112 Subsurface Stormflow

19
Standard Article You have free access to this content 112 Subsurface Stormflow Part 10. Rainfall-Runoff Processes 1. Markus Weiler 1 , 2. Jeffrey J McDonnell 2 , 3. Ilja Tromp-van Meerveld 3 , 4. Taro Uchida 4 Published Online: 15 APR 2006 DOI: 10.1002/0470848944.hsa119 Copyright © 2005 John Wiley & Sons, Ltd Book Title Encyclopedia of Hydrological Sciences Additional Information How to Cite Weiler, M., McDonnell, J. J., Tromp-van Meerveld, I. and Uchida, T. 2006. Subsurface Stormflow. Encyclopedia of Hydrological Sciences. 10:112. Author Information 1 University of British Columbia, Departments of Forest Resources Management and Geography, Vancouver, BC, Canada 2 Oregon State University, Department of Forest Engineering, Corvallis, OR, US 3 Ecole Polytechnique Fédérale de Lausanne, School of Architecture, Civil & Environmental Engineering, Lausanne, Switzerland 4 Research Center for Disaster Risk Management, National Institute for Land & Infrastructure Management, Asahi, Tsukuba, Japan Publication History 1. Published Online: 15 APR 2006 Abstract (/doi/10.1002/0470848944.hsa119/abstract) Article Figures (/doi/10.1002/0470848944.hsa119/figures) Tables (/doi/10.1002/0470848944.hsa119/tables) References (/doi/10.1002/0470848944.hsa119/references) Get PDF (340K) (/doi/10.1002/0470848944.hsa119/pdf) (http://sfx.usask.ca/usask?url_ver=Z39.88- 2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Encyclopedia%20of%20Hydrological%20Sciences&rft.atitle=Subsurfac 04-15&rft.isbn=9780470848944&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary) Introduction 1. Top of page 2. Introduction

Transcript of 112 Subsurface Stormflow

Page 1: 112 Subsurface Stormflow

Standard Article

You have free access to this content

112 Subsurface StormflowPart 10. Rainfall-Runoff Processes

1. Markus Weiler1,2. Jeffrey J McDonnell2,3. Ilja Tromp-van Meerveld3,4. Taro Uchida4

Published Online: 15 APR 2006

DOI: 10.1002/0470848944.hsa119

Copyright © 2005 John Wiley & Sons, Ltd

Book Title

Encyclopedia of Hydrological SciencesAdditional Information

How to Cite

Weiler, M., McDonnell, J. J., Tromp-van Meerveld, I. and Uchida, T. 2006. Subsurface Stormflow. Encyclopedia of Hydrological Sciences. 10:112.

Author Information

1

University of British Columbia, Departments of Forest Resources Management and Geography, Vancouver, BC, Canada

2

Oregon State University, Department of Forest Engineering, Corvallis, OR, US

3

Ecole Polytechnique Fédérale de Lausanne, School of Architecture, Civil & Environmental Engineering, Lausanne, Switzerland

4

Research Center for Disaster Risk Management, National Institute for Land & Infrastructure Management, Asahi, Tsukuba, Japan

Publication History

1. Published Online: 15 APR 2006

Abstract (/doi/10.1002/0470848944.hsa119/abstract)ArticleFigures (/doi/10.1002/0470848944.hsa119/figures)Tables (/doi/10.1002/0470848944.hsa119/tables)References (/doi/10.1002/0470848944.hsa119/references)

Get PDF (340K) (/doi/10.1002/0470848944.hsa119/pdf)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Encyclopedia%20of%20Hydrological%20Sciences&rft.atitle=Subsurface%20Stormflow&rft.date=2006-04-15&rft.isbn=9780470848944&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Introduction

1. Top of page2. Introduction

Page 2: 112 Subsurface Stormflow

Figure 1. The original perceptual model of subsurface stormflow by Engler 1919. The hatchedareas represent the uniform infiltration of water in the humus (Dammerde) and the soil (Rohboden).Deeper in the profile, water is flowing in “veins” laterally. Nagelfluh is the bedrock type for aspecific geological setting in Switzerland

3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion8. References

Subsurface stormflow is a runoff producing mechanism operating in most upland terrains. Subsurface stormflow occurs when water moves laterally down a hillslope through soil layers or permeable bedrock to contribute to the stormhydrograph in a river. In humid environments and steep terrain with conductive soils, subsurface stormflow may be the main mechanism of storm runoff generation (Anderson and Burt, 1990b; Gutknecht, 1996). In drier climates and inlowlands with gentler topography, subsurface stormflow may occur only under certain extreme conditions (high rainfall and high antecedent soil moisture), when transient water tables form and induce lateral flow to the channel (Wilcoxet al., 1997).

While an important contributor to the volume of flow in the stream, subsurface stormflow is also responsible for the transport of labile nutrients into surface water bodies (e.g. McGlynn and McDonnell, 2003b). Since the flow path ofwater in the subsurface often determines the chemistry of waters discharging into the stream and hence the water quality, characterizing this subsurface flow path and the water's age and origin is important (Burns et al., 2003).Subsurface stormflow may also enhance positive pore pressure development in steep terrain (Uchida et al., 1999; Wu and Sidle, 1995) and may be responsible for landslide initiation (Montgomery et al., 1997; Sidle and Tsuboyama,1992). Thus, subsurface stormflow is of great interest and importance beyond the conventional hydrological literature. This article examines the history of the study of subsurface stormflow processes, reviews theories on the generationof subsurface stormflow, and gives a detailed overview of current research on subsurface flow processes and implications for future research.

Terminology

1. Top of page2. Introduction3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion8. References

Subsurface stormflow is also known in the hydrological literature as interflow, lateral flow, subsurface runoff, transient groundwater, or soil water flow. These multiple terms often confuse the process understanding of subsurfacestormflow response to rainfall or snowmelt. While some studies have documented subsurface stormflow as unsaturated flow in the unsaturated zone, most studies have shown that subsurface stormflow is a saturated (or near-saturated)water flow phenomenon – due either to the rise of an existing water table into more transmissive soil above (with ensuing lateral flow) or the transient saturation above an impeding layer, soil-bedrock interface or some zone of reducedpermeability at depth (argillic horizon, hard-pan, plough layer, etc.).

The literature on subsurface stormflow includes many references to both soil water and groundwater. Inconsistent definitions of these terms have also led to confusion. Here, we define groundwater or the saturated zone as any area in thesoil profile with ≥0 kPa matric potential. Soil water, or the unsaturated zone, is the area in the profile with matric potentials of <0 kPa. Conversion from negative to positive potentials may occur very rapidly in the shallow subsurface.Therefore, modifiers such as “transient” groundwater will be used in some instances to indicate parcels of water in the subsurface that change from soil water to groundwater or from being an unsaturated to being a saturated zone,respectively, following our potential-based definition.

Historical Development of Ideas Pertaining to Subsurface Stormflow

1. Top of page2. Introduction3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion8. References

As part of early studies on the influence of forest management on watershed hydrology in Switzerland, Engler 1919 was among the first hydrologists to recognize the importance of subsurface stormflow on runoff generation in forestedenvironments. He made observations during numerous rainfall events in two neighboring catchments, conducted infiltration experiments, and performed detailed soil physical measurements of porosity, water content, soil texture, andhydraulic conductivity. He concluded from his experiments that overland flow did not occur even during high intensity rainfall. He observed that water infiltrated into the main root zone and flowed laterally in “uncountable veins” in thesoil or at the soil-bedrock interface. Figure 1 shows the original conceptualization of these processes by Engler 1919.

Page 3: 112 Subsurface Stormflow

Figure 2. The evolving perceptual model of subsurface stormflow at the Maimai catchment inNew Zealand (Reprinted from McGlynn et al., 2002. © 2002, with permission from Elsevier)

Hursh and Brater 1941 were the first to quantify the role of subsurface stormflow senso stricto in a watershed. This seminal work showed that the stream hydrograph response to storm rainfall at the forested Coweeta experimentalwatershed consisted of two main components: channel precipitation and subsurface stormflow. Later, Hoover and Hursh 1943 showed that soil depth, topography, and hydrologic characteristics associated with different elevationsinfluenced peak discharge.

The rate of progress in the understanding of subsurface stormflow continued to increase through the International Hydrological Decade (IHD (International Hydrological Decade)), with key works by Hewlett and Hibbert 1963 onmoisture and energy conditions in a sloping concrete-walled hillslope, Whipkey 1965 on lateral preferential flow, Dunne and Black 1970 on subsurface stormflow around the toe of a hillslope and its interaction with near-stream saturatedareas, and Weyman 1973 on saturated wedge development. The most important works during the IHD, however, were those that framed subsurface stormflow within the context of the variable source area concept: Hewlett and Hibbert1967 in the United States, Cappus 1960 in France, and Tsukamoto 1961 in Japan. Later, Anderson and Burt 1978 provided clear field evidence for how topographic hollows were the key hot spots in the landscape for connectedsubsurface stormflow to the stream channel.

After comments by Freeze 1972 that subsurface stormflow could not be a dominant runoff process based on Darcy-Richards analytical approaches work by Beasley 1978, Harr 1977 and Mosley 1979 showed clearly that the responsetime and lateral flux rate of subsurface stormflow on steep forested hillslopes could be fast enough to be a main contributor to channel stormflow in headwater catchments – often via noncapillary pore space or flow in addition to Darcy-Richards like flux in the matrix.

Considerable debate has also surrounded the age and origin of subsurface stormflow. The “Maimai debate” is a classic case study in this regard and, therefore, is used here as an example (see a more extended and detailed review byMcGlynn et al., 2002). Mosley 1979, 1982 conducted the first comprehensive study of subsurface stormflow at the Maimai catchments in New Zealand. He found a close coincidence in the time of the discharge peak in the stream andthe time of the subsurface stormflow peaks, suggesting rapid movement of water vertically in the soil profile and in lateral downslope direction in the form of a saturated wedge. The wedge almost intersected the ground surface at the toeof the slope and tapered off in the upslope direction (Mosley, 1979). Dye tracing experiments of Mosley showed that his excavated “pit faces” (i.e. small trenches roughly 1 m wide and dug down to the soil-bedrock interface) displayedpoints of concentrated seepage during storm events, usually at the base of the B horizon, at which high rates of outflow were observed. At one site, Mosley 1979 observed that water “gushed” out of two pipes discovered at the base of theB horizon. Mosley's perceptual model considered macropore flow (see details in the next section) to be a “short-circuiting” process by which water could move through the soil at rates up to 300 times greater than the measured mineralsoil saturated hydraulic conductivity (Figure 2a).

Pearce et al. 1986 and Sklash et al. 1986 followed with work at Maimai where they collected samples of rainfall, soil water, and streamflow and analyzed for electrical conductivity (EC (electrical conductivity)), chloride (C1 ),deuterium (δD), and oxygen-18 (δ O) composition. They found that: (i) most of the mixing of “old” (pre-event) and “new” (event) water occurred in the hillslope; and (ii) subsurface water discharge to the stream was an isotopicallyuniform mixture of stored water. In other words, the interpretations offered by Pearce et al. 1986 and Sklash et al. 1986 directly refuted Mosley's 1979 determination that rapid transmission of new water through macropores formed themajority of stream runoff. Sklash et al. 1986 postulated the conceptual model that saturated wedges on the lower slopes and groundwater ridges in the valley bottoms developed quickly as infiltrating rain converted the tension-saturatedzone into groundwater. This perceptual model negated the need to invoke rapid transmission of new water down slope via macropores in order to explain the stream flow response, since stored water was the main component dischargedinto the stream channel during events (see Figure 2b).

McDonnell 1989, 1990 and McDonnell et al. 1991 combined isotope and chemical tracing with detailed tensiometric recording in an effort to explain the discrepancies between the earlier perceptual models. McDonnell found that: (i)water table longevity at the soil-bedrock interface was very short and showed a close correspondence with hillslope throughflow rate; and (ii) the interconnectedness of pipes in those zones was large enough to account for the rapidity ofwater table decline and pore water pressure dissipation. As a result, McDonnell 1990 proposed a new conceptual model where, as infiltrating new water moved to depth, water perched at the soil-bedrock interface and “backed-up” intothe matrix, where it mixed with a much larger volume of stored, old matrix soil water. This water table was dissipated by the moderately well-connected system of pipes at the mineral soil-bedrock interface (see Figure 2c). These studieswere followed by Woods and Rowe 1996 and Brammer et al. 1995 who showed that the topography of the bedrock surface was a key determinant of where subsurface flow was concentrated spatially across the hillslope (see Figure 2d).

The Maimai experiments, along with other field experiments through the early 1990s, achieved a general consensus that: (i) pre-event water stored in the catchment before the rain event is the dominant contributor to stormflow in thestream – averaging 75% worldwide (Buttle, 1994) (see 116 (/doi/10.1002/0470848944.hsa120/full)); (ii) vertical (and often also lateral) preferential flow is a ubiquitous phenomenon in natural soils, particularly in steep catchments(Germann, 1990; Tsuboyama et al., 1994) (see 116 (/doi/10.1002/0470848944.hsa120/full)); and (iii) combining hydrometric, chemical, and isotopic observations in experimental work is necessary to constrain any perceptual model ofsubsurface stormflow or other runoff producing mechanism (Bonell, 1993; Bonell, 1998).

