12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf ·...

27
12 . CHARACTERIZATION OF ALUMINIUM DOPED ZINC OXIDE NANOSTRUCTURES SYNTHESIZED BY THERMAL EVAPORATION METHOD FEBRUARY 2019 Faculty of Science Universiti Teknologi Malaysia A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy NORAFIZAH BINTI SALIHIN

Transcript of 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf ·...

Page 1: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

12

[Type a quote from the

.

CHARACTERIZATION OF ALUMINIUM DOPED ZINC OXIDE

NANOSTRUCTURES SYNTHESIZED BY THERMAL EVAPORATION

METHOD

FEBRUARY 2019

Faculty of Science

Universiti Teknologi Malaysia

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Philosophy

NORAFIZAH BINTI SALIHIN

Page 2: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

iii

To my late father (Allahyarham Salihin bin Hj.Asri)

to my beloved mother (Hjh. Noor Seah binti Mohamed)

and to my siblings

Page 3: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

iv

Alhamdulillah, all praise is for ALLAH S.W.T, the Almighty, the All

Merciful and the All Compassionate for giving me good health, courage and patience

to complete this research. My upmost gratitude to everyone who had been involved

in completing this study.

In particular, I would like to acknowledge and extend my heartfelt gratitude

to my former supervisor, Professor Dr Samsudi Sakrani and supervisor, Dr Abd

Khamim Ismail for endless supports, motivations and guidances in my project.

I would like to thank to Ibnu Sina Institute for Fundamental Science Studies

(Universiti Teknologi Malaysia) and Physics Department, Faculty of Science for the

experimental facilities and support from the staffs. Special thanks to Dr. Firdaus Omar,

Dr. Nurul Huda Yusof , Dr. Syahida Suhaimi and staff from Laboratory Management

Unit for helping me to analyze the samples.

Finally, I would also like to thank to my family and friends for their

understanding, prayers, love and encouragement during my Master’s programme in

Universiti Teknologi Malaysia.

DTION

ACKNOWLEDGEMENT

Page 4: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

v

This study focuses on the synthesis and characterization of undoped and

aluminium (Al) doped ZnO nanostructures for examples nanoflowers, nanorods,

nanowires and nanopetals grown by thermal evaporation method. Samples were

grown on silicon (100) substrate. The silicon substrate was placed at 17 cm away

from zinc target and aluminium powder mixture mounted on horizontal quartz tube

under controlled oxygen. The aluminium concentration dependent morphology,

crystalline structure and optical properties of these prepared nanostructures were

determined. Samples were characterized using field emission scanning electron

microscopy, energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD),

Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and

photoluminescence spectroscopy. As the Al dopant concentrations increased, the

morphology of ZnO changed from uniform nanoflowers to randomly oriented

nanostructures. The flower-like ZnO:Al nanorods have the length of about 333 nm

and diameter of about 117 nm. The optimum dopant concentration which can

produce uniform size, length and diameter was found to be 0.5 at% of Al. EDX

analyses revealed the presence of Zn, O, and Al in the samples. From XRD patterns,

the samples had high degree of crystallization with crystallite sizes of about 24.66

nm to 46.98 nm. The ZnO:Al nanoflowers also exhibited a strong ultra-violet

emission at 380 nm. Additionally, the band gap energy of ZnO:Al was not

significantly changed as found from UV-Vis analyses at 3.24 eV. The concentration

of Al plays a significant important role in controlling structural, morphological and

optical properties of ZnO nanostructures. The ZnO:Al nanostructures are expected

for future technological application due to its impact on optical properties.

ABSTRACT

Page 5: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

vi

Kajian ini memberi tumpuan kepada sintesis dan pencirian nanostruktur

contohnya nanobunga, nanorod, nanowayar dan nanokelopak ZnO yang tidak didop

dan didop dengan aluminium (Al) yang dihasilkan menggunakan kaedah penyejatan

haba. Sampel disintesis pada substrat silikon (100). Substrat silikon diletakkan pada

jarak 17 cm dari sasaran zink dan campuran serbuk aluminium yang diletakkan pada

tiub kuarza mendatar di bawah oksigen terkawal. Morfologi bersandar kepada

kepekatan aluminium, struktur kristal dan sifat optik nanostruktur yang disediakan

telah ditentukan. Sampel dicirikan menggunakan mikroskop pengimbasan elektron

medan terpancar, analisis penyebaran tenaga X-ray (EDX), pembelauan sinar X-ray

(XRD), spektroskopi Raman, spektroskopi ultraungu-nampak (UV-Vis) dan

spektroskopi fotoluminasi. Apabila kepekatan dopan Al meningkat, morfologi ZnO

berubah dari nanobunga ke nanostruktur berorientasikan secara rawak. Nanorod

ZnO:Al berbentuk seperti bunga mempunyai panjang kira-kira 333 nm dan diameter

kira-kira 117 nm. Kepekatan dopan optimum yang boleh menghasilkan saiz, panjang

dan diameter seragam adalah didapati pada 0.5 at% Al. Analisis EDX mendedahkan

kehadiran Zn, O, dan Al dalam sampel. Dari corak XRD, sampel mempunyai

penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm.

