mechanical testing(tensile, Charpy…)

small scale reeling simulation tests

evaluation of results

Page 18: 14-Zeislmar

18 Reel-laying Simulation16. - 20. April 2007, Canberra

Experimental Details

TESTING MATERIAL & TEST PARAMETERSTESTING MATERIAL & TEST PARAMETERS

two seamless pipes, API 5L grade X65, produced in plug millspipe I: OD 219.1 mm × WT 20 mmpipe II: OD 273.1 mm × WT 18.3 mm

small scale reeling simulation acc. DNV OS-F101εpl of coupons 2 × (+/- 2 %) and 2 × (-/+ 2 %), respectively

ageing 1 h / 250 °C

full scale reeling simulation by four point bending testsεpl > 2 % in each step in 12 o’clock and 6 o’clock positionageing 1 h / 250 °C after reeling simulation

Page 19: 14-Zeislmar

19 Reel-laying Simulation16. - 20. April 2007, Canberra

Full Scale Reeling Simulation Tests

4 POINT BENDING TEST RIG4 POINT BENDING TEST RIG

+

one test rig for different bending moments and bending radii

+

constant load in-between inner supports

+

monitoring of deformation easily achievable

INSTRUMENTATIONINSTRUMENTATION12:00 position

6:00 position

strain gauge

inner supports

2 000 mm

500 mm 500 mm 500 mm 500 mm

pos. 3pos. 2pos. 1

Page 20: 14-Zeislmar

20 Reel-laying Simulation16. - 20. April 2007, Canberra

Full Scale Reeling Simulation Tests

STEP I / IIISTEP I / III12 o12 o’’clock position clock position compressioncompression6 o6 o’’clock position clock position tensiontensiondeflection from straightdeflection from straight--lined geometrylined geometry

Page 21: 14-Zeislmar

21 Reel-laying Simulation16. - 20. April 2007, Canberra

Full Scale Reeling Simulation Tests

STEP II / IVSTEP II / IV180180°° rotation about longitudinal axisrotation about longitudinal axisrere--straighteningstraightening

Page 22: 14-Zeislmar

22 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Full Scale Reeling

DIMENSIONAL PROPERTIESDIMENSIONAL PROPERTIES wall thicknesswall thickness

18,5

19,0

19,5

20,0

20,5

12:00 1:30 3:00 4:30 6:00 7:30 9:00 10:30

Circumferential Position

Wal

l Thi

ckne

ss in

mm

Pos. 1 prePos. 1 post

500 mm 500 mm 500 mm 500 mm

pos. 3pos. 2pos. 1

Page 23: 14-Zeislmar

23 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Full Scale Reeling

DIMENSIONAL PROPERTIES DIMENSIONAL PROPERTIES ovalizationovalization

calculated acc. DNV OS-F101

excellent ovality before reeling of 0.1 to 0.35 %

ovality after full scale reeling between 0.3 and 0.6 %noticeable increase

acc. DNV OS-F101: ovality f0 ≤ 3 % after reeling

nomDDDf minmax

0−

=

Page 24: 14-Zeislmar

24 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Full Scale Reeling

RESIDUAL STRESSES RESIDUAL STRESSES after reelingafter reeling

-200

-150

-100

-50

0

50

100

150

200

1 2 3

Position

Stre

ss in

MPa

12:00 Longitudinal Stress 12:00 Circumferential Stress

6:00 Longitudinal Stress 6:00 Circumferential Stress

BAUSCHINGER EFFECT,BAUSCHINGER EFFECT, influence on YIELD STRENGTHYIELD STRENGTH

Page 25: 14-Zeislmar

25 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Mechanical Testing

SSR

2

x (+

/-2 %

)

SSR

2

x (-/

+2 %

)

Bas

e M

ater

ial

SSR

2

x(+

/-2 %

)

SSR

2

x (-/

+2 %

)

Bas

e M

ater

ial

FSR

6:

00

FSR

12

:00

FSR

6:

00

FSR

12

:00

0

100

200

300

400

500

600

700

Rt0,5

σ in

MPa

Rt0,5

SMYS

YSmax

Pipe I Pipe II

TENSILE TESTS TENSILE TESTS yield strength (YS)yield strength (YS)

step IV: compression step IV: compression

step IV: tension step IV: tension

after full scale reeling simulation and artificial ageing

Page 26: 14-Zeislmar

26 Reel-laying Simulation16. - 20. April 2007, Canberra

SS

R

2 x

(+/-2

%)

SS

R

2 x

(-/+

2 %

)

Bas

e M

ater

ial

SS

R

2 x

(+/-2

%)

SS

R

2 x

(-/+

2 %

)

Bas

e M

ater

ial

FSR

6:

00

FSR

12

:00

FSR

6:

00

FSR

12

:00

0

100

200

300

400

500

600

700

Rm

σ in

MPa

Rm

SMTS

Pipe I Pipe II

TENSILE TESTS TENSILE TESTS tensile strength (UTS)tensile strength (UTS)

Results Mechanical Testing

after full scale reeling simulation and artificial ageing

Page 27: 14-Zeislmar

27 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Mechanical Testing

FSR

6:

00

SS

R

2 x

(+/-2

%)

FSR

12

:00

SS

R

2 x

(-/+

2 %

)

Bas

e M

ater

ial

FSR

6:

00

SS

R

2 x

(+/-2

%)

FSR

12

:00

SS

R

2 x

(-/+

2 %

)

Bas

e M

ater

ial

0

10

20

30

40

50

60

70

80

90

100

Rt0

,5 /

Rm

in %

Pipe I Pipe II

TENSILE TESTS TENSILE TESTS Y/T ratioY/T ratioafter full scale reeling simulation and artificial ageing