This scientific debate through the latter half of the twentieth century shows how scientific progress can be made by revisiting and reanalyzing data in one experimental watershed. However, it also highlights the danger in the field ofhillslope hydrology of relying upon generalization of findings and processes of only a few selected hillslopes and watersheds. Few studies have compared subsurface flow processes and the dominant flow pathways across many sites(e.g. Beasley, 1978; Scherrer, 1997). The synthesis work of Dunne 1978 still stands as the most complete tabulation and intercomparison of subsurface stormflow data to date.

Flow Regimes of Subsurface Stormflow

1. Top of page2. Introduction3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion8. References

Subsurface stormflow describes all runoff generation processes in the hillslope close to the soil surface that result in a stream channel hydrograph response during a precipitation or snowmelt event. This response may be coupled directlyto flow in preferential pathways like macropores and layers or areas with high permeability. However, rapid subsurface stormflow response may also result from a fast hydraulic response of connected saturated areas in a hillslope inresponse to infiltrating precipitation (Burt and Butcher, 1985). The main flow regimes at the hillslope scale may be subdivided into homogeneous matrix flow and preferential flow.

Homogeneous Matrix FlowLateral matrix flow can be a viable subsurface stormflow process if water is already stored in the soil within connected saturated and close-to-saturated areas. These areas may respond quickly to an increase in hydraulic gradient andcross-sectional area due to infiltrating water. This process may occur in slopes where a high-permeable soil layer with high infiltration capacity is situated (parallel) above a low-permeable soil layer (e.g. bedrock, argillic horizon, etc).Since the water in storage on a typical hillslope is large relative to the rainfall depth, this matrix regime often results in a large contribution of pre-event water to the stream as only a small amount of event water is necessary to increasethe hydraulic gradient and cross-sectional area in the slope and create a connected transient groundwater body. This flow process is described in the literature often in terms of translatory flow (Burt, 1989), transmissivity feedback(Rodhe, 1987), or lateral flow at the soil-bedrock interface (Tani, 1997).

18

Page 4: 112 Subsurface Stormflow

Figure 3. Dye patterns from two different sites: Rietholzbach experimental watershed,Switzerland, (a) and Heitersberg near Zurich, Switzerland (b). Note the spatial heterogeneity ofdyed water and preferred nature of water flow vertically within the soil profile

(1)

Figure 4. Measured and fitted drainable porosity with depths of three different soils (No. of sitessee Table 1)

Preferential FlowPreferential lateral flow occurs either in distinctive structures in the soil where water flows only under gravity (macropores) or in areas with a higher permeability than the surrounding soil matrix. Macropores in the soil or fractures in thebedrock that are oriented predominantly slope parallel may transport water efficiently and rapidly from the hillslope to the stream (Beven and Germann, 1982). Laterally oriented macropore flow may dominate in many forestenvironments where macropores are generated by plant roots and burrowing animals. Macropores that are enlarged by erosion and connected over several meters are often termed soil pipes (Anderson and Burt, 1990a; Jones, 1971). If aconnected network is developed because of internal erosion and eluviation and connection of macropores, piping can provide effective drainage augmentation to hillslopes. However, disconnected macropores that connect hydraulicallyduring storms can also result in an effective drainage of the hillslopes (Weiler et al., 2003). If the underlying bedrock is more permeable, water can infiltrate into the bedrock and then percolate vertically into bedrock fissures and cracks –negating the macropore enhancement of subsurface stormflow on the timescale of a rainfall event. The preferential flow regime is described in the literature often in terms of lateral preferential flow (Tsuboyama et al., 1994) and pipeflow(Uchida et al., 1999), or lateral preferential flow at the soil-bedrock interface (McDonnell, 1990).

High permeability layers are areas in the slope with a coarse texture and large pore and void space. These are often found in talus slopes, landslide debris, peri-glacial solifluction deposits, or unconsolidated moraine material. Erosion offine sediments by turbulent flow in areas with already coarse soil material increases the hydraulic conductivity and makes these areas particularly conductive. This flow regime can be best envisioned by an extension of the surfacestreams into the hillslope where many “small” subsurface streams connect preferentially the hillslopes with the streams (Sidle et al., 2000). This flow process is described in the literature in terms of flow in “high-permeable layers”(Scherrer, 1997).

Current Research in Subsurface Flow Processes

1. Top of page2. Introduction3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion8. References

Subsurface Flow InitiationVarious experimental observations have shown that the water table development near the base of the soil profile can be very rapid following the onset of precipitation. This response is often a key control on the initiation of lateral flowdue to the combination of four factors: (i) an increase of the hydraulic gradient; (ii) an increase of the cross-sectional area of flow; (iii) the rise of the water table into more permeable upper soil layers; and (iv) a connection of transientgroundwater bodies across the hillslope. There is still debate among scientists about the controls on rapid water table response, but vertical preferential flow during infiltration and a decline of the drainable porosity with soil depth arethought to be the main causes for rapid subsurface flow initiation capable of generating subsurface stormflow.

Vertical Preferential FlowVertical preferential flow in natural soils is an almost ubiquitous phenomenon (Flury et al., 1994; Weiler and Naef, 2003). Different types of heterogeneities in soils result in different preferential flow processes. For example, macroporeflow is common in soils with animal burrows, roots, and earthworm channels; heterogeneous matrix flow (a type of preferential flow) in soil with spatially heterogeneous soil properties and wettability. How water is transported rapidly inthe soil bypassing the unsaturated zone depends on the initiation processes of preferential flow and the interaction of the preferential flow pathways (e.g. macropores) with the surrounding soil matrix. How the two processes determinevertical water delivery into the lower soil profile can be distinguished experimentally. Figure 3 shows results from two sites where a dye (Brilliant Blue FCF) was added to 70 mm of simulated rainfall that stained the flow pathways uponinfiltration into the soil. Later, the soil profiles were excavated and pictures were taken of the vertical soil sections. The stained areas can be then classified with image analysis techniques (Weiler and Flühler, 2004). Figure 3(a) showsthat infiltration is governed by a high interaction between macropores and the soil matrix and that macropore flow is initiated close to the soil surface. These processes will result in a slow response in the lower profile. In the example inFigure 3(b), macropore flow is also initiated close to the soil profile but interaction between water flow in the macropores and the surrounding soil matrix is very low, resulting in narrowly stained features. Here, water flow in macroporesis often turbulent and mostly driven by gravity. Hence, water delivery to the lower soil profile is very rapid. While macropores may comprise only a small part of the total soil porosity (e.g. 0.35–0.77%, e.g. Weiler and Naef 2003), theyaccount for almost all the water flow at or near saturation within the profile. The resulting water movement in the soils is very heterogeneous and certain areas within the soil may be completely bypassed. These processes often defy theDarcy-Richards formulations that rely exclusively on capillary-driven fluid flow (see 66 (/doi/10.1002/0470848944.hsa070/full) for full treatment of classical flow in porous media theory).

Another observation sometimes made in soils when water content is close to field capacity is that only a small fraction of water input into the soil results in a strong hydrodynamic response in the lower soil profile. Torres et al. 1998found that this hydrodynamic response can be on an average 15 times greater than the estimated water and wetting front velocities. While these processes remain poorly understood, research to date shows clearly that rapid travel times offluid pressure head or water content through the unsaturated zone could be mistaken as preferential or macropore flow (Rasmussen et al., 2000; Smith and Hebbert, 1983).

Drainable PorosityThe conversion of unsaturated to saturated conditions or the rise of an existing groundwater table at depth depends on the drainable porosity (or specific yield) of the soil. Drainable porosity is commonly defined as the difference involumetric water content between 0 kPa and 33 kPa soil water potential (approximately field capacity) (Weiler and McDonnell, 2004). This represents the porosity of the soil draining within a short duration – characteristic of water tablerise in the saturated zone. Drainable porosity commonly decreases with depth because of an increase in the bulk density, a decrease in macroporosity, and a change in soil texture and pore structure.

The decrease in drainable porosity with depth can be observed in different soils by comparing measurements of the water content at saturation and field capacity at several depths within the soil profile. Figure 4 illustrates the change ofdrainable porosity with depth in three different soils. The values show a high-drainable porosity in the topsoil and a slower (site no. D3) or a more rapid (site no. B4) decrease in drainable porosity with depth. Since the drainable porositycannot be zero within the soil profile, an exponential model can be used to describe the observed change with depth:

Page 5: 112 Subsurface Stormflow

where n is the drainable porosity at the soil surface, m is a decay coefficient, and z is the depth into the soil profile (positive downward). An exponential model can be fitted to the measured values to produce a depth distribution ofdrainable porosity. Table 1 gives the values of the two fitting parameters n and m for 13 different soils. The fitted values of the parameter m show a pronounced decline of the drainable porosity with depth for almost all sites, except forsite no. A4. At this site, the texture changes to a more sandy soil at depth, resulting in an increase of the drainable porosity with depth. For all other sites, the parameter m ranges from 0.294 (rapid decrease) to 6.496 (slow decrease). Thedrainable porosity at the soil surface n does not influence the parameter m; however, the grassland soils generally show a lower n than the forest soils. A low drainable porosity in the lower soil profile indicates that only a small amountof water is needed to raise the water table and, thus, to increase the potential for lateral subsurface flow.

Table 1. Values of the Two Parameters n0 and m of the Exponential Depth Function for Drainable Porosity and the Goodness-of-FitInformation (Efficiency) for Soil Data of 13 Different Sites

No. Site n0 m Efficiency

Data by Weiler 2001, Grassland soils

A1 Rietholzbach 0.083 0.294 0.915

A2 Heitersberg 0.037 2.353 0.867

A3 Koblenz 0.058 0.339 0.953

A4 Niederweningen 0.016 −0.457 0.817

Data by Ranken 1974, Forest soils

B1 Pit 1, upslope 0.268 0.881 0.929

B2 Pit 2, upslope 0.271 1.206 0.946

B3 Pit 5, midslope 0.237 1.717 0.957

B4 Pit 12, downslope 0.356 0.762 0.912

Data by Yee 1975, Forest soils

C1 Klickitat soil, Pit 2, Granophyric gabbro, 70% slope 0.250 3.152 0.878

C2 Bahannon soil, pit A, Tyee sandstone, 65% slope 0.131 2.756 0.949

Data by Rothacher et al. 1967, Forest soils

D1 Reddish-brown Lateritics over weathered breccia 0.347 1.052 0.984

D2 Yellow–brown Lateritics over rotten rock 0.253 1.146 0.856

D3 Regosol over breccia 0.168 6.496 0.377

For example, a sensitivity study implementing the exponential model for drainable porosity decline in Hillvi (/doi/10.1002/0470848944.hsa246/full) (http://faculty.forestry.ubc.ca/weiler/hillvi.html(http://faculty.forestry.ubc.ca/weiler/hillvi.html)), a subsurface hillslope flow model, reveals that for a 10% steep hillslope using m-values of 0.3, 0.5, and 1.5, the response time is 14.4, 3.8, and 1.4 times faster, respectively, than for thesame hillslope with a constant drainable porosity. The response time in this example is calculated as the time subsurface flow increases to half of the simulated constant rainfall intensity. This example highlights the importance of thedrainable porosity decline in the soil profile for the vertical response of the groundwater level in the hillslope and, hence, the lateral response of subsurface flow.

Topographic Control on Lateral Subsurface FlowThere is now wide consensus that in areas with steep slopes, thin soils, and matrix hydraulic conductivities above the maximum rainfall intensity, water moves vertically to depth (as matrix or preferential flow), perches at the soil-bedrock or an impeding layer at depth, and then moves laterally along the lowest depths of the profile (Freer et al., 2002; McDonnell, 1990; Peters et al., 1995; Sidle et al., 2000; Tani, 1997; Tsukamoto et al., 1982; Uchida et al., 2002).Hence, the bedrock topography may control the direction and accumulation of flow more directly than the topography of the surface. Hillslope experiments using piezometer and tensiometer data as well as flow volumes recorded at atrench face suggest that rapid saturated subsurface flow occurs as narrow “ribbons” of saturated flow along the bedrock topographic surface (Hutchinson and Moore, 2000; Woods and Rowe, 1996). The bedrock surface is the main“pathway” for mobile transient saturated flow during events (Freer et al., 2002; McDonnell et al., 1996).

Isotope composition and major ion concentration of subsurface flow have been used to test the physical mechanisms revealed by the pore water pressure and topographic analysis. O analysis of collected trench flow often showed littleevidence of “new water” breakthrough during storm events (Burns et al., 1998). The Panola hillslope at Panola, Georgia, USA, is a useful example of hillslope flow behavior. For example, the Panola trench SO chemistry showed noconcentration-discharge relationship (Burns et al., 1998). The only variability in concentrations of subsurface flow at the trench face was between neighboring troughs, suggesting waters of slightly different ages were mobilized withinthe hillslope. Burns et al. 1998 found that base cation concentrations in hillslope subsurface stormflow were generally related to flushing frequency, where parts of the trench with the highest bedrock surface drainage area hadconsistently lower mean base cation concentrations than other trench face positions with lower bedrock surface drainage areas.