Nanobunga ZnO:Al juga mempamerkan sinaran ultraviolet kuat pada 380 nm.

Tambahan lagi, tenaga jurang ZnO:Al tidak banyak berubah seperti yang didapati

daripada analisis UV-Vis pada 3.24 eV. Kepekatan Al memainkan peranan penting

dalam mengawal sifat-sifat struktur, morfologi dan optik nanostruktur ZnO.

Nanostruktur ZnO yang didop dengan Al dijangka untuk aplikasi teknologi masa

depan disebabkan kesannya terhadap sifat optik.

ABSTRAK

Page 6: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVATIONS xv

LIST OF APPENDICES xviii

1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Problem Statement 4

1.3 Research Objectives 5

1.4 Scope of Study 6

1.5 Significances and Original Contributions of This Study 6

Page 7: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

viii

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Previous Research on Aluminium Doped ZnO Nanostructures

(ZnO:Al) 7

2.3 Research on Nanoflowers 19

2.4 General Properties of Zinc Oxide (ZnO) 24

2.4.1 The Basic Physical Properties of ZnO 24

2.4.2 Crystal Structure of Zinc Oxide (ZnO) 25

2.5 General Properties of Aluminium (Al) 27

2.6 Thermal Evaporation Method 28

2.6.1 Vapour Transport Method 29

2.6.1.1 Vapour-Solid (VS) Mechanism 30

2.6.2 Alloying Evaporation Deposition (AED) of ZnO:Al

Nanoflowers 32

2.6.2.1 Source Transformation During the Growth of

ZnO:Al Nanostructures 33

2.6.3 Doping Mechanism for Zno:Al Nanostructures 34

2.7 Structural and Optical Characterization of ZnO:Al

Nanoflowers 35

2.7.1 Field Emission Scanning Electron Microscopy (FESEM)

Theory 35

2.7.2 Energy Dispersive X-ray Spectroscopy (EDX) Theory 36

2.7.3 X-ray Diffraction Theory 36

2.7.4 Raman Spectroscopy Theory 38

2.7.5 Photoluminescence Theory 40

2.7.6 UV-Vis Spectroscopy Theory 42

Page 8: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

ix

3 METHODOLOGY 45

3.1 Introduction 45

3.2 Research Frame Work 45

3.3 Preparation of Undoped and ZnO:Al by Thermal Evaporation 47

3.4 Experimental Setup and Procedures 49

3.5 Sample Characterizations Methods 51

3.5.1 Field Emission Scanning Electron Microscopy 52

3.5.2 Energy Dispersive X-ray Spectroscopy 53

3.5.3 X-ray Diffraction Technique 54

3.5.4 Raman Spectroscopy 55

3.5.5 Photoluminescence (PL) Spectroscopy 56

3.5.6 UV-Vis Spectroscopy 57

4 RESULTS AND DISCUSSION 58

4.1 Introduction 58

4.2 Structural Properties of Undoped ZnO Nanoflowers (ZONFs) 58

4.3 Structural Properties of of ZnO:Al Nanoflowers 63

4.3.1 FESEM and EDX Analysis 63

4.3.2 X-ray Diffraction (XRD) Pattern 69

4.3.3 Raman Spectral Analysis 72

4.4 Optical Properties of ZnO:Al NFs 73

4.4.1Photoluminescence Spectrum 73

4.4.2 UV-Vis Spectrum 75

Page 9: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

x

5 CONCLUSIONS 78

5.1 Introduction 78

5.2 ZnO:Al NFs Grown by Thermal Evaporation 78

5.3 Morphological and Structural Properties of ZnO:Al NFs 79

5.4 Optical Properties of ZnO:Al NFs 79

5.5 Optimum Dopant Concentration in Synthesizing ZnO:Al NFs 79

5.6 Future Studies 80

REFERENCES 81

Appendices 85 - 93

Page 10: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 A brief summary of previous works of ZnO:Al NSs 12

2.2 Physical properties of ZnO 25

2.3 Physical properties of Aluminium 28

2.4 Mechanisms involved in the formation of NFs 30

3.1 Growth parameter of ZnO NFs 47

3.2 Growth parameter of ZnO:Al NFs 48

4.1 Element composition of 0.5 at% ZnO:Al NFs 69

4.2 Element composition of 1.0 at% ZnO:Al NFs 69

4.3 XRD analysis of ZnO:Al NFs 71

4.4 Estimated optical values of ZnO:Al NFs 77

Page 11: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 SEM images at different growth time (a) 2 hours