Page 28: 14-Zeislmar

28 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Mechanical Testing

HARDNESS TESTHARDNESS TEST

FSR

6:

00

FSR

6:

00

FSR

6:

00

SS

R

2 x

(+/-2

%)

SS

R

2 x

(+/-2

%)

SS

R

2 x

(+/-2

%)

FSR

12

:00

FSR

12

:00

FSR

12

:00

SS

R

(-/+2

%)

SS

R

(-/+2

%)

SS

R

(-/+2

%)

0

50

100

150

200

250

300

Inner Radius Mean Radius Outer Radius

Har

dnes

s in

HV1

0after full scale reeling simulation and artificial ageinghardness values higher at outer surfaceSSR slightly higher hardness

Page 29: 14-Zeislmar

29 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Mechanical Testing

CVN IMPACT TESTSCVN IMPACT TESTS

0

50

100

150

200

250

300

350

-140 -120 -100 -80 -60 -40 -20 0

Temperature in °C

Impa

ct E

nerg

y in

J

SSR 2 x (-/+2 %)

SSR 2 x (+/-2 %)

FSR 12 o'clock

FSR 6 o'clock

after full scale reeling simulation and artificial ageingno clear trend regarding test method full scale ↔ small scale

Page 30: 14-Zeislmar

30 Reel-laying Simulation16. - 20. April 2007, Canberra

Results Mechanical Testing

CTODCTOD at at --40 40 °°CC

0,0

0,3

0,5

0,8

1,0

1,3

1,5

FSR 6:00

SSR

2x(+/-2 %)

FSR 12:00

SSR

2x(-/+2 %)

Basic

Material

δ in

mm

after reeling simulationand artificial ageing!

Page 31: 14-Zeislmar

31 Reel-laying Simulation16. - 20. April 2007, Canberra

Summary

CONCLUSIONSCONCLUSIONS

suitability of full scale reeling simulation by 4 point bending verified by FEAnegligible influence of axial forces on stress/strain statefull scale reeling simulation by 4 point bending led to

increase in ovalizationno distinct change in wall thicknessincreased residual stresses (mainly axial) primarily influencing yield strength

mechanical properties: SSR ↔ FSR no distinct difference,similar results

Page 32: 14-Zeislmar

32 Reel-laying Simulation16. - 20. April 2007, Canberra

Thank you for your attention.

A whole world of seamless hot-rolled tubes.

Page 33: 14-Zeislmar

33 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

PHYSICAL PHENOMENAPHYSICAL PHENOMENASMALL AND FULL SCALE REELINGSMALL AND FULL SCALE REELING**

I. strain hardeningI. strain hardeningincrease of dislocation density with increase of accumulated strainYS , Y/T-ratio , elongation , UTS , CVN transition temp. , CTOD

*

q.v.: Gehrmann

R, et al.: Influence of Plastic Deformation on Line Pipe Material. 15th Biennial Joint Technical Meeting on Pipeline Research, Orlando, Florida, USA (2005)

I.I.

σ

ε

Page 34: 14-Zeislmar

34 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

PHYSICAL PHENOMENAPHYSICAL PHENOMENASMALL AND FULL SCALE REELINGSMALL AND FULL SCALE REELING**

II. residual stressesBauschinger

effect:

-

tensile residual stresses (YS )

-

compressive residual stresses (YS )

*

q.v.: Gehrmann

R, et al.: Influence of Plastic Deformation on Line Pipe Material. 15th Biennial Joint Technical Meeting on Pipeline Research, Orlando, Florida, USA (2005)

Page 35: 14-Zeislmar

35 Reel-laying Simulation16. - 20. April 2007, Canberra

Introduction

PHYSICAL PHENOMENAPHYSICAL PHENOMENASMALL AND FULL SCALE REELINGSMALL AND FULL SCALE REELING**

III. bake hardeninghardening effect due to interaction of solute interstitial atoms (e.g. carbon, nitrogen) and dislocations, Cottrell atmospheresYS , Y/T-ratio , elongation , UTS , CVN transition temp. , CTOD

image: Macherauch E: Praktikum in Werkstoffkunde. 10. Auflage, Vieweg, Braunschweig/Wiesbaden, 1992

agei

ng*

q.v.: Gehrmann

R, et al.: Influence of Plastic Deformation on Line Pipe Material. 15th Biennial Joint Technical Meeting on Pipeline Research, Orlando, Florida, USA (2005)

Page 36: 14-Zeislmar

36 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

AIM AIM • Numerical simulation of the material loading during reeling (real reeling process)•

Analysis of the differences between the real reeling process and

the

corresponding experimental tests• Verification of significance of experimental test conditions

PROCEDUREPROCEDURE• Determination of stress/strain state in tubes during real reeling• Determination of stress/strain state in tubes during experimental reeling tests

Reel drum bending test (bending with lateral and axial forces)4 - point bending test (pure bending loading)Fully 3-dimensional modeling (MSC.MARC)

INPUT PARAMETERSINPUT PARAMETERS• Pipe outer diameter

273.1 mm

• Wall thickness:

15.9 mm• Diameter of reeling drum:

11 m

• Material grade:

SML 450• Stress strain curve acc. to tensile test

Page 37: 14-Zeislmar

37 Reel-laying Simulation16. - 20. April 2007, Canberra

FEA Reeling

equivalent plastic strain distribution

equivalent plastic strain distribution

REEL DRUM BENDING TESTREEL DRUM BENDING TEST FOUR POINT BENDING TESTFOUR POINT BENDING TEST