0

0

0 0

18

4

Page 6: 112 Subsurface Stormflow

Figure 5. Simulated and measured subsurface flow response for the experimental hillslope atPanola (USA) – (a) and Maimai (NZ) – (b) assuming a constant soil depth and the measuredvariable soil depth

Figure 6. Relationship between total stormflow and total pipe flow of each storm at (a) Panola,Georgia, USA, (b) Toinotani, Kyoto, Japan, (c) Jozankei, Hokkaido, Japan and (d) Hakyuchi,Tokyo, Japan. Data for Jozankei and Hakyuchi compiled from Kitahara et al. 1994 and Ohta et al.1981, respectively

Figure 7. Schematic representation of the thresholdlike relationship between total stormprecipitation and storm total flow under wet antecedent conditions. The lines represent the best fitlines through maximum storm total subsurface stormflow data points

The relative contributions of different parts of the Panola hillslope change with total precipitation, antecedent wetness, total flow, and season (Tromp-van Meerveld, 2004). This suggests that the bedrock topography might not be the onlydominant control on subsurface flow as was suggested by the analysis of only a few storms by McDonnell 1997 and McDonnell et al. 1996 and Freer et al. 1997, 2002. Together with bedrock contributing area, soil depth may controlsubsurface stormflow dynamics during storms, especially for smaller events (Buttle et al., 2004). At the Panola hillslope, subsurface storm flow volume of smaller events (less than the 55 mm rainfall threshold) or events with dryantecedent conditions are controlled largely by soil depth variations in space (Tromp-van Meerveld, 2004), while the bedrock topography is the primary control during medium to large storms. The shift in dominant areas of flow appearsto be related to increasing antecedent soil moisture, storm size, and total flow (Freer et al., 2002).

Despite the fact that bedrock topography and soil depth variability are important controls on subsurface stormflow, few models have conceptualized and implemented this into simulation models. Recently, Weiler and McDonnell 2004incorporated soil depth variability into a subsurface flow model and simulated subsurface stormflow for the Panola hillslope. They could show that soil depth variations not only have a large influence on the spatial variation of subsurfaceflow but control largely the total subsurface flow volume produced. Figure 5 shows observed and modeled subsurface flow for simulations using Hillvi (/doi/10.1002/0470848944.hsa246/full)(http://faculty.forestry.ubc.ca/weiler/hillvi.html (http://faculty.forestry.ubc.ca/weiler/hillvi.html)), a spatially explicit saturated and unsaturated water balance model for the actual measured soil depth variations at the Panola and Maimaiexperimental hillslopes and for an assumed constant average soil depth at those sites. All other model parameters were kept constant. For the Panola hillslope in particular, the differences in subsurface stormflow response areconsiderable – changes are also notable for the Maimai hillslope. These differences seem to be related mainly to the total variance of soil depth and the measured spatial correlation length of soil depth.

The preferential nature of flow along the soil-bedrock interface may also partly account for the often observed discrepancy between measurements of saturated hydraulic conductivity at the plot scale and the calculated hydraulicconductivity assuming lateral homogeneous matrix flow from measurements of lateral subsurface flow at the hillslope scale (Brooks et al., 2004; Uchida et al., 2002; Weiler et al., 1998). As the results in Figure 5 show, subsurface flowcan increase by orders of magnitude because of the variations in soil depth without changing the saturated hydraulic conductivity.

Subsurface Flow in Soil Pipes/MacroporesIn many environments, subsurface stormflow is dominated by lateral macropore flow, ranging from subarctic wetland (Woo and DiCenzo, 1989) and boreal forest (Roberge and Plamondon, 1987) to tropical rain forest (Elsenbeer andLack, 1996) and semiarid land (Newman et al., 1998). These macropores are commonly referred to as soil pipes and concentrated subsurface flow in these natural soil pipes is called as pipeflow (e.g. Jones, 1971; Jones, 1981). Empiricalstudies of lateral pipeflow found in the literature show that lateral pipeflow controls hillslope response (e.g. Uchida et al., 1999), nutrient flushing (Buttle et al., 2001), and old water delivery to streams (Freer et al., 2002; McDonnell,1990) and to riparian zones (McGlynn and McDonnell, 2003a).

Recently, soil pipe morphology has been studied by means of dye tracer, fiberscope, and ground penetrating radar. Results show that: (i) soil pipes in gentle moorland environments are complex and long (>50 m) (e.g. Holden and Burt,2002; Jones, 1987), while soil pipe connectedness and length mapping in forested steep hillslopes show that soil pipes are highly discontinuous with maximum lengths of usually only a couple of meters (e.g. Michihata et al., 2001;Noguchi et al., 1999); and (ii) the position of soil pipes in gentle moorland environments varies from being shallow to deep within the peat layer. The pipe can be entirely within the peat, at the peat-substrate interface, or entirely withinthe substrate (e.g. Holden and Burt, 2002). The position of the soil pipes in steep forested hillslopes is often at or near the soil-bedrock interface (e.g. McDonnell, 1990; Terajima, 2002).

Runoff characteristics of pipeflow have been examined at hillslopes in Japan, the United Kingdom, North America, and Peru. These studies suggest that the maximum discharge of pipeflow is determined mainly by soil pipe diameter.Many studies have also shown that a precipitation threshold exists when pipeflow starts to dominate subsurface flow. The observed precipitation threshold depends strongly on the antecedent soil water content (Noguchi et al., 2001;Tromp-van Meerveld, 2004; Uchida et al., 1999). Figure 6 shows the linear relationship between pipeflow and total subsurface stormflow that was observed in several forested hillslopes around the world (Uchida et al., 2005).

Only recently have some models considered the role of pipeflow on runoff generation (Faeh et al., 1997; Jones and Connelly, 2002; Kosugi et al., 2004; Weiler et al., 2003). Nevertheless, these studies have not yet fully incorporated fieldperceptions into their numerical models. Although they are now viewed as a major subsurface flow control, the effect of soil pipes and other structures on lateral flow and transport at the hillslope scale still awaits good model-processintegration.

Thresholds and NonlinearitiesSince the IHD, hydrologists have believed that subsurface stormflow rate changes linearly with changes in rainfall magnitude (Hewlett and Hibbert, 1967). Only recently has the nonlinearity of the subsurface stormflow process beenfully realized (Buttle et al., 2004; McDonnell, 2003). Many recent studies have examined the relation between the amount of precipitation and the volume of subsurface storm flow – documenting thresholdlike, nonlinear relationshipsbetween the two. In this section, we describe briefly how subsurface storm flow volume changes with rainfall amount and discuss what processes control the change in the hydrological response of subsurface storm flow.

Field Evidence of Threshold and Nonlinear ResponsesDespite the lack of any formal recognition conceptually, data in the hillslope hydrology literature suggest that precipitation thresholds for subsurface stormflow generation may be a widespread phenomena. Revisiting data from manytrenched hillslope studies (e.g. Mosley, 1979; Whipkey, 1965) suggests that the precipitation threshold for subsurface stormflow commencement lies commonly between 15 and 35 mm. More recent studies show that the precipitationthreshold depends on the antecedent moisture conditions in the hillslope (Guebert and Gardner, 2001; Noguchi et al., 2001; Peters et al., 1995; Uchida et al., 1999). Tani 1997, for example, has pointed out that after the threshold wasreached, there was an almost 1:1 relation between precipitation above the threshold and subsurface flow. A simplified summary of the relation between storm total precipitation and the threshold for subsurface flow is given in Figure 7for four sites. These relations suggest that while hillslopes vary tremendously from place to place, the subsurface stormflow initiation threshold and the slope of the line thereafter may be an emergent property of the hillslopehydrological system.

Page 7: 112 Subsurface Stormflow

Figure 8. The location of areas of shallow soil depth (<0.75 m) (in black) and the areas with high(>4) bedrock topographic index (grey) (a) and the observed spatial distribution of subsurfacesaturation at the soil-bedrock interface across the Panola hillslope with increasing precipitation (b

h). The shaded area represents the area where transient subsurface saturation was observed; theunshaded area indicates the area where no subsurface saturation was observed. The diamondsrepresent the locations of the piezometers. Linear triangulation was used to interpolate between themeasurement points

The recent analysis of 147 storms at the Panola trenched hillslope in the United States is one of the first to explicitly examine and document the relation between rainfall and subsurface stormflow over a large range of storm sizes,seasons, and antecedent wetness conditions (Tromp-van Meerveld and McDonnell, 2004). They found that macropore and matrix flow had very similar thresholds (around 55 mm) for significant (>1 mm) subsurface flow at the trench.The value of the threshold precipitation was related secondarily to antecedent soil moisture. Only 8 of the 147 storms (an average of 4.3 storms per year) exceeded the precipitation threshold to produce significant lateral subsurfacestormflow in the Panola watershed. For these storms, the total amount of subsurface flow was between 30% and 80% of the total precipitation after the precipitation threshold.

Searching for First-Order Control of Thresholdlike ResponsesNotwithstanding the observation of thresholdlike subsurface stormflow, hydrologists still lack a clear understanding of the processes responsible. Recent studies have shown that there are at least two common controls for a thresholdresponse: (i) interconnection of lateral preferential flow paths; and (ii) development and extension of transient saturated areas. Tani 1997 observed a large subsurface runoff response after smaller areas of transient saturated zones in thehillslope became connected. Using data from another catchment in Japan, Sidle et al. 2000 postulated that with increasing wetness, subsurface flow expands over greater slope distances, such that during very wet conditions the hillslopesbecome linked to the channel system to enhance subsurface flow significantly.

Recently, Spence and Woo 2003 and Tromp-van Meerveld and McDonnell (2004) proposed a fill and spill mechanism to account for threshold behavior at the hillslope scale. Tromp-van Meerveld and McDonnell (2004) used a spatiallydistributed grid of piezometers to obtain spatial and temporal information of transient saturation at the Panola trenched hillslope. Both piezometer data and a two-dimensional finite element model indicated that for storms smaller thanthe observed precipitation threshold, subsurface saturation occurred first in areas where the soil was shallowest and then expanded to areas with deeper soils, but did not flow further downslope because it was blocked downslope by abedrock ridge. During larger storms, transient saturation filled up local depressions in the bedrock microtopography before water spilled laterally over the bedrock ridges between the depressions and flowed further downslope through thebedrock lows (Figure 8). Only during storms larger than the precipitation threshold did these transient saturated areas become connected to the trench face, resulting in significant (>1 mm) subsurface flow. Figure 8 illustrates how soildepth and bedrock microtopographic relief (i.e. the bedrock lows) together control the connection of subsurface saturated areas to the trench face causing the observed threshold for subsurface flow (see also Figure 7).

Outlook and Conclusion

1. Top of page2. Introduction3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion8. References

Subsurface stormflow is the main mechanism of runoff generation in many catchments around the world and is significant for the initiation of landslides, for the flushing of labile nutrients and hence the water quality changes, and thehydrograph response in streams. Most subsurface stormflow studies published to date have focused on only a few storms at any given site. Up until recently, it has been difficult to derive general hydrologic principles from single researchstudies within intensively studied small basins (Jones and Swanson, 2001). Comparing different well-instrumented sites allows extraction of the commonalities or major differences between sites and helps define the first-order controlson subsurface stormflow generation and flow pathways.

A question for future research on subsurface stormflow is how we should compare different sites and what tools we should use to define first-order controls. First, we need to continue with our experimental investigations to understandbetter the internal processes. New experimental technologies like ground-penetrating radar (Huisman et al., 2003) or electromagnetic induction (Sherlock and McDonnell, 2003) will be important. Detailed measurement of flow combinedwith isotope and chemical tracing in time and space will be essential to constrain our conceptual and numerical models of subsurface stormflow.

Site intercomparison will require an organizational framework to summarize and evaluate the comparative analysis. Scherrer and Naef 2003 proposed a decision tree to define the dominant hydrological flow processes on a variety ofgrassland sites in Switzerland. They showed, rather convincingly, that the decision tree approach can be a powerful tool to clarify the first-order controls on dominant runoff processes. A decision tree may be a useful organizationalframework for subsurface stormflow science to summarize and organize comparative analyses and to provide a structure for defining the hierarchy of process controls that are necessary for model development.

Process controls and new conceptualization for model development will also be a prerequisite for simulating and predicting the links between biogeochemical-hydrological aspects of subsurface stormflow. Recently, attempts have begunto derive the primary controls of transport processes and nutrient flushing in hillslopes dominated by subsurface stormflow (e.g. Stieglitz et al., 2003; Weiler and McDonnell, 2005). Nevertheless, the observed variability for soilproperties and structural features (e.g. macropores and pipes) still need to be implemented and conceptualized. When introducing variability (as shown, for example, in Figure 5), we may not be able to predict deterministically where andwhen water is flowing at a specific location, but we may be able to describe the distribution of subsurface flow variability and its effects on water age, origin, and timing.