(b) 32 hours 19

2.2 FESEM scanned (a) at low magnification

(b) at high magnification 20

2.3 FESEM analysis of ZnO NFs (a) at low magnification

(b) at high magnification 21

2.4 FESEM images of flower-like ZnO 21

2.5 SEM images (a) ratio of (en) : (Zn2+) is 1:1

(b) ratio of (en) : (Zn2+) is 2.33:1 22

2.6 FESEM images (a) low resolution (b) high resolution 22

2.7 SEM analysis (a) low magnification

(b) high magnification 23

2.8 FESEM analysis 24

2.9 Wurtzite structure of ZnO 26

2.10 Miller indices of hexagonal system 27

2.11 Self-catalytic growth mechanism 31

2.12 Source transformation during the growth of NRs 33

2.13 X-ray diffraction 37

2.14 X-ray Diffraction pattern of ZnO:Al 37

2.15 Stokes- and anti-Stokes scattering 38

Page 12: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xiii

2.16 Raman profile of undoped and ZnO:Al films 40

2.17 Photoluminescence process 41

2.18 PL spectra of ZnO:Al thin films 42

2.19 Difference in specular reflection and diffuse reflection 43

2.20 UV-Vis reflectance spectra of ZnO:Al thin films 44

2.21 A plot of Inα against energy for different concentrations

of Al 44

3.1 Frame work chart to synthesize ZnO:Al NFs 46

3.2 Ultrasonic cleaner 49

3.3 Schematic of the experimental setup 50

3.4 Quartz tube furnace installed at Ibnusina Institute, UTM 51

3.5 FESEM at University Industry Research

Laboratory, UTM (HITACHI-SU8020) 53

3.6 X-ray Diffraction (XRD) 54

3.7 Raman spectrophotometer at University Industry

Research Laboratory 55

3.8 Photoluminescence instrument at Physics Department,

Faculty of Science 56

3.9 UV-Vis spectrophotometer at Physics Department,

Faculty of Science, UTM 57

4.1 FESEM images of undoped ZnO NSs on Si substrate

(a) at 600 °C (b) at 700 °C (c) at 750 °C (d) at 800 °C 60

4.2 FESEM images of undoped ZnO NFs (a) at 700 °C

(b) at 750 °C 61

4.3 XRD spectrum of undoped ZnO NFs at 700 °C

for 120 minutes 63

4.4 FESEM images of ZnO:Al nanoflowers scanned at 5000x

magnification (left side) and 25000x magnification

(right side) with zoom in area for in the red box (a) 0.5 at%

Al (b) 1.0 at% Al (c) 3.0 at% Al (d) 6.0 at% Al 65

4.5 EDX spectrum of ZnO:Al nanoflowers (a) 0.5 at% of Al

(b) 1.0 at% of Al 68

Page 13: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xiv

4.6 XRD profiles of ZnO:Al NFs 70

4.7 Raman spectra of ZnO:Al NFs 72

4.8 PL spectra of ZnO:Al NFs on silicon substrate with

different dopant concentrations 74

4.9 Spectral graph of reflectance analysis of ZnO:Al NFs 76

4.10 UV-Vis spectra for different doping level of ZnO:Al NFs 77

Page 14: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xv

LIST OF ABBREVATIONS

θ - Angle

γ-AuZn - Solid Gold-Zinc

Å - Angstrom

a0 - Lattice constant

AED - Alloying Evaporation Deposition

AFM - Atomic Force Microscopy

Al - Aluminium

Al3+ - Aluminium ion

AlCl - Aluminium Chloride

Al2O3 - Aluminium Oxide

Ar - Argon

Au - Aurum/Gold

Au-Si - Gold-Silicon

c0 - Lattice constant

°C - Degree celcius

Cr - Chromium

1D - One-dimensional

DOS - Density of States

EDX - Energy Dispersive X-ray

en - Ethylenediamine

eV - Electron-volt

Page 15: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xvi

F-E - Field-emission

FESEM - Field Emission Electron Microscopy

FEs - Field-emitters

g - Gram

g/cm3 - Gram per cubic centimetre

ℏ - Photon

HCP - Hexagonal closed packing

HR-TEM - High-Resolution Transmission Electron Microscopy

JCPDS - Joint Committee on Powder Diffraction Standards

K - Kelvin

kV - Kilovolt

M - Mole

mm - Milimetre

nA - Nanoampere

NAPLD - Nanoparticle assisted pulsed laser deposition

NFs - Nanoflowers

nm - Nanometre

N/mm2 - Newton per square milimetre

NPs - Nanoplates

NRs - Nanorods

NSs - Nanostructures

NWs - Nanowires

O2 - Oxygen

O2- - Oxygen ion

PA - Photodecomposition Activity

PEI - Polyethyleneimine

PL - Photoluminescence

PLD - Pulsed Laser Deposition

sccm - Standard cubic centimeter per minute

SEM - Scanning Electron Microscopy

Si - Silicon

Page 16: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xvii

SILAR - Successive Immersion Layer Adsorption Reaction

T-Ag - Triangular silver

UV - Ultraviolet

UV-Vis - Ultraviolet-visible

V0 - Oxygen vacancies

VLS - Vapour-Liquid-Solid

VS - Vapour-Solid

VSS - Vapour-Solid-Solid

XRD - X-ray Diffraction

Zn2+ - Zinc ion

Zni - Zinc intersitials