References

1. Top of page2. Introduction3. Terminology4. Historical Development of Ideas Pertaining to Subsurface Stormflow5. Flow Regimes of Subsurface Stormflow6. Current Research in Subsurface Flow Processes7. Outlook and Conclusion

Page 8: 112 Subsurface Stormflow

8. References

Anderson M. G. and Burt T. P. (1978) The role of topography in controlling throughflow generation. Earth Surfaces Processes and Landforms, 3, 331–334.CrossRef (/resolve/reference/XREF?id=10.1002/esp.3290030402), Web of Science® Times Cited: 167 (/resolve/reference/ISI?id=A1978FS52400001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earth%20Surfaces%20Processes%20and%20Landforms&rft.atitle=The%20role%20of%20topography%20in%20controlling%20throughflow%20generation&rft.volume=3&rft.spage=331&rft.epage=334&rft.date=1978&rft.aulast=Anderson&rft.aufirst=M.%20G.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Anderson M. G. and Burt T. P. (1990a) Process Studies in Hillslope Hydrology, John Wiley and Sons: Chichester, p. 539.Web of Science® Times Cited: 1 (/resolve/reference/ISI?id=A1990DZ45700001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Process%20Studies%20in%20Hillslope%20Hydrology&rft.spage=539&rft.date=1990&rft.aulast=Anderson&rft.aufirst=M.%20G.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Anderson M. G. and Burt T. P. (1990b) Subsurface runoff. In Process Studies in Hillslope Hydrology, Anderson M. G. and Burt T. P. (Eds.), John Wiley & Sons:New York, pp. 365–400.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Process%20Studies%20in%20Hillslope%20Hydrology&rft.atitle=Subsurface%20runoff&rft.spage=365&rft.epage=400&rft.date=1990&rft.aulast=Anderson&rft.aufirst=M.%20G.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Beasley R. S. (1978) Contribution of subsurface flow from the upper slopes of a forested watershed to channel flow. Soil Science Society Of America Journal, 40,955–957.

CrossRef (/resolve/reference/XREF?id=10.2136/sssaj1976.03615995004000060039x), Web of Science® Times Cited: 47 (/resolve/reference/ISI?id=A1976CU29900031)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Soil%20Science%20Society%20Of%20America%20Journal&rft.atitle=Contribution%20of%20subsurface%20flow%20from%20the%20upper%20slopes%20of%20a%20forested%20watershed%20to%20channel%20flow&rft.volume=40&rft.spage=955&rft.epage=957&rft.date=1978&rft.aulast=Beasley&rft.aufirst=R.%20S.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Beven K. and Germann P. (1982) Macropores and water flow in soils. Water Resources Research, 18(5), 1311–1325.Direct Link:

Abstract (/doi/10.1029/WR018i005p01311/abstract)

PDF(1714K) (/doi/10.1029/WR018i005p01311/pdf)

References (/doi/10.1029/WR018i005p01311/references)

Web of Science® Times Cited: 977 (/resolve/reference/ISI?id=A1982PP69200001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Macropores%20and%20water%20flow%20in%20soils&rft.volume=18&rft.issue=5&rft.spage=1311&rft.epage=1325&rft.date=1982&rft.aulast=Beven&rft.aufirst=K.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Bonell M. (1993) Progress in the understanding of runoff generation dynamics in forests. Journal of Hydrology, 150, 217–275.CrossRef (/resolve/reference/XREF?id=10.1016/0022-1694(93)90112-M), Web of Science® Times Cited: 83 (/resolve/reference/ISI?

id=A1993MC28100003), ADS (/resolve/reference/ADS?id=1993JHyd..150..217B)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Progress%20in%20the%20understanding%20of%20runoff%20generation%20dynamics%20in%20forests&rft.volume=150&rft.spage=217&rft.epage=275&rft.date=1993&rft.aulast=Bonell&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Bonell M. (1998) Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. Journal of the American WaterResources Association, 34(4), 765–786.

Direct Link:Abstract (/doi/10.1111/j.1752-1688.1998.tb01514.x/abstract)

PDF(405K) (/doi/10.1111/j.1752-1688.1998.tb01514.x/pdf)

References (/doi/10.1111/j.1752-1688.1998.tb01514.x/references)

Web of Science® Times Cited: 63 (/resolve/reference/ISI?id=000075700000006)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.atitle=Selected%20challenges%20in%20runoff%20generation%20research%20in%20forests%20from%20the%20hillslope%20to%20headwater%20drainage%20basin%20scale&rft.volume=34&rft.issue=4&rft.spage=765&rft.epage=786&rft.date=1998&rft.aulast=Bonell&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Brammer D. D., McDonnell J. J., Kendall C. and Rowe L. K. (1995) Controls on the downslope evolution of water, solutes and isotopes in a steep forested hillslope.Transactions of the American Geophysical Union, 76(46), 268.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions%20of%20the%20American%20Geophysical%20Union&rft.atitle=Controls%20on%20the%20downslope%20evolution%20of%20water%2C%20solutes%20and%20isotopes%20in%20a%20steep%20forested%20hillslope&rft.volume=76&rft.issue=46&rft.spage=268&rft.date=1995&rft.aulast=Brammer&rft.aufirst=D.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Brooks E. S., Boll J. and McDaniel P. A. (2004) A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resources Research,40(W04208), doi:10.1029/2003WR002858.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=A%20hillslope%E2%80%90scale%20experiment%20to%20measure%20lateral%20saturated%20hydraulic%20conductivity&rft.volume=40&rft.issue=W04208&rft.date=2004&rft.aulast=Brooks&rft.aufirst=E.%20S.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Burns D. A., Hooper R.P., McDonnell J.J., Freer J.E., Kendall C. and Beven K. (1998) Base cation concentrations in subsurface flow from a forested hillslope: Therole of flushing frequency. Water Resources Research, 34(12), 3535–3544.

Direct Link:Abstract (/doi/10.1029/98WR02450/abstract)

PDF(1241K) (/doi/10.1029/98WR02450/pdf)

Page 9: 112 Subsurface Stormflow

References (/doi/10.1029/98WR02450/references)

Web of Science® Times Cited: 44 (/resolve/reference/ISI?id=000077393000027)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Base%20cation%20concentrations%20in%20subsurface%20flow%20from%20a%20forested%20hillslope%3A%20The%20role%20of%20flushing%20frequency&rft.volume=34&rft.issue=12&rft.spage=3535&rft.epage=3544&rft.date=1998&rft.aulast=Burns&rft.aufirst=D.%20A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Burns D. A., Plummer L. N., McDonnell J. J., Busenberg E., Casile G. C., Kendall C., Hooper R. P., Freer J. E., Peters N. E., Beven K. J. and Schlosser P. (2003)The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water, 41(7), 913–925.

Direct Link:Abstract (/doi/10.1111/j.1745-6584.2003.tb02434.x/abstract)

PDF(219K) (/doi/10.1111/j.1745-6584.2003.tb02434.x/pdf)

References (/doi/10.1111/j.1745-6584.2003.tb02434.x/references)

Web of Science® Times Cited: 21 (/resolve/reference/ISI?id=000207174300005)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ground%20Water&rft.atitle=The%20geochemical%20evolution%20of%20riparian%20ground%20water%20in%20a%20forested%20piedmont%20catchment&rft.volume=41&rft.issue=7&rft.spage=913&rft.epage=925&rft.date=2003&rft.aulast=Burns&rft.aufirst=D.%20A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Burt T. P. (1989) Storm runoff generation in small catchments in relation to the flood response of large basins. In Floods, Hydrological, Sedimentological andGeomorphological Implications, Beven K. and Carling P. (Eds.), John Wiley & Sons: pp. 11–35.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Floods%2C%20Hydrological%2C%20Sedimentological%20and%20Geomorphological%20Implications&rft.atitle=Storm%20runoff%20generation%20in%20small%20catchments%20in%20relation%20to%20the%20flood%20response%20of%20large%20basins&rft.spage=11&rft.epage=35&rft.date=1989&rft.aulast=Burt&rft.aufirst=T.%20P.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Burt T. P. and Butcher D. P. (1985) Topographic controls of soil moisture distributions. Journal of Soil Science, 36(3), 469–486.Direct Link:

Abstract (/doi/10.1111/j.1365-2389.1985.tb00351.x/abstract)

PDF(1064K) (/doi/10.1111/j.1365-2389.1985.tb00351.x/pdf)

References (/doi/10.1111/j.1365-2389.1985.tb00351.x/references)

Web of Science® Times Cited: 115 (/resolve/reference/ISI?id=A1985ASB9400014)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Soil%20Science&rft.atitle=Topographic%20controls%20of%20soil%20moisture%20distributions&rft.volume=36&rft.issue=3&rft.spage=469&rft.epage=486&rft.date=1985&rft.aulast=Burt&rft.aufirst=T.%20P.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Buttle J. M. (1994) Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography, 18(1), 16–41.CrossRef (/resolve/reference/XREF?id=10.1177/030913339401800102), Web of Science® Times Cited: 122 (/resolve/reference/ISI?id=A1994NU04500002)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress%20in%20Physical%20Geography&rft.atitle=Isotope%20hydrograph%20separations%20and%20rapid%20delivery%20of%20pre%E2%80%90event%20water%20from%20drainage%20basins&rft.volume=18&rft.issue=1&rft.spage=16&rft.epage=41&rft.date=1994&rft.aulast=Buttle&rft.aufirst=J.%20M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Buttle J. M., Dillon P. J. and Eerkes G. R. (2004) Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield. Journal ofHydrology, 287(1–4), 161–177.

CrossRef (/resolve/reference/XREF?id=10.1016/j.jhydrol.2003.09.022), Web of Science® Times Cited: 34 (/resolve/reference/ISI?id=000220153300010), ADS(/resolve/reference/ADS?id=2004JHyd..287..161B)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Hydrologic%20coupling%20of%20slopes%2C%20riparian%20zones%20and%20streams%3A%20an%20example%20from%20the%20Canadian%20Shield&rft.volume=287&rft.issue=1%E2%80%934&rft.spage=161&rft.epage=177&rft.date=2004&rft.aulast=Buttle&rft.aufirst=J.%20M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Buttle J. M., Lister S. W. and Hill A. R. (2001) Controls on runoff components on a forested slope and implications for N transport. Hydrological Processes, 15,1065–1070.

Direct Link:Abstract (/doi/10.1002/hyp.450/abstract)

PDF(210K) (/doi/10.1002/hyp.450/pdf)

References (/doi/10.1002/hyp.450/references)

Web of Science® Times Cited: 12 (/resolve/reference/ISI?id=000168557500012)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Controls%20on%20runoff%20components%20on%20a%20forested%20slope%20and%20implications%20for%20N%20transport&rft.volume=15&rft.spage=1065&rft.epage=1070&rft.date=2001&rft.aulast=Buttle&rft.aufirst=J.%20M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Cappus P. (1960) Bassin expérimental d'Alrance - Étude des lois de l'écoulement - Application au calcul et à la prévision des débits. La Houille Blanche, A,493–520.

CrossRef (/resolve/reference/XREF?id=10.1051/lhb/1960007)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=La%20Houille%20Blanche&rft.atitle=Bassin%20exp%C3%A9rimental%20d%27Alrance%20%E2%80%90%20%C3%89tude%20des%20lois%20de%20l%27%C3%A9coulement%20%E2%80%90%20Application%20au%20calcul%20et%20%C3%A0%20la%20pr%C3%A9vision%20des%20d%C3%A9bits&rft.volume=A&rft.spage=493&rft.epage=520&rft.date=1960&rft.aulast=Cappus&rft.aufirst=P.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Dunne T. (1978) Field studies of hillslope flow processes. In Hillslope Hydrology, Kirkby M. J. (Ed.), Wiley: Chichester, pp. 227–293.(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Hillslope%20Hydrology&rft.atitle=Field%20studies%20of%20hillslope%20flow%20processes&rft.spage=227&rft.epage=293&rft.date=1978&rft.aulast=Dunne&rft.aufirst=T.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Dunne T. and Black R. D. (1970) Partial area contributions to storm runoff in a small New England watershed. Water Resources Research, 6(5), 1296–1311.

Page 10: 112 Subsurface Stormflow

Direct Link:Abstract (/doi/10.1029/WR006i005p01296/abstract)

PDF(1104K) (/doi/10.1029/WR006i005p01296/pdf)

References (/doi/10.1029/WR006i005p01296/references)

Web of Science® Times Cited: 354 (/resolve/reference/ISI?id=A1970H540200006)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Partial%20area%20contributions%20to%20storm%20runoff%20in%20a%20small%20New%20England%20watershed&rft.volume=6&rft.issue=5&rft.spage=1296&rft.epage=1311&rft.date=1970&rft.aulast=Dunne&rft.aufirst=T.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Elsenbeer H. and Lack A. (1996) Hydrometric and hydrochemical evidence for fast flowpaths at La Cuenca, Western Amazonia. Journal of Hydrology, 180,237–250.