ZnO - Zinc Oxide

ZnO:C - Carbon doped Zinc Oxide

ZnO:Al - Aluminium doped Zinc Oxide

ZnS - Zinc sulfide

ZONFs - Zinc Oxide Nanoflowers

Page 17: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

APPENDIX A XRD Analysis JCPDS for Zyncite 85

APPENDIX B XRD Analysis JCPDS for Silicon 85

APPENDIX C Less focus of RAMAN analysis for 0.5 at% of Al 88

APPENDIX D Over focus of RAMAN analysis for 0.5 at% of Al 89

APPENDIX E Less focus of RAMAN analysis for 1.0 at% of Al 90

APPENDIX F Over focus of RAMAN analysis for 1.0 at% of Al 91

APPENDIX G Less focus of RAMAN analysis for 3.0 at% of Al 92

APPENDIX H Over focus of RAMAN analysis for 3.0 at% of Al 93

Page 18: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

12

[Type a quote from the

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Materials can be divided in three groups which are conductors,

semiconductors and insulators based on their electrical properties. In this new era,

researchers give tremendous attention on semiconductor materials due to its potential

technological application. Semiconductors such as InP, GaAs, ZnO and SiO2.ZnO

are being used in optoelectronic, electronic, biomedical sciences and sensor device.

Among these semiconductors, ZnO is one of the most studied materials for their

electronic and optical properties for application prospects.

Zinc oxide (ZnO) is a combination of II-VI semiconductor that is widely used

in optoelectronic devices. ZnO has a wide band gap of 3.37 eV and large exciton

binding energy of 60 meV at room temperature. Recently, nanostructure materials

have been of interest because of their behaviour which is expected to be superior in

tiny dimensions. One-dimensional nanostructures comprise nanobelts, nanorods,

nanowires and nanotubes are applied in many devices such as gas sensors (Tang et

al., 2016), light emitting diodes, solar cells and lasers (Bu, 2014b). Besides that, ZnO

has been proposed in humidity sensors and nanogenerators due to its moisture

sensitivity and piezoelectricity.

Page 19: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

2

ZnO has a stable wurtzite structure with lattice parameters a = 0.325 nm and c

= 0.521 nm (Fan and Lu, 2005). The non-central symmetry in wurtzite structure

contributes to piezoelectric and pyroelectric effect. A tetrahedral unit of Zn2+ and O2-

form polar surface which could give a unique growth morphologies; nanowires,

nanosprings, nanorings, nanocombs, nanohelixes, nanorods and nanocages.

Therefore, ZnO could give a huge impact for technological applications such as

ultrasensitive nano-sized gas sensors, nanolasers, field-emitters (FEs) and

nanoresonators.

There are several growth mechanisms to synthesize nanostrutures (NSs)

including Vapour-Liquid-Solid (VLS), Vapour-Solid-Solid (VSS) and Vapour-Solid

(VS). Temperature and other parameters can directly affect the growth mechanism.

In VLS mechanism, a mixture of ZnO (vapour) and Au (catalyst) will form alloy

(liquid Au-ZnO) and then ZnO NFs with temperature greater than 400 °C. For VSS

mechanism, a mixture of ZnO (vapour) and Au (catalyst) will form Alloy (solid γ-

AuZn) and then ZnO NFs with temperature smaller than 400 °C or greater 400 °C

depending on catalyst or materials. VS mechanism involves a mixture of Zn (catalyst

free) and O2 to form ZnO (solid).

Although it is possible to synthesize high quality of nanoflowers (NFs)

through various methods such as chemical bath deposition (Shi and Walker, 2016),

sol-gel (Zhou et al., 2016) and hydrothermal (Cunha and Souza, 2013; Adhyapak et

al., 2014; Saleem et al., 2017), such methods required a long deposition time.

Another alternative method NFs was thermal evaporation (Umar et al., 2016). The

metallic powder was evaporated in the furnace and then oxidized in the presence of

argon or helium and oxygen.

Abdulgafour et al. (2010) have revealed that the growth of low density and

non-uniformity of undoped ZnO NFs on Silicon (Si) substrate is by thermal

evaporation. Some defects were also found in the crystal structure as presented in PL

Page 20: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

3

analysis. In the experiment, the Si substrate was placed at the top of alumina boat

with the face towards the Zn powder and heated from 400 °C to 850 °C for one hour.