CrossRef (/resolve/reference/XREF?id=10.1016/0022-1694(95)02889-7), CAS (/resolve/reference/CAS?id=1:CAS:528:DyaK28Xks1Squ74%3D), Web ofScience® Times Cited: 43 (/resolve/reference/ISI?id=A1996UP76700012), ADS (/resolve/reference/ADS?id=1996JHyd..180..237E)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Hydrometric%20and%20hydrochemical%20evidence%20for%20fast%20flowpaths%20at%20La%20Cuenca%2C%20Western%20Amazonia&rft.volume=180&rft.spage=237&rft.epage=250&rft.date=1996&rft.aulast=Elsenbeer&rft.aufirst=H.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Engler A. (1919) Untersuchungen über den Einfluss des Waldes auf den Stand der Gewässer, 12. Kommissionsverlag von Beer & Cie: Zürich, p. 626.(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Untersuchungen%20%C3%BCber%20den%20Einfluss%20des%20Waldes%20auf%20den%20Stand%20der%20Gew%C3%A4sser%2C%2012&rft.spage=626&rft.date=1919&rft.aulast=Engler&rft.aufirst=A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Faeh A. O., Scherrer S. and Naef F. (1997) A combined field and numerical approach to investigate flow processes in natural macroporous soils under extremeprecipitation. Hydrology and Earth System Sciences, 1(4), 787–800.

CrossRef (/resolve/reference/XREF?id=10.5194/hess-1-787-1997), Web of Science® Times Cited: 18 (/resolve/reference/ISI?id=000208360700003), ADS(/resolve/reference/ADS?id=1997HESS....1..787F)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrology%20and%20Earth%20System%20Sciences&rft.atitle=A%20combined%20field%20and%20numerical%20approach%20to%20investigate%20flow%20processes%20in%20natural%20macroporous%20soils%20under%20extreme%20precipitation&rft.volume=1&rft.issue=4&rft.spage=787&rft.epage=800&rft.date=1997&rft.aulast=Faeh&rft.aufirst=A.%20O.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Flury M., Flühler H., Jury W. A. and Leuenberger J. (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resources Research, 30(7),1945–1954.

Direct Link:Abstract (/doi/10.1029/94WR00871/abstract)

PDF(868K) (/doi/10.1029/94WR00871/pdf)

References (/doi/10.1029/94WR00871/references)

Web of Science® Times Cited: 311 (/resolve/reference/ISI?id=A1994NV57900001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Susceptibility%20of%20soils%20to%20preferential%20flow%20of%20water%3A%20a%20field%20study&rft.volume=30&rft.issue=7&rft.spage=1945&rft.epage=1954&rft.date=1994&rft.aulast=Flury&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Freer J., McDonnell J., Beven K. J., Brammer D., Burns D., Hooper R. P. and Kendall C. (1997) Topographic controls on subsurface storm flow at the hillslopescale for two hydrologically distinct small catchments. Hydrological Processes, 11(9), 1347–1352.

Direct Link:Abstract (/doi/10.1002/(SICI)1099-1085(199707)11:9<1347::AID-HYP592>3.0.CO;2-R/abstract)

PDF(230K) (/doi/10.1002/(SICI)1099-1085(199707)11:9<1347::AID-HYP592>3.0.CO;2-R/pdf)

References (/doi/10.1002/(SICI)1099-1085(199707)11:9<1347::AID-HYP592>3.0.CO;2-R/references)

Web of Science® Times Cited: 56 (/resolve/reference/ISI?id=A1997XQ93700017)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Topographic%20controls%20on%20subsurface%20storm%20flow%20at%20the%20hillslope%20scale%20for%20two%20hydrologically%20distinct%20small%20catchments&rft.volume=11&rft.issue=9&rft.spage=1347&rft.epage=1352&rft.date=1997&rft.aulast=Freer&rft.aufirst=J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Freer J., McDonnell J. J., Beven K. J., Peters N. E., Burns D. A., Hooper R. P. and Aulenbach B. (2002) The role of bedrock topography on subsurface storm flow.Water Resources Research, 38(12), 1269, doi:10.1029/2001WR000872.

Direct Link:Abstract (/doi/10.1029/2001WR000872/abstract)

Full Article (HTML) (/doi/10.1029/2001WR000872/full)

PDF(1680K) (/doi/10.1029/2001WR000872/pdf)

References (/doi/10.1029/2001WR000872/references)

Web of Science® Times Cited: 54 (/resolve/reference/ISI?id=000181020400001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=The%20role%20of%20bedrock%20topography%20on%20subsurface%20storm%20flow&rft.volume=38&rft.issue=12&rft.spage=1269&rft.date=2002&rft.aulast=Freer&rft.aufirst=J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Freeze A. R. (1972) Role of subsurface flow in generating surface runoff. 2.Upstream source areas. Water Resources Research, 8(5), 1272–1283.Direct Link:

Abstract (/doi/10.1029/WR008i005p01272/abstract)

Page 11: 112 Subsurface Stormflow

PDF(849K) (/doi/10.1029/WR008i005p01272/pdf)

References (/doi/10.1029/WR008i005p01272/references)

Web of Science® Times Cited: 162 (/resolve/reference/ISI?id=A1972N824200016)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Role%20of%20subsurface%20flow%20in%20generating%20surface%20runoff.%202.Upstream%20source%20areas&rft.volume=8&rft.issue=5&rft.spage=1272&rft.epage=1283&rft.date=1972&rft.aulast=Freeze&rft.aufirst=A.%20R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Germann P. F. (1990) Macropores and hydrologic hillslope processes. In Process Studies in Hillslope Hydrology, Anderson M. G. and Burt T. P. (Eds.), John Wiley& Sons: New York.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Process%20Studies%20in%20Hillslope%20Hydrology&rft.atitle=Macropores%20and%20hydrologic%20hillslope%20processes&rft.date=1990&rft.aulast=Germann&rft.aufirst=P.%20F.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Guebert M. D. and Gardner T. W. (2001) Macropore flow on a reclaimed surface mine: infiltration and hillslope hydrology. Geomorphology, 39, 151–169.CrossRef (/resolve/reference/XREF?id=10.1016/S0169-555X(00)00107-0), Web of Science® Times Cited: 17 (/resolve/reference/ISI?

id=000171177400005), ADS (/resolve/reference/ADS?id=2001Geomo..39..151G)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geomorphology&rft.atitle=Macropore%20flow%20on%20a%20reclaimed%20surface%20mine%3A%20infiltration%20and%20hillslope%20hydrology&rft.volume=39&rft.spage=151&rft.epage=169&rft.date=2001&rft.aulast=Guebert&rft.aufirst=M.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Gutknecht D. (1996) Abflussentstehung an Hängen – Beobachtungen und Konzeptionen. Österreichische Wasser- und Abfallwirtschaft, 48(5/6), 134–144.(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=%C3%96sterreichische%20Wasser%E2%80%90%20und%20Abfallwirtschaft&rft.atitle=Abflussentstehung%20an%20H%C3%A4ngen%20%E2%80%93%20Beobachtungen%20und%20Konzeptionen&rft.volume=48&rft.issue=5%2F6&rft.spage=134&rft.epage=144&rft.date=1996&rft.aulast=Gutknecht&rft.aufirst=D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Harr R. D. (1977) Water flux in soil and subsoil on a steep forested slope. Journal of Hydrology, 33, 37–58.CrossRef (/resolve/reference/XREF?id=10.1016/0022-1694(77)90097-X), Web of Science® Times Cited: 125 (/resolve/reference/ISI?

id=A1977CY76800004), ADS (/resolve/reference/ADS?id=1977JHyd...33...37H)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Water%20flux%20in%20soil%20and%20subsoil%20on%20a%20steep%20forested%20slope&rft.volume=33&rft.spage=37&rft.epage=58&rft.date=1977&rft.aulast=Harr&rft.aufirst=R.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Hewlett J. D. and Hibbert A. R. (1963) Moisture and energy conditions within a sloping soil mass during drainage. Journal of Geophysical Research, 68,1081–1087.

Direct Link:Abstract (/doi/10.1029/JZ068i004p01081/abstract)

PDF(416K) (/doi/10.1029/JZ068i004p01081/pdf)

References (/doi/10.1029/JZ068i004p01081/references)

Web of Science® Times Cited: 135 (/resolve/reference/ISI?id=A19635199B00017)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.atitle=Moisture%20and%20energy%20conditions%20within%20a%20sloping%20soil%20mass%20during%20drainage&rft.volume=68&rft.spage=1081&rft.epage=1087&rft.date=1963&rft.aulast=Hewlett&rft.aufirst=J.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Hewlett J. D. and Hibbert A. R. (1967) Factors affecting the response of small watersheds to precipitation in humid areas. In Forest Hydrology, Sopper W. E. andLull H. W. (Eds.), Pergamon Press: New York, pp. 275–291.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Forest%20Hydrology&rft.atitle=Factors%20affecting%20the%20response%20of%20small%20watersheds%20to%20precipitation%20in%20humid%20areas&rft.spage=275&rft.epage=291&rft.date=1967&rft.aulast=Hewlett&rft.aufirst=J.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Holden J. and Burt T. P. (2002) Piping and pipeflow in a deep peat catchment. Catena, 48, 163–199.CrossRef (/resolve/reference/XREF?id=10.1016/S0341-8162(01)00189-8), Web of Science® Times Cited: 33 (/resolve/reference/ISI?id=000176876100003)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Catena&rft.atitle=Piping%20and%20pipeflow%20in%20a%20deep%20peat%20catchment&rft.volume=48&rft.spage=163&rft.epage=199&rft.date=2002&rft.aulast=Holden&rft.aufirst=J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Hoover M. D. and Hursh C. R. (1943) Influence of topography and soil depth on runoff from forest land. Transactions of the American Geophysical Union, 2,693–698.

CrossRef (/resolve/reference/XREF?id=10.1029/TR024i002p00693), ADS (/resolve/reference/ADS?id=1943TrAGU..24..693H)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions%20of%20the%20American%20Geophysical%20Union&rft.atitle=Influence%20of%20topography%20and%20soil%20depth%20on%20runoff%20from%20forest%20land&rft.volume=2&rft.spage=693&rft.epage=698&rft.date=1943&rft.aulast=Hoover&rft.aufirst=M.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Huisman J. A., Hubbard S. S., Redman J. D. and Annanc A. P. (2003) Measuring soil water content with ground penetrating radar: a review. Vadose Zone Journal,2, 476–491.

CrossRef (/resolve/reference/XREF?id=10.2113/2.4.476), Web of Science® Times Cited: 173 (/resolve/reference/ISI?id=000207558000003)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Vadose%20Zone%20Journal&rft.atitle=Measuring%20soil%20water%20content%20with%20ground%20penetrating%20radar%3A%20a%20review&rft.volume=2&rft.spage=476&rft.epage=491&rft.date=2003&rft.aulast=Huisman&rft.aufirst=J.%20A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Hursh C. R. and Brater E. F. (1941) Separating storm-hydrographs from small drainage-areas into surface- and subsurface-flow. Transactions of the AmericanGeophysical Union, 3, 863–871.

CrossRef (/resolve/reference/XREF?id=10.1029/TR022i003p00863), ADS (/resolve/reference/ADS?id=1941TrAGU..22..863H)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions%20of%20the%20American%20Geophysical%20Union&rft.atitle=Separating%20storm%E2%80%90hydrographs%20from%20small%20drainage%E2%80%90areas%20into%20surface%E2%80%90%20and%20subsurface%E2%80%90flow&rft.volume=3&rft.spage=863&rft.epage=871&rft.date=1941&rft.aulast=Hursh&rft.aufirst=C.%20R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Hutchinson D. G. and Moore R. D. (2000) Throughflow variability on a forested hillslope underlain by compacted glacial till. Hydrological Processes, 14(10),

Page 12: 112 Subsurface Stormflow

1751–1766.Direct Link:

Abstract (/doi/10.1002/1099-1085(200007)14:10<1751::AID-HYP68>3.0.CO;2-U/abstract)

PDF(188K) (/doi/10.1002/1099-1085(200007)14:10<1751::AID-HYP68>3.0.CO;2-U/pdf)

References (/doi/10.1002/1099-1085(200007)14:10<1751::AID-HYP68>3.0.CO;2-U/references)

Web of Science® Times Cited: 24 (/resolve/reference/ISI?id=000088508700004)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Throughflow%20variability%20on%20a%20forested%20hillslope%20underlain%20by%20compacted%20glacial%20till&rft.volume=14&rft.issue=10&rft.spage=1751&rft.epage=1766&rft.date=2000&rft.aulast=Hutchinson&rft.aufirst=D.%20G.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Jones J. A.A. (1971) Soil piping and stream channel initiation. Water Resources Research, 7(3), 602–610.Direct Link:

Abstract (/doi/10.1029/WR007i003p00602/abstract)

PDF(635K) (/doi/10.1029/WR007i003p00602/pdf)

References (/doi/10.1029/WR007i003p00602/references)

Web of Science® Times Cited: 20 (/resolve/reference/ISI?id=A1971J628300016)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Soil%20piping%20and%20stream%20channel%20initiation&rft.volume=7&rft.issue=3&rft.spage=602&rft.epage=610&rft.date=1971&rft.aulast=Jones&rft.aufirst=J.%20A.A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Jones J. A.A. (1981) The Nature of Soil Piping: a Review of Research, British Geomorphological Research Group Monograph Series(3).

Jones J. A.A. (1987) The effects of soil piping on contributing area and erosion pattern. Earth Surface Processes, 12, 229–248.Direct Link:

Abstract (/doi/10.1002/esp.3290120303/abstract)

PDF(1360K) (/doi/10.1002/esp.3290120303/pdf)

References (/doi/10.1002/esp.3290120303/references)

Web of Science® Times Cited: 38 (/resolve/reference/ISI?id=A1987H548700002)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earth%20Surface%20Processes&rft.atitle=The%20effects%20of%20soil%20piping%20on%20contributing%20area%20and%20erosion%20pattern&rft.volume=12&rft.spage=229&rft.epage=248&rft.date=1987&rft.aulast=Jones&rft.aufirst=J.%20A.A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Jones J. A.A. and Connelly L. J. (2002) A semi-distributed simulation model for natural pipeflow. Journal of Hydrology, 262(1–4), 28–49.CrossRef (/resolve/reference/XREF?id=10.1016/S0022-1694(02)00018-5), Web of Science® Times Cited: 12 (/resolve/reference/ISI?

id=000175602400003), ADS (/resolve/reference/ADS?id=2002JHyd..262...28J)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=A%20semi%E2%80%90distributed%20simulation%20model%20for%20natural%20pipeflow&rft.volume=262&rft.issue=1%E2%80%934&rft.spage=28&rft.epage=49&rft.date=2002&rft.aulast=Jones&rft.aufirst=J.%20A.A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Jones J. A. and Swanson F. J. (2001) Hydrologic inferences from comparisons among small basin experiments. Invited Commentary. Hydrological Processes,15(12), 2363–2366.

Direct Link:Abstract (/doi/10.1002/hyp.474/abstract)

PDF(116K) (/doi/10.1002/hyp.474/pdf)

References (/doi/10.1002/hyp.474/references)

Web of Science® Times Cited: 15 (/resolve/reference/ISI?id=000170791600009)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Invited%20Commentary.%20Hydrological%20Processes&rft.atitle=Hydrologic%20inferences%20from%20comparisons%20among%20small%20basin%20experiments&rft.volume=15&rft.issue=12&rft.spage=2363&rft.epage=2366&rft.date=2001&rft.aulast=Jones&rft.aufirst=J.%20A.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Kitahara H., Terajima T., Nakai Y. (1994) Ratio of pipe flow to through flow. Journal of Japanese Forestry Society, 76, 10–17 (in Japanese with English summary).(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Japanese%20Forestry%20Society&rft.atitle=Ratio%20of%20pipe%20flow%20to%20through%20flow&rft.volume=76&rft.spage=10&rft.epage=17&rft.date=1994&rft.aulast=Kitahara&rft.aufirst=H.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Kosugi K., Uchida T. and Mizuyama T. (2004) Numerical calculation of soil pipe flow and its effect on water dynamics in a slope. Hydrological Processes, 18(4),777–789.

Direct Link:Abstract (/doi/10.1002/hyp.1367/abstract)

PDF(275K) (/doi/10.1002/hyp.1367/pdf)

References (/doi/10.1002/hyp.1367/references)

Web of Science® Times Cited: 8 (/resolve/reference/ISI?id=000220019700012)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Numerical%20calculation%20of%20soil%20pipe%20flow%20and%20its%20effect%20on%20water%20dynamics%20in%20a%20slope&rft.volume=18&rft.issue=4&rft.spage=777&rft.epage=789&rft.date=2004&rft.aulast=Kosugi&rft.aufirst=K.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Page 13: 112 Subsurface Stormflow

McDonnell J. J. (1989) The Age, Origin and Pathway of Subsurface Stormflow in a Steep Humid Catchment, University of Canterbury: Christchurch, p. 270.(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=The%20Age%2C%20Origin%20and%20Pathway%20of%20Subsurface%20Stormflow%20in%20a%20Steep%20Humid%20Catchment&rft.spage=270&rft.date=1989&rft.aulast=McDonnell&rft.aufirst=J.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McDonnell J. J. (1990) A rationale for old water discharge through macropores in a steep, humid catchment. Water Resources Research, 26(11), 2821–2832.Direct Link:

Abstract (/doi/10.1029/WR026i011p02821/abstract)

PDF(1272K) (/doi/10.1029/WR026i011p02821/pdf)

References (/doi/10.1029/WR026i011p02821/references)

Web of Science® Times Cited: 212 (/resolve/reference/ISI?id=A1990EH66800019)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=A%20rationale%20for%20old%20water%20discharge%20through%20macropores%20in%20a%20steep%2C%20humid%20catchment&rft.volume=26&rft.issue=11&rft.spage=2821&rft.epage=2832&rft.date=1990&rft.aulast=McDonnell&rft.aufirst=J.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McDonnell J. J. (1997) Comment on “the changing spatial variability of subsurface flow across a hillslide” by Ross Woods and Lindsay Rowe. Journal ofHydrology, New Zealand, 36(1), 97–100.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology%2C%20New%20Zealand&rft.atitle=Comment%20on%20%E2%80%9Cthe%20changing%20spatial%20variability%20of%20subsurface%20flow%20across%20a%20hillslide%E2%80%9D%20by%20Ross%20Woods%20and%20Lindsay%20Rowe&rft.volume=36&rft.issue=1&rft.spage=97&rft.epage=100&rft.date=1997&rft.aulast=McDonnell&rft.aufirst=J.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McDonnell J. J. (2003) Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrological Processes,17(9), 1869–1875.

Direct Link:Abstract (/doi/10.1002/hyp.5132/abstract)

PDF(100K) (/doi/10.1002/hyp.5132/pdf)

References (/doi/10.1002/hyp.5132/references)

Web of Science® Times Cited: 66 (/resolve/reference/ISI?id=000183964500010)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Where%20does%20water%20go%20when%20it%20rains%3F%20Moving%20beyond%20the%20variable%20source%20area%20concept%20of%20rainfall%E2%80%90runoff%20response&rft.volume=17&rft.issue=9&rft.spage=1869&rft.epage=1875&rft.date=2003&rft.aulast=McDonnell&rft.aufirst=J.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McDonnell J. J., Freer J., Hooper R., Kendall C., Burns D., Beven K. J. and Peters J. (1996) New method developed for studying flow in hillslopes. EOS,Transactions of the American Geophysical Union, 77(47), 465.

Direct Link:Abstract (/doi/10.1029/96EO00306/abstract)

PDF(3159K) (/doi/10.1029/96EO00306/pdf)

References (/doi/10.1029/96EO00306/references)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EOS%2C%20Transactions%20of%20the%20American%20Geophysical%20Union&rft.atitle=New%20method%20developed%20for%20studying%20flow%20in%20hillslopes&rft.volume=77&rft.issue=47&rft.spage=465&rft.date=1996&rft.aulast=McDonnell&rft.aufirst=J.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McDonnell J. J., Owens I. F. and Stewart M. K. (1991) A case study of shallow flow paths in a steep zero-order basin. Water Resources Bulletin, 27(4), 679–685.CrossRef (/resolve/reference/XREF?id=10.1111/j.1752-1688.1991.tb01469.x), Web of Science® Times Cited: 18 (/resolve/reference/ISI?id=A1991GZ74000011)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Bulletin&rft.atitle=A%20case%20study%20of%20shallow%20flow%20paths%20in%20a%20steep%20zero%E2%80%90order%20basin&rft.volume=27&rft.issue=4&rft.spage=679&rft.epage=685&rft.date=1991&rft.aulast=McDonnell&rft.aufirst=J.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McGlynn B. L. and McDonnell J. J. (2003a) Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resources Research,39(11), doi:10.1029/2003WR002091.

Direct Link:Abstract (/doi/10.1029/2003WR002091/abstract)

Full Article (HTML) (/doi/10.1029/2003WR002091/full)

PDF(1429K) (/doi/10.1029/2003WR002091/pdf)

References (/doi/10.1029/2003WR002091/references)

Web of Science® Times Cited: 30 (/resolve/reference/ISI?id=000186513500001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Quantifying%20the%20relative%20contributions%20of%20riparian%20and%20hillslope%20zones%20to%20catchment%20runoff&rft.volume=39&rft.issue=11&rft.date=2003&rft.aulast=McGlynn&rft.aufirst=B.%20L.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McGlynn B. L. and McDonnell J. J. (2003b) Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water ResourcesResearch, 39(4), doi:10.1029/2002WR001525.

Direct Link:Abstract (/doi/10.1029/2002WR001525/abstract)

Full Article (HTML) (/doi/10.1029/2002WR001525/full)

PDF(1380K) (/doi/10.1029/2002WR001525/pdf)

Page 14: 112 Subsurface Stormflow

References (/doi/10.1029/2002WR001525/references)

Web of Science® Times Cited: 41 (/resolve/reference/ISI?id=000182360300002)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Role%20of%20discrete%20landscape%20units%20in%20controlling%20catchment%20dissolved%20organic%20carbon%20dynamics&rft.volume=39&rft.issue=4&rft.date=2003&rft.aulast=McGlynn&rft.aufirst=B.%20L.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

McGlynn B. L., McDonnell J. J. and Brammer D. D. (2002) A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, NewZealand. Journal of Hydrology, 257, 1–26.

CrossRef (/resolve/reference/XREF?id=10.1016/S0022-1694(01)00559-5), Web of Science® Times Cited: 67 (/resolve/reference/ISI?id=000173257200001), ADS (/resolve/reference/ADS?id=2002JHyd..257....1M)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=A%20review%20of%20the%20evolving%20perceptual%20model%20of%20hillslope%20flowpaths%20at%20the%20Maimai%20catchments%2C%20New%20Zealand&rft.volume=257&rft.spage=1&rft.epage=26&rft.date=2002&rft.aulast=McGlynn&rft.aufirst=B.%20L.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Michihata R., Uchida T., Kosugi K. and Mizuyama T. (2001) An observation of soil pipes morphology at Toinotani hollow in Ashu Experimental Forest. ForestResearch Kyoto, 73, 67–70.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forest%20Research%20Kyoto&rft.atitle=An%20observation%20of%20soil%20pipes%20morphology%20at%20Toinotani%20hollow%20in%20Ashu%20Experimental%20Forest&rft.volume=73&rft.spage=67&rft.epage=70&rft.date=2001&rft.aulast=Michihata&rft.aufirst=R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Montgomery D. R. et al. (1997) Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research, 33(1), 91–109.Direct Link:

Abstract (/doi/10.1029/96WR02985/abstract)

PDF(2809K) (/doi/10.1029/96WR02985/pdf)

References (/doi/10.1029/96WR02985/references)

Web of Science® Times Cited: 124 (/resolve/reference/ISI?id=A1997WA14700009)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Hydrologic%20response%20of%20a%20steep%2C%20unchanneled%20valley%20to%20natural%20and%20applied%20rainfall&rft.volume=33&rft.issue=1&rft.spage=91&rft.epage=109&rft.date=1997&rft.aulast=Montgomery&rft.aufirst=D.%20R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Mosley M. P. (1979) Streamflow generation in a forested watershed. Water Resources Research, 15, 795–806.Direct Link:

Abstract (/doi/10.1029/WR015i004p00795/abstract)

PDF(883K) (/doi/10.1029/WR015i004p00795/pdf)

References (/doi/10.1029/WR015i004p00795/references)

Web of Science® Times Cited: 153 (/resolve/reference/ISI?id=A1979HJ54800009)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Streamflow%20generation%20in%20a%20forested%20watershed&rft.volume=15&rft.spage=795&rft.epage=806&rft.date=1979&rft.aulast=Mosley&rft.aufirst=M.%20P.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Mosley M. P. (1982) Subsurface flow velocities through selected forest soils, South Island, New Zealand. Journal of Hydrology, 55, 65–92.CrossRef (/resolve/reference/XREF?id=10.1016/0022-1694(82)90121-4), Web of Science® Times Cited: 90 (/resolve/reference/ISI?

id=A1982MZ67500005), ADS (/resolve/reference/ADS?id=1982JHyd...55...65M)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Subsurface%20flow%20velocities%20through%20selected%20forest%20soils%2C%20South%20Island%2C%20New%20Zealand&rft.volume=55&rft.spage=65&rft.epage=92&rft.date=1982&rft.aulast=Mosley&rft.aufirst=M.%20P.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Newman B. D., Campbell A. R. and Wilcox B. P. (1998) Lateral subsurface flow pathways in a semiarid ponderosa pine hillslope. Water Resources Research,34(12), 3485–3496.

Direct Link:Abstract (/doi/10.1029/98WR02684/abstract)

PDF(1295K) (/doi/10.1029/98WR02684/pdf)

References (/doi/10.1029/98WR02684/references)

Web of Science® Times Cited: 38 (/resolve/reference/ISI?id=000077393000022)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Lateral%20subsurface%20flow%20pathways%20in%20a%20semiarid%20ponderosa%20pine%20hillslope&rft.volume=34&rft.issue=12&rft.spage=3485&rft.epage=3496&rft.date=1998&rft.aulast=Newman&rft.aufirst=B.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Noguchi S., Tsuboyama Y., Sidle R. C. and Hosoda I. (1999) Morphological characteristics of macropores and the distribution of preferential flow pathways in aforested slope segment. Soil Science Society of America Journal, 63, 1413–1423.