Currrently, doped ZnO NFs have a wide range of application such as

piezoelectric devices, transparent conducting electrode devices, gas sensor devices

and photo voltaic devices. Aluminium doped zinc oxide (ZnO:Al) has advantages of

low-production cost, non-toxicity and thermal stability. It is one of the materials

using in photocatalysis, photosensors and optoelectronic devices. Most researchers

now pay much attention on ZnO:Al especially in the field of material science and

technology.

The morphology of Al doped ZnO thin films changed to stacking of

nanowires when the Al concentration increases (Chandramohan et al., 2012). The

quality of crystalline structure and optical transmission of thin films strongly

depended on the concentration of Al dopants. Moreover, the samples had potential in

constructing gas sensors due to high ratio between surface and volume of nanowires.

Recent literatures also showed that complex growth morphologies were

observed by using microscopes. Mamat and his co-workers (2011) prepared Al

doped ZnO NSs which the films consisted of nanorod-nanoflake networks. Zhang et

al. (2013), Tashi (2013) and Kumar et al. (2014) concluded that the morphology of

ZnO:Al NSs varies with different Al concentrations and Al does not affect the

hexagonal structural of ZnO. Most of the previous studies on ZnO:Al NSs claimed

that the samples exhibited in ultraviolet (UV) and visible region upon in

photoluminescence (PL) analysis (Rajan et al., 2014; Bu, 2014b and Tang et al.,

2016).

Page 21: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

4

In terms of energy band gap, Kumar et al. (2014) found that it was increased

with increasing Al concentration. However, Dhas et al. (2017) has contradicted the

finding about the energy band gap. This implies that different materials and methods

may generate different results.

1.2 Problem Statement

Nanotechnology has become an intensively and extensively pursued topic in

this new era because it provides a deeper understanding of functional materials for

advanced applications. This leads the researchers who work in nanomaterial fields to

construct advanced nanoscale devices and optoelectronic devices. ZnO is considered

to be a promising candidate for optoelectronic devices, UV sensors and gas sensors.

The formation of nanorods, nanowires and nanosheets which in microscopic

view resemble flowers is known as nanoflowers (NFs). Non-uniformity of undoped

ZnO NFs on Silicon (Si) substrate by thermal evaporation were observed through

scanning electron microscopy (SEM) (Abdulgafour et al., 2010). Some oxygen

vacancies were detected in PL analysis which is related to visible emissions.

Moreover, a few studies have been conducted on the doping of ZnO NFs by simple

technique which is thermal evaporation method.

So far, many reports have focused on synthesis of ZnO:Al NSs via various

methods including sol-gel, pulsed-laser deposition, precipitation, chemical bath,

evaporation-deposition and thermal evaporation. However, Tashi (2013) have

revealed that the growth of low density and non-uniformity size of ZnO:Al

nanowires (NWs) on Silicon (Si) substrate by thermal evaporation. The morphology

of ZnO varies with different concentrations of Al (Mamat et al., 2011; Zhang et al.,

2013 and Kumar et al., 2014).

Page 22: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

5

Some defects were also found in the crystal structure based on PL analysis

(Tashi, 2013; Rajan et al., 2014 and Tang et al., 2016). A broad of blue to violet

region was observed which indicate that there is few oxygen vacancies and Zn

intersitials.

The influence of dopants on the formation of ZnO nanostructures would keen

to a better understanding of their growing mechanisms. Since the growth parameters

affect the structural, magnetic and electrical properties of ZnO, thus the main focus

here is to synthesize aluminium (Al) doped ZnO NFs and discovers the influence of

dopant concentrations on the structural and optical properties. Furthermore, the

structural and optical of ZnO:Al NFs are expected to be improved. In this work, the

reactions were carried out in an electric furnace as Zn powder was evaporated

directly. The process did not use metal catalyst to avoid catalyst contamination.

During the growth of ZnO:Al NFs, it is expected that more than one mechanism

involve in the process. In this study, the formation of ZnO:Al NFs involves VS

mechanism as the absence of the use of catalyst in the reaction. Undoubtedly, Zn

nanoparticle acts as seed in the nucleation base process which is believed that VLS

mechanism also occured.

1.3 Research Objectives

The objectives of this study are:

i) To synthesize aluminium doped zinc oxide (ZnO:Al) nanoflowers by

thermal evaporation method.

ii) To characterize the grown nanostructures for structural, morphology

and optical properties.

iii) To determine the aluminium concentration dependent morphological,

structural and optical properties for optimization.

Page 23: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

6

1.4 Scope of Study

Recently, there has been a drastic increase of the literature of NFs. However,

most of the previous works studied on undoped ZnO. Doping is the best tool to

manipulate the structural, optical and electrical properties of ZnO. So, it is an

opportunity to explore a further detail the doped counterparts. Group III elements are

close lattice matching with ZnO and it can be considered as a dopant in this work.

This research based on aluminium doped ZnO NFs with dopant concentrations

ranging from 0.5 at% to 6.0 at%. A p-type ZnO was formed when doped with Al

because it behaves as an acceptor in ZnO with its energy level located at 0.1 eV

below the bottom of the conduction band (Kanai, 1991). Additionally, when doped

with Al, the various concentrations of Al may affect the structural and optical

properties of ZnO:Al NFs. This process was completed without a catalyst unlike the

other methods. FESEM, EDX, RAMAN and XRD were used to investigate the

surface features of the sample and its content and the optical properties of the sample

were analyzed by using PL and UV-Vis spectrophotometer.

1.5 Significances Study

The development of nanotechnology gives impact in the quality of human life

including computer, textile, medicine, communication and economy. NFs have

unique morphology which are expected to show different magnetic, optical and

electrical properties from their bulk 3D structures. Thus, the study on structural and

optical of Al doped ZnO NFs with different dopant concentrations will contribute a

new knowledge in the gas sensing and electronic industry for better live of mankind.

Page 24: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

81

[TyREFERENCES

Abdulgafour, H. I., Hassan, Z., Al-Hardan, N., and Yam, F. K. (2010). Growth ofZinc Oxide Nanoflowers by Thermal Evaporation Method. Physica B:Condensed Matter, 405(11), 2570–2572.

Adhyapak, P. V., Meshram, S. P., Mulla, I. S., Pardeshi, S. K., and Amalnerkar, D. P.(2014). Controlled Synthesis of Zinc Oxide Nanoflowers by Succinate-AssistedHydrothermal Route and Their Morphology-Dependent PhotocatalyticPerformance. Materials Science in Semiconductor Processing, 27(1), 197–206.

Bu, I. Y. Y. (2014a). Sol–Gel Production of Aluminium Doped Zinc Oxide UsingAluminium Nitrate. Materials Science in Semiconductor Processing, 27, 19–25.

Bu, I. Y. Y. (2014b). Effects of the Pre-Annealing Temperature on Structural andOptical Properties of Sol–Gel Deposited Aluminium Doped Zinc Oxide.Ceramics International, 40(8, Part A), 11941–11946.

Chandramohan, R., Dhanasekaran, V., Ezhilvizhian, S., Vijayan, T. A., Thirumalai,J., Peter, A. J., and Mahalingam, T. (2012). Spectral Properties of AluminiumDoped Zinc Oxide Thin Films Prepared by SILAR Method. Journal ofMaterials Science: Materials in Electronics, 23(2), 390–397.

Cunha, D. M., and Souza, F. L. (2013). Facile Synthetic Route for Producing One-Dimensional Zinc Oxide Nanoflowers and Characterization of Their OpticalProperties. Journal of Alloys and Compounds, 577, 158–164.

Dang, H. S., J. W. and S. S. F. (2003). The Synthesis of Metal Oxide Nanowires byDirectly Heating Metal Sample in Appropriate Oxygen Atmosphere.Nanotechnology, 6(14), 738–741.

Das S., Dutta K. and Pramanik A. (2013) Morphology Control of ZnO with Citrate:ATime and Concentration Dependent Mechanistic Insight CrystEngComm,15,6349-6358

Dhas, C. R., Venkatesh, R., Christy, A. J., Arivukarasan, D., Anitha, B., Kirubakaran,D. D., and Sanjeeviraja, C. (2017). Recent Trends in Materials Science andApplications, 189, 351–365.

Fan Z., L. J. G. (2005). Zinc Oxide Nanotstructures: Synthesis and Properties.Department of Chemical Engineering and Material Science & Department ofElectrical Engineering and Computer Science, University of California, Irvine,California.

Fox, M. (2001). Optical Properties of Solids. New York: Oxford University Press.Ghosh, A., Kumari, N., Tewari, S., and Bhattacharjee, A. (2013). Structural and

optical properties of pure and Al doped ZnO nanocrystals. Indian Journal ofPhysics, 87(11), 1099–1104.

He, B. B. (2009). Two-Dimensional X-Ray Diffraction. New Jersey: John Wiley &Sons, Inc.

Page 25: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

82

[TyHumayun Q., Kashif M., and Hashim U. (2013) Structural, Optical, Electrical, andPhotoresponse Properties of Postannealed Sn-Doped ZnO Nanorods. Journal ofNanomaterials, 1-8

Kamalianfar, a., Halim, S. a., Naseri, M. G., Navasery, M., Din, F. U., Zahedi, J. aM., and Monfared, a. L. (2013). Synthesis and Characterization of ZnO Flower-Like Multisheets Grown on Metal Buffer Layer. International Journal ofElectrochemical Science, 8, 7724–7733.

Kanai,Y. (1991). Admittance Spectroscopy of Cu-Doped ZnO Crystals. JapanJournal of Applied Physics. volume 30, 703-707.

Khan, W., Khan, Z. A., Saad, A. A., Shervani, S., Saleem, A., and Naqvi, A. H.(2013). Synthesis and Characterization of Al Doped Zno Nanoparticles.International Journal of Modern Physics: Conference Series, 22, 630–636.

Kochuveedu, S. T. and D. H. K. (2014). Surface Plasmon Resonance MediatedPhotoluminescence Properties of Nanostructured Multicomponent FluorophoreSystems. Nanoscale, 6, 4966–4984.

Kumar, N. S., Bangera, K. V., and Shivakumar, G. K. (2014). Properties ofNanostructured Al Doped Zno Thin Films Grown by Spray Pyrolysis Technique.Semiconductors, 48(8), 1023–1027.

Lauhon, L. J., Gudiksen, M. S. and Lieber C. M. (2004). Semiconductor NanowireHeterostructurestle. Phil. Trans. R. Soc. Lond. A, 362, 1247–1260.

Liu B. and Zeng H. C. (2003). Hydrothermal Synthesis of ZnO Nanorods in theDiameter Regime of 50 nm, Journal of the American Chemical Society, 125(15), 4430–4431.

Liu, C.P. (2007). Multi-Channel ZnO nanoconductors with Tunable Opto-ElectricalProperties. National Cheng Kung University, Tainan, Taiwan.

Liu, P., Li, Y., Guo, Y., and Zhang, Z. (2012). Growth of Catalyst-Free High-QualityZnO Nanowires by Thermal Evaporation Under Air Ambient. NanoscaleResearch Letters, 7(1), 220.

Louhichi, M., Romdhane, S., Fkiri, A., Smiri, L. S., and Bouchriha, H. (2015).Structural and Photoluminescence Properties of Al-Doped Zinc OxideNanoparticles Synthesized in Polyol. Applied Surface Science, 356, 998–1004.

Mamat, M. H., Khusaimi, Z., Musa, M. Z., Malek, M. F., and Rusop, M. (2011).Fabrication of Ultraviolet Photoconductive Sensor Using A Novel Aluminium-Doped Zinc Oxide Nanorod-Nanoflake Network Thin Film Prepared ViaUltrasonic-Assisted Sol-Gel and Immersion Methods. Sensors and Actuators, A:Physical, 171(2), 241–247.

Manikandan, E., Murugan, V., Kavitha, G., Babu, P., and Maaza, M. (2014).Nanoflower Rod Wire-Like Structures of Dual Metal ( Al And Cr ) Doped ZnoThin Films : Structural , Optical And Electronic Properties. Materials Letters,131, 225–228.

Mohanta, A., Simmons, J. G., Everitt, H. O., Shen, G., Margaret Kim, S., and Kung,P. (2014). Effect of Pressure and Al Doping on Structural and Optical Propertiesof Zno Nanowires Synthesized by Chemical Vapor Deposition. Journal of

Page 26: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

83

[TyLuminescence, 146, 470–474.Mugwang, Karimi., Njoroge., and Omayio, O. (2015). Characterization of Aluminum

Doped Zinc Oxide (AZO) Thin Films Prepared by Reactive ThermalEvaporation for Solar Cell Applications. Fundamentals of Renewable Energyand Applications 5(4).

Ortega, Y., Haussler, D., Piquaras, J., P. F. and W. J. (2012). Complex HierarchicalArrangements of Stacked Nanoplates in Al-Doped ZnO. Physica Status Solidi A,209(8), 1487–1492.

Pal, M., Bera, S., Sarkar, S., and Jana, S. (2014). Influence of Al Doping onMicrostructural, Optical and Photocatalytic Properties of Sol–Gel BasedNanostructured Zinc Oxide Films on Glass. RSC Adv., 4(23), 11552–11563.

Pinner, P. G. S. and R. (2001). The Surface Treatment and Finishing of Aluminumand Its Alloys (6th ed.). ASM International.

Rajan, S. T., Subramanian, B., Kumar, A. K. N., Jayachandran, M., and Rao, M. S. R.(2014). Fabrication of Nanowires of Al-Doped ZnO Using NanoparticleAssisted Pulsed Laser Deposition ( NAPLD ) for Device Applications. Journalof Alloys and Compounds, 584, 611–616.

Razeghi, M. (2006). Fundamentals of Solid State Engineering (2nd ed.). SpringerSafa, S., Azimirad, R., Mohammadi, K., Hejazi, R. and Khayatian, A. (2015).

Investigation of Ethanol Vapor Sensing Properties of ZnO Flower-LikeNanostructures. Measurement: Journal of the International MeasurementConfederation, 73, 588–595.

Saleem, M., Ahmad, M. A., Fang, L., Raza, R., Akhtar, M. N., and Rehman, S. U.(2017). Solution-Derived ZnO Nanoflowers Based Photoelectrodes for Dye-Sensitized Solar Cells. Materials Research Bulletin, (2016).

Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., and Moshfegh, A. Z. (2015).Recent progress on doped ZnO nanostructures for visible-light photocatalysis.Thin Solid Films.

Sheini F.J., More M.A., Jadkar S.R., Patil K.R., Pillai V.K, J. D. S. (2010).Observation of Photoconductivity in Sn-doped ZnO Nanowires and TheirPhotoenhanced Field Emission BehaviorNo Title. J. Phys. Chem., C 114 3843–3849.

Shi, Z., & Walker, A. V. (2016). Zinc oxide Chemical Bath Deposition onFunctionalized organic thin films: Formation of nanorods, nanorockets andnanoflowers. Thin Solid Films, 606, 106–112.

Silambarasan, M., Saravanan, S., and Soga, T. (2015). Raman andphotoluminescence studies of Ag and Fe-doped ZnO nanoparticles.International Journal of ChemTech Research, 7(3), 1644–1650.

Suhaimi, S. B. (2016). Characterizations of Tin-Doped Zinc Oxide NanowiresGrown by Thermal Evaporation Method. PhD Thesis. Universiti TeknologiMalaysia, Skudai.

Suhaimi, S., Sakrani, S., Dorji, T., and Ismail, A. K. (2014). A Catalyst-Free Growthof Aluminium-Doped ZnO Nanorods by Thermal Evaporation. 4–9.

Page 27: 12 [Typeaquotefromthe …eprints.utm.my/id/eprint/81536/1/NorafizahSalihinMFS2019.pdf · 2019-08-21 · penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga

84

[TyTang, J. F., Lu, Y. M., & Chu, S. Y. (2016). The growth of AZO nanostructures withhigh doping concentration using vertical reaction layer synthesizing method andtheir applications. Sensors and Actuators, B: Chemical, 225, 327–333.

Tashi Dorji (2013). Synthesis And Characterization of Aluminium Doped Zinc OxideNanowires on Non-Catalytic Silica Substrates. Master thesis. UniversitiTeknologi Malaysia, Skudai.

Tripathi, R. M., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., andShrivastav, B. R. (2014). ZnO Nanoflowers: Novel Biogenic Synthesis andEnhanced Photocatalytic Activity. Journal of Photochemistry and PhotobiologyB: Biology, 141, 288–295.

Umar, A., Algarni, H., Kim, S. H., and Al-Assiri, M. S. (2016). Time DependentGrowth of ZnO Nanoflowers with Enhanced Field Emission Properties.Ceramics International, 42(11), 13215–13222.

Umar, A., Kim, S. H., Lee, Y. S., Nahm, K. S., and Hahn, Y. B. (2005). Catalyst-Free Large-Quantity Synthesis of ZnO Nanorods by a Vapor-Solid GrowthMechanism: Structural and Optical Properties. Journal of Crystal Growth,282(1–2), 131–136.

Van Khai, T., Maneeratanasarn, P., Choi, B. G., Ham, H., and Shim, K. B. (2012).Diameter and Density-Controlled Synthesis of Well-Aligned ZnO NanowireArrays and Their Properties Using a Thermal Evaporation Technique. PhysicaStatus Solidi (A), 209(8), 1498–1510.

Wang, R. C., Liu, C. P., J. L. H. and S. J. C. (2005). Single-Crystalline Al:ZnONanowires/Nanotubes Synthesized at Low Temperature. Applied PhysicsLetters, 86:251104.

Yuan, H. J., Xie, S. S., Liu, D. F., Yan, X. Q., Zhou, Z. P., Ci, L. J., and Wang, G.(2003). Characterization of Zinc Oxide Crystal Nanowires Grown by ThermalEvaporation of Zns Powders. Chemical Physics Letters, 371(3–4), 337–341.

Zhang, Y., Liu, L., Xing, J., Yu, L., Zhang, J., and Zhang, Z. (2013). Preparation ofAl-Doped ZnO Nanostructures and Their Application in Acrylic Resin-BasedHeat Insulation Coatings. Materials Science in Semiconductor Processing,16(6), 1573–1579.

Zhou, S. L., Zhang, S., Liu, F., Liu, J. J., Xue, J. J., Yang, D. J., and Chang, C. T.(2016). ZnO Nanoflowers Photocatalysis of Norfloxacin: Effect of TriangularSilver Nanoplates and Water Matrix on Degradation Rates. Journal ofPhotochemistry and Photobiology A: Chemistry, 328, 97–104.

Zhu, F.Y., Wang, Q.Q., Zhang, X.S., Hu, W., Zhao, X., and Zhang, H. X. (2014). 3DNanostructure Reconstruction Based on the SEM Imaging Principle, andApplications. Nanotechnology, 25(18).