CrossRef (/resolve/reference/XREF?id=10.2136/sssaj1999.6351413x), CAS (/resolve/reference/CAS?id=1:CAS:528:DyaK1MXns12ltrY%3D), Web of Science®Times Cited: 57 (/resolve/reference/ISI?id=000083839800045)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Soil%20Science%20Society%20of%20America%20Journal&rft.atitle=Morphological%20characteristics%20of%20macropores%20and%20the%20distribution%20of%20preferential%20flow%20pathways%20in%20a%20forested%20slope%20segment&rft.volume=63&rft.spage=1413&rft.epage=1423&rft.date=1999&rft.aulast=Noguchi&rft.aufirst=S.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Noguchi S., Tsuboyama Y., Sidle R. C. and Hosoda I. (2001) Subsurface runoff characteristics from a forest hillslope soil profile including macropores, HitachiOhta, Japan. Hydrological Processes, 15, 2131–2149.

Direct Link:

Page 15: 112 Subsurface Stormflow

Abstract (/doi/10.1002/hyp.278/abstract)

PDF(251K) (/doi/10.1002/hyp.278/pdf)

References (/doi/10.1002/hyp.278/references)

Web of Science® Times Cited: 11 (/resolve/reference/ISI?id=000170611800005)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Subsurface%20runoff%20characteristics%20from%20a%20forest%20hillslope%20soil%20profile%20including%20macropores%2C%20Hitachi%20Ohta%2C%20Japan&rft.volume=15&rft.spage=2131&rft.epage=2149&rft.date=2001&rft.aulast=Noguchi&rft.aufirst=S.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Ohta T., Tsukamoto Y. and Noguchi H. (1981) An analysis of pipeflow and landslide. In Proceedings of Annual Meeting of the Japan Society of Erosion ControlEngineering, 92–93 (in Japanese).

Pearce A. J., Stewart M. K. and Sklash M. G. (1986) Storm runoff generation in humid headwater catchments: 1. Where does the water come from? WaterResources Research, 22, 1263–1272.

Direct Link:Abstract (/doi/10.1029/WR022i008p01263/abstract)

PDF(928K) (/doi/10.1029/WR022i008p01263/pdf)

References (/doi/10.1029/WR022i008p01263/references)

Web of Science® Times Cited: 184 (/resolve/reference/ISI?id=A1986D609500009)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Storm%20runoff%20generation%20in%20humid%20headwater%20catchments%3A%201.%20Where%20does%20the%20water%20come%20from%3F&rft.volume=22&rft.spage=1263&rft.epage=1272&rft.date=1986&rft.aulast=Pearce&rft.aufirst=A.%20J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Peters D. L., Buttle J. M., Taylor C. H. and LaZerte B. D. (1995) Runoff production in a forested, shallow soil, Canadian Shield basin. Water Resources Research,31(5), 1291–1304.

Direct Link:Abstract (/doi/10.1029/94WR03286/abstract)

PDF(1297K) (/doi/10.1029/94WR03286/pdf)

References (/doi/10.1029/94WR03286/references)

Web of Science® Times Cited: 107 (/resolve/reference/ISI?id=A1995QW76800013)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Runoff%20production%20in%20a%20forested%2C%20shallow%20soil%2C%20Canadian%20Shield%20basin&rft.volume=31&rft.issue=5&rft.spage=1291&rft.epage=1304&rft.date=1995&rft.aulast=Peters&rft.aufirst=D.%20L.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Ranken D. W. (1974) Hydrologic Properties of Soil and Subsoil on a Steep, Forested Slope, M.S. Thesis, Oregon State University, Corvallis, p. 114.

Rasmussen T. C., Baldwin R. H., Dowd J. F. and Williams A. G. (2000) Tracer vs. pressure wave velocities through unsaturated saprolite. Soil Science Society ofAmerica Journal, 64, 75–85.

CrossRef (/resolve/reference/XREF?id=10.2136/sssaj2000.64175x), CAS (/resolve/reference/CAS?id=1:CAS:528:DC%2BD3cXmslyhsbs%3D), Web ofScience® Times Cited: 21 (/resolve/reference/ISI?id=000089446000010)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Soil%20Science%20Society%20of%20America%20Journal&rft.atitle=Tracer%20vs.%20pressure%20wave%20velocities%20through%20unsaturated%20saprolite&rft.volume=64&rft.spage=75&rft.epage=85&rft.date=2000&rft.aulast=Rasmussen&rft.aufirst=T.%20C.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Roberge J. and Plamondon A. P. (1987) Snowmelt runoff pathways in a boreal forest hillslope, the role of pipe throughflow. Journal of Hydrology, 95, 39–54.CrossRef (/resolve/reference/XREF?id=10.1016/0022-1694(87)90114-4), CAS (/resolve/reference/CAS?id=1:CAS:528:DyaL1cXmt1Sitg%3D%3D), Web of

Science® Times Cited: 41 (/resolve/reference/ISI?id=A1987L156100004), ADS (/resolve/reference/ADS?id=1987JHyd...95...39R)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Snowmelt%20runoff%20pathways%20in%20a%20boreal%20forest%20hillslope%2C%20the%20role%20of%20pipe%20throughflow&rft.volume=95&rft.spage=39&rft.epage=54&rft.date=1987&rft.aulast=Roberge&rft.aufirst=J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Rodhe A. (1987) The Origin of Streamwater Traced by Oxygen-18, PhD Dissertation Thesis, Uppsala University, Uppsala, p. 260.

Rothacher J., Dyrness C. T. and Fredriksen R. L. (1967) Hydrologic and Related Characteristics of Three Small Watersheds in the Oregon Cascades, U.S.Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Hydrologic%20and%20Related%20Characteristics%20of%20Three%20Small%20Watersheds%20in%20the%20Oregon%20Cascades&rft.date=1967&rft.aulast=Rothacher&rft.aufirst=J.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Scherrer S. (1997) Abflussbildung bei Starkniederschlägen, Identifikation von Abflussprozessen mittels künstlicher Niederschläge.

Scherrer S. and Naef F. (2003) A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological Processes, 17(2),391–401.

Direct Link:Abstract (/doi/10.1002/hyp.1131/abstract)

PDF(165K) (/doi/10.1002/hyp.1131/pdf)

References (/doi/10.1002/hyp.1131/references)

Web of Science® Times Cited: 27 (/resolve/reference/ISI?id=000180909000014)

(http://sfx.usask.ca/usask?url_ver=Z39.88-

Page 16: 112 Subsurface Stormflow

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=A%20decision%20scheme%20to%20indicate%20dominant%20hydrological%20flow%20processes%20on%20temperate%20grassland&rft.volume=17&rft.issue=2&rft.spage=391&rft.epage=401&rft.date=2003&rft.aulast=Scherrer&rft.aufirst=S.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Sherlock M. D. and McDonnell J. J. (2003) A new tool for hillslope hydrologists: spatially distributed groundwater level and soilwater content measured usingelectromagnetic induction. Hydrological Processes, 17(10), 1965–1977.

Direct Link:Abstract (/doi/10.1002/hyp.1221/abstract)

PDF(1231K) (/doi/10.1002/hyp.1221/pdf)

References (/doi/10.1002/hyp.1221/references)

Web of Science® Times Cited: 13 (/resolve/reference/ISI?id=000184312100006)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=A%20new%20tool%20for%20hillslope%20hydrologists%3A%20spatially%20distributed%20groundwater%20level%20and%20soilwater%20content%20measured%20using%20electromagnetic%20induction&rft.volume=17&rft.issue=10&rft.spage=1965&rft.epage=1977&rft.date=2003&rft.aulast=Sherlock&rft.aufirst=M.%20D.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Sidle R. C. and Tsuboyama Y. (1992) A comparison of piezometric response in unchanneled hillslope hollows: coastal Alaska and Japan. Journal of the JapaneseSociety of Hydrology and Water Resources, 5, 3–11.

CrossRef (/resolve/reference/XREF?id=10.3178/jjshwr.5.3_3)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20the%20Japanese%20Society%20of%20Hydrology%20and%20Water%20Resources&rft.atitle=A%20comparison%20of%20piezometric%20response%20in%20unchanneled%20hillslope%20hollows%3A%20coastal%20Alaska%20and%20Japan&rft.volume=5&rft.spage=3&rft.epage=11&rft.date=1992&rft.aulast=Sidle&rft.aufirst=R.%20C.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Sidle R. C., Tsuboyama Y., Noguchi S., Hosoda I., Fujieda H. and Shimizu T. (2000) Stormflow generation in steep forested headwaters: a linked hydrogeomorphicparadigm. Hydrological Processes, 14(3), 369–385.

Direct Link:Abstract (/doi/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P/abstract)

PDF(461K) (/doi/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P/pdf)

References (/doi/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P/references)

Web of Science® Times Cited: 113 (/resolve/reference/ISI?id=000086247000002)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=Stormflow%20generation%20in%20steep%20forested%20headwaters%3A%20a%20linked%20hydrogeomorphic%20paradigm&rft.volume=14&rft.issue=3&rft.spage=369&rft.epage=385&rft.date=2000&rft.aulast=Sidle&rft.aufirst=R.%20C.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Sklash M. G., Stewart M. K. and Pearce A. J. (1986) Storm runoff generation in humid headwater catchments: 2. a case study of hillslope and low-order streamresponse. Water Resources Research, 22(8), 1273–1282.

Direct Link:Abstract (/doi/10.1029/WR022i008p01273/abstract)

PDF(873K) (/doi/10.1029/WR022i008p01273/pdf)

References (/doi/10.1029/WR022i008p01273/references)

Web of Science® Times Cited: 140 (/resolve/reference/ISI?id=A1986D609500010)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Storm%20runoff%20generation%20in%20humid%20headwater%20catchments%3A%202.%20a%20case%20study%20of%20hillslope%20and%20low%E2%80%90order%20stream%20response&rft.volume=22&rft.issue=8&rft.spage=1273&rft.epage=1282&rft.date=1986&rft.aulast=Sklash&rft.aufirst=M.%20G.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Smith R. E. and Hebbert R. H.B. (1983) Mathematical simulation of interdependent surface and subsurface hydrologic processes. Water Resources Research, 19(4),987–1001.

Direct Link:Abstract (/doi/10.1029/WR019i004p00987/abstract)

PDF(1076K) (/doi/10.1029/WR019i004p00987/pdf)

References (/doi/10.1029/WR019i004p00987/references)

Web of Science® Times Cited: 79 (/resolve/reference/ISI?id=A1983RD85100015)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Mathematical%20simulation%20of%20interdependent%20surface%20and%20subsurface%20hydrologic%20processes&rft.volume=19&rft.issue=4&rft.spage=987&rft.epage=1001&rft.date=1983&rft.aulast=Smith&rft.aufirst=R.%20E.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Spence C. and Woo M. -k. (2003) Hydrology of subarctic Canadian shield: soil-filled valleys. Journal of Hydrology, 279, 151–166.CrossRef (/resolve/reference/XREF?id=10.1016/S0022-1694(03)00175-6), Web of Science® Times Cited: 27 (/resolve/reference/ISI?

id=000185401100011), ADS (/resolve/reference/ADS?id=2003JHyd..279..151S)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Hydrology%20of%20subarctic%20Canadian%20shield%3A%20soil%E2%80%90filled%20valleys&rft.volume=279&rft.spage=151&rft.epage=166&rft.date=2003&rft.aulast=Spence&rft.aufirst=C.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Stieglitz M. et al. (2003) An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global BiogeochemicalCycles, 17(4), 1105, doi:10.1029/2003 GB002041.

Direct Link:Abstract (/doi/10.1029/2003GB002041/abstract)

Full Article (HTML) (/doi/10.1029/2003GB002041/full)

Page 17: 112 Subsurface Stormflow

PDF(819K) (/doi/10.1029/2003GB002041/pdf)

References (/doi/10.1029/2003GB002041/references)

Web of Science® Times Cited: 38 (/resolve/reference/ISI?id=000186898400002)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Global%20Biogeochemical%20Cycles&rft.atitle=An%20approach%20to%20understanding%20hydrologic%20connectivity%20on%20the%20hillslope%20and%20the%20implications%20for%20nutrient%20transport&rft.volume=17&rft.issue=4&rft.spage=1105&rft.date=2003&rft.aulast=Stieglitz&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Tani M. (1997) Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer. Journal of Hydrology,200, 84–109.

CrossRef (/resolve/reference/XREF?id=10.1016/S0022-1694(97)00018-8), Web of Science® Times Cited: 45 (/resolve/reference/ISI?id=000071050300005), ADS (/resolve/reference/ADS?id=1997JHyd..200...84T)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Runoff%20generation%20processes%20estimated%20from%20hydrological%20observations%20on%20a%20steep%20forested%20hillslope%20with%20a%20thin%20soil%20layer&rft.volume=200&rft.spage=84&rft.epage=109&rft.date=1997&rft.aulast=Tani&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Terajima T. (2002) Subsurface water discharge and sediment yield relevant to pipe flow in a forested 0-order basin, Hokkaido northern Japan. Transactions,Japanese Geomorphological Union, 23, 511–535.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions%2C%20Japanese%20Geomorphological%20Union&rft.atitle=Subsurface%20water%20discharge%20and%20sediment%20yield%20relevant%20to%20pipe%20flow%20in%20a%20forested%200%E2%80%90order%20basin%2C%20Hokkaido%20northern%20Japan&rft.volume=23&rft.spage=511&rft.epage=535&rft.date=2002&rft.aulast=Terajima&rft.aufirst=T.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Torres R., Dietrich W. E., Montgomery D. R., Anderson S. P. and Loague K. (1998) Unsaturated zone processes and the hydrologic response of a steep,unchanneled catchment. Water Resources Research, 34(8), 1865–1879.

Direct Link:Abstract (/doi/10.1029/98WR01140/abstract)

PDF(1953K) (/doi/10.1029/98WR01140/pdf)

References (/doi/10.1029/98WR01140/references)

Web of Science® Times Cited: 83 (/resolve/reference/ISI?id=000075025700001)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Unsaturated%20zone%20processes%20and%20the%20hydrologic%20response%20of%20a%20steep%2C%20unchanneled%20catchment&rft.volume=34&rft.issue=8&rft.spage=1865&rft.epage=1879&rft.date=1998&rft.aulast=Torres&rft.aufirst=R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Tromp-van Meerveld H. J. (2004) Hillslope Hydrology: from Patterns to Processes, Ph.D. dissertation, Oregon State University, Corvallis, 270 p.

Tsuboyama Y., Sidle R. C., Noguchi S. and Hosoda I. (1994) Flow and solute transport through the soil matrix and macropores of a hillslope segment. WaterResources Research, 30(4), 879–890.

Direct Link:Abstract (/doi/10.1029/93WR03245/abstract)

PDF(1127K) (/doi/10.1029/93WR03245/pdf)

References (/doi/10.1029/93WR03245/references)

Web of Science® Times Cited: 82 (/resolve/reference/ISI?id=A1994NE30000003)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Flow%20and%20solute%20transport%20through%20the%20soil%20matrix%20and%20macropores%20of%20a%20hillslope%20segment&rft.volume=30&rft.issue=4&rft.spage=879&rft.epage=890&rft.date=1994&rft.aulast=Tsuboyama&rft.aufirst=Y.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Tsukamoto Y. (1961) An experiment on sub-surface flow. Journal of the Japanese Forestry Society, 43, 62–67.(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20the%20Japanese%20Forestry%20Society&rft.atitle=An%20experiment%20on%20sub%E2%80%90surface%20flow&rft.volume=43&rft.spage=62&rft.epage=67&rft.date=1961&rft.aulast=Tsukamoto&rft.aufirst=Y.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Tsukamoto Y., Ohta T. and Noguchi H. (1982) Hydrogeological and geomorphological studies of debris slides on forested hillslopes in Japan. IAHS Publication,137, 89–98.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Hydrogeological%20and%20geomorphological%20studies%20of%20debris%20slides%20on%20forested%20hillslopes%20in%20Japan&rft.spage=89&rft.epage=98&rft.date=1982&rft.aulast=Tsukamoto&rft.aufirst=Y.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Uchida T., Kosugi K. and Mizuyama T. (1999) Runoff characteristics of pipeflow and effects of pipeflow on rainfall-runoff phenomena in a mountainous watershed.Journal of Hydrology, 222(1–4), 18–36.

CrossRef (/resolve/reference/XREF?id=10.1016/S0022-1694(99)00090-6), Web of Science® Times Cited: 44 (/resolve/reference/ISI?id=000082695700002), ADS (/resolve/reference/ADS?id=1999JHyd..222...18U)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Runoff%20characteristics%20of%20pipeflow%20and%20effects%20of%20pipeflow%20on%20rainfall%E2%80%90runoff%20phenomena%20in%20a%20mountainous%20watershed&rft.volume=222&rft.issue=1%E2%80%934&rft.spage=18&rft.epage=36&rft.date=1999&rft.aulast=Uchida&rft.aufirst=T.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Uchida T., Kosugi K.i. and Mizuyama T. (2002) Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu,central Japan. Water Resources Research, 38(7), doi:10.1029/2001WR000261.

Direct Link:Abstract (/doi/10.1029/2001WR000261/abstract)

Full Article (HTML) (/doi/10.1029/2001WR000261/full)

PDF(594K) (/doi/10.1029/2001WR000261/pdf)

Page 18: 112 Subsurface Stormflow

References (/doi/10.1029/2001WR000261/references)

Web of Science® Times Cited: 12 (/resolve/reference/ISI?id=000178937800007)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Effects%20of%20pipe%20flow%20and%20bedrock%20groundwater%20on%20runoff%20generation%20in%20a%20steep%20headwater%20catchment%20in%20Ashiu%2C%20central%20Japan&rft.volume=38&rft.issue=7&rft.date=2002&rft.aulast=Uchida&rft.aufirst=T.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Uchida T., Tromp-van Meerveld H.J. and McDonnell J.J. (2005) The role of lateral pipe flow in hillslope runoff response: An intercomparison of nonlinearhillslope response. Journal of Hydrology, (in press).

CrossRef (/resolve/reference/XREF?id=10.1016/j.jhydrol.2005.01.012), Web of Science® Times Cited: 19 (/resolve/reference/ISI?id=000232174600009), ADS(/resolve/reference/ADS?id=2005JHyd..311..117U)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=The%20role%20of%20lateral%20pipe%20flow%20in%20hillslope%20runoff%20response%3A%20An%20intercomparison%20of%20nonlinear%20hillslope%20response&rft.date=2005&rft.aulast=Uchida&rft.aufirst=T.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M. H. (2001) Mechanisms Controlling Macropore Flow During Infiltration: Dye Tracer Experiments and Simulations, Dissertation Thesis, ETH Zürich:Zürich, p. 148.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Mechanisms%20Controlling%20Macropore%20Flow%20During%20Infiltration%3A%20Dye%20Tracer%20Experiments%20and%20Simulations&rft.spage=148&rft.date=2001&rft.aulast=Weiler&rft.aufirst=M.%20H.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M. and Flühler H. (2004) Inferring flow types from dye patterns in macroporous soils. Geoderma, 120(1–2), 137–153.CrossRef (/resolve/reference/XREF?id=10.1016/j.geoderma.2003.08.014), Web of Science® Times Cited: 28 (/resolve/reference/ISI?id=000220949400012)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geoderma&rft.atitle=Inferring%20flow%20types%20from%20dye%20patterns%20in%20macroporous%20soils&rft.volume=120&rft.issue=1%E2%80%932&rft.spage=137&rft.epage=153&rft.date=2004&rft.aulast=Weiler&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M. and McDonnell J. (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. Journal of Hydrology,285(1–4), 3–18.

CrossRef (/resolve/reference/XREF?id=10.1016/S0022-1694(03)00271-3), Web of Science® Times Cited: 55 (/resolve/reference/ISI?id=000188203000001), ADS (/resolve/reference/ADS?id=2004JHyd..285....3W)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Virtual%20experiments%3A%20a%20new%20approach%20for%20improving%20process%20conceptualization%20in%20hillslope%20hydrology&rft.volume=285&rft.issue=1%E2%80%934&rft.spage=3&rft.epage=18&rft.date=2004&rft.aulast=Weiler&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M. and McDonnell J. J. (2005) Testing nutrient flushing hypotheses at the hillslope scale: a virtual experiment approach. Journal of Hydrology, (in press).(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Testing%20nutrient%20flushing%20hypotheses%20at%20the%20hillslope%20scale%3A%20a%20virtual%20experiment%20approach&rft.date=2005&rft.aulast=Weiler&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M. and Naef F. (2003) An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 17(2), 477–493.Direct Link:

Abstract (/doi/10.1002/hyp.1136/abstract)

PDF(428K) (/doi/10.1002/hyp.1136/pdf)

References (/doi/10.1002/hyp.1136/references)

Web of Science® Times Cited: 51 (/resolve/reference/ISI?id=000180909000019)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hydrological%20Processes&rft.atitle=An%20experimental%20tracer%20study%20of%20the%20role%20of%20macropores%20in%20infiltration%20in%20grassland%20soils&rft.volume=17&rft.issue=2&rft.spage=477&rft.epage=493&rft.date=2003&rft.aulast=Weiler&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M., Naef F. and Leibundgut C. (1998) Study of runoff generation on hillslopes using tracer experiments and physically based numerical model. IAHSPublication, 248, 353–360.

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Study%20of%20runoff%20generation%20on%20hillslopes%20using%20tracer%20experiments%20and%20physically%20based%20numerical%20model&rft.spage=353&rft.epage=360&rft.date=1998&rft.aulast=Weiler&rft.aufirst=M.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Weiler M., Uchida T. and McDonnell J. (2003) Connectivity due to preferential flow controls water flow and solute transport at the hillslope scale, Proceedings ofMODSIM 2003, Townsville.

Weyman D. R. (1973) Measurements of the downslope flow of water in a soil. Journal of Hydrology, 20, 267–288.CrossRef (/resolve/reference/XREF?id=10.1016/0022-1694(73)90065-6), ADS (/resolve/reference/ADS?id=1973JHyd...20..267W)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology&rft.atitle=Measurements%20of%20the%20downslope%20flow%20of%20water%20in%20a%20soil&rft.volume=20&rft.spage=267&rft.epage=288&rft.date=1973&rft.aulast=Weyman&rft.aufirst=D.%20R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Whipkey R. Z. (1965) Subsurface storm flow from forested slopes. Bulletin of the International Association of Scientific Hydrology, 2, 74–85.CrossRef (/resolve/reference/XREF?id=10.1080/02626666509493392)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin%20of%20the%20International%20Association%20of%20Scientific%20Hydrology&rft.atitle=Subsurface%20storm%20flow%20from%20forested%20slopes&rft.volume=2&rft.spage=74&rft.epage=85&rft.date=1965&rft.aulast=Whipkey&rft.aufirst=R.%20Z.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Wilcox B. P., Newman B. D., Bres D., Davenport D. W. and Reid K. (1997) Runoff from a semiarid ponderosa pine hillslope in New Mexico. Water ResourcesResearch, 33, 2301–2314.

Direct Link:Abstract (/doi/10.1029/97WR01691/abstract)

PDF(1610K) (/doi/10.1029/97WR01691/pdf)

Page 19: 112 Subsurface Stormflow

References (/doi/10.1029/97WR01691/references)

Web of Science® Times Cited: 39 (/resolve/reference/ISI?id=A1997XY63200008)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=Runoff%20from%20a%20semiarid%20ponderosa%20pine%20hillslope%20in%20New%20Mexico&rft.volume=33&rft.spage=2301&rft.epage=2314&rft.date=1997&rft.aulast=Wilcox&rft.aufirst=B.%20P.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Woo M. -k. and DiCenzo P. D. (1989) Hydrology of small tributary streams in a subarctic wetland. Canadian Journal of Earth Science, 26, 1551–1556.CrossRef (/resolve/reference/XREF?id=10.1139/e89-132), Web of Science® Times Cited: 10 (/resolve/reference/ISI?id=A1989AR52000004), ADS

(/resolve/reference/ADS?id=1989CaJES..26.1557W)(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Canadian%20Journal%20of%20Earth%20Science&rft.atitle=Hydrology%20of%20small%20tributary%20streams%20in%20a%20subarctic%20wetland&rft.volume=26&rft.spage=1551&rft.epage=1556&rft.date=1989&rft.aulast=Woo&rft.aufirst=M.%20%E2%80%90k.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Woods R. and Rowe L. (1996) The changing spatial variability of subsurface flow across a hillside. Journal of Hydrology (NZ), 35(1), 51–86.(http://sfx.usask.ca/usask?url_ver=Z39.88-

2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal%20of%20Hydrology%20%28NZ%29&rft.atitle=The%20changing%20spatial%20variability%20of%20subsurface%20flow%20across%20a%20hillside&rft.volume=35&rft.issue=1&rft.spage=51&rft.epage=86&rft.date=1996&rft.aulast=Woods&rft.aufirst=R.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Wu W. and Sidle R. C. (1995) A distributed slope stability model for steep forested basins. Water Resources Research, 31, 2097–2110.Direct Link:

Abstract (/doi/10.1029/95WR01136/abstract)

PDF(1764K) (/doi/10.1029/95WR01136/pdf)

References (/doi/10.1029/95WR01136/references)

Web of Science® Times Cited: 175 (/resolve/reference/ISI?id=A1995RM64400024)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Water%20Resources%20Research&rft.atitle=A%20distributed%20slope%20stability%20model%20for%20steep%20forested%20basins&rft.volume=31&rft.spage=2097&rft.epage=2110&rft.date=1995&rft.aulast=Wu&rft.aufirst=W.&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)

Yee C. S. (1975) Soil and Hydrologic Factors Affecting Stability of Natural Slopes in the Oregon Coast Range, Ph.D. dissertation, Oregon State University,Corvallis, OR, 204 p.

Get PDF (340K) (/doi/10.1002/0470848944.hsa119/pdf)

(http://sfx.usask.ca/usask?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Encyclopedia%20of%20Hydrological%20Sciences&rft.atitle=Subsurface%20Stormflow&rft.date=2006-04-15&rft.isbn=9780470848944&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary)