11 09 1213-01-00ad 60ghz Impairments Modeling

download 11 09 1213-01-00ad 60ghz Impairments Modeling

of 29

Transcript of 11 09 1213-01-00ad 60ghz Impairments Modeling

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    1/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 1

    60 GHz Impairments Modeling

    Date: 2009-11-19

    Authors:

    Name Affiliations Address Phone Email

    Vinko Erceg Broadcom San Diego 858 521-5885 [email protected]

    Murat Messe Broadcom

    Alireza Tarighat Broadcom

    Michael Boers Broadcom

    Jason Trachewsky Broadcom

    Changsoon Choi IHP [email protected]

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    2/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 2

    Revision History

    Rev1: Phase Noise and CMOS PA AM-AM model

    parameters were updated

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    3/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 3

    Outline

    PA non-linearities (distortion) modeling

    PA Output Backoff (OBO)

    Phase noise modeling

    Carrier frequency offset and symbol clock modeling I/Q Imbalance modeling

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    4/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 4

    PA Non-Linearities Modeling (1)

    Input signal x(t)to an amplifier produces output signaly(t):

    PM)-(AMdistortionphasetheis))((

    AM)-(AMdistortion(gain)amplitudetheis)(

    where

    ))(()(2cos)(

    ))(2cos()()(

    tA

    tAG

    tAttftAGy(t)

    ttftAtx

    c

    c

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    5/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 5

    PA Non-Linearities Modeling (2)

    Popular approaches to model G and are: Saleh Model [1]

    Both amplitude and phase distortion are modeled

    This model was originally developed for the Traveling Wave Tube Amplifiers

    (TWTA) For some parameter settings output power decreases as input power increases

    May be used for some Solid State Power Amplifier (SSPA) applications

    Rapp model [2] Originally developed to model only amplitude distortion

    Suitable for SSPA modeling

    Modified Rapp Model [3,5] Phase distortion modeling was added Suitable for SSPA modeling

    Ghorbani model [4] Both amplitude and phase distortion is modeled

    Suitable for SSPA modeling

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    6/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 6

    Ghorbani Model

    Both amplitude and phase distortions are modeled by 4 parameters:

    A1

    )(

    A1)(

    4

    3

    1

    43

    1

    2

    2

    2

    2

    yAy

    AyA

    xAx

    Ax

    AG

    y

    y

    x

    x

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    7/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 7

    Rapp AM-AM Model

    Amplitude distortion (AM-AM) in Rapp model is modeled as:

    levelsaturationtheis

    factorsmoothnesstheis

    signalgainsmalltheis

    where

    1

    )(2

    12

    sat

    ss

    sat

    A

    s

    g

    A

    gA

    AgAG

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    8/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 8

    Modified Rapp AM-PM Model

    See reference [3] for modified Rapp model that includes also phase

    distortion modeling

    Phase distortion (AM-PM) may be also modeled as:

    The above equation is used for our modeling purposes

    2

    1

    1

    )(q

    q

    A

    AA

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    9/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 9

    802.11n PA Distortion Model [7] Example

    IM1 PA non-

    linearity

    Simulation should be run at an oversampling rate of at least 4x. Use RAPP power

    amplifier model as specified in document 00/294 with p = 3. Calculate

    backoff as the output power backoff from full saturation:

    PA Backoff = 10 log10(Average TX Power/Psat).

    Total TX power shall be limited to no more than 17 dBm.

    Disclose: (a) EIRP and how it was calculated, (b) PA Backoff, and (c) Psat per PA.

    Note: the intent of this IM is to allow different proposals to choose different outputpower operating points.

    Note: the value Psat = 25dBm is recommended.

    Note: AM-PM is not modeled

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    10/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 10

    GaAs PA Model (1)

    GaAs PA Model

    In [5], a 802.15.3c PA distortion model was proposed based on theGaAs pHEMT 60GHz HPA measurements from NEC

    The NEC GaAs PA characteristics seem to have similar trend to otherpublished/measured amplifier characteristics in this class

    Characteristic AM-AM and AM-PM curves

    Modified Rapp or Ghorbani models may be used for fitting the AM-AMand AM-PM experimental data points

    We use modified Rapp model

    Least squares fitting function

    Voltage is rms

    Highest voltage AM-PM point was not included in the modeling (does notfollow trend)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    11/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 11

    GaAs PA Model (2)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    12/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 12

    GaAs PA Model (3)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    13/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 13

    GaAs PA Model (4)

    Modified Rapp model parameters for NEC GaAs PA

    AM-AM parameters

    g= 19

    Asat= 1.4

    s = 0.81

    AM-PM parameters

    = - 48000

    = 0.123

    q1 = 3.8

    q2 = 3.7

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    14/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 14

    CMOS PA Model (1)

    We use the measured data from a 65 nm CMOS 60 GHz

    PA in reference [6]

    Modified Rapp or Ghorbani models may be used for fitting the AM-

    AM and AM-PM experimental data points

    We use modified Rapp model

    Least squares fitting function

    Voltage is rms

    AM-PM response was normalized so that the first point has Phase = 0o

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    15/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 15

    CMOS PA Model (2)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    16/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 16

    CMOS PA Model (3)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    17/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 17

    CMOS PA Model (4)

    Modified Rapp parameters for CMOS PA

    AM-AM parameters

    g= 4.65

    Asat= 0.58

    s = 0.81

    AM-PM parameters

    = 2560

    = 0.114

    q1 = 2.4

    q2 = 2.3

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    18/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 18

    PA Output Backoff (1)

    PA Output Backoff (OBO) may be defined as:

    where P is either PA saturation point or 1 dB PA compression point

    OBO is related to: Meeting spectrum mask requirements

    Increasing modulation accuracy (reducing EVM)

    Reducing Adjacent Channel Interference (ACI)

    P

    PowerTXAverageOBO

    __log10 10

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    19/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 19

    PA Output Backoff (2)

    OBO values for OFDM system reported in [9-11] relative to the 1 dB

    PA compression point are approximately 6 dB for 64 QAM

    modulation with R = coding

    OBO value for OFDM system reported in [10] relative to the PAsaturation point is approximately 9 dB for 64 QAM modulation with

    R = coding

    OBO values for OFDM system reported in [11] relative to the 1 dB

    PA compression point are approximately 4.5 dB for 16 QAM

    modulation with R = coding (performance degradation of 1.5 dB) Theoretical OBO value for Single Carrier (SC) GMSK modulation is

    0 dB

    OBOSC_GMSK= 0.5 dB may be used

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    20/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 20

    PA Output Backoff (3)

    Modulation Accuracy (dB)

    EVM

    OBO (dB)Spectrum Mask

    Requirements

    Mod. Accuracy

    Requirements

    OBO Requirement

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    21/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 21

    Phase Noise Model (1)

    Phase noise may be reasonably modeled by a two pole

    one zero model

    We propose the following parameters of the model:

    PSD(0) = -90 dBc/Hz Pole frequencyfp = 1 MHz

    Zero frequencyfz= 100 MHz

    PSD(infinity) = -130 dBc/Hz

    ))/(1

    )/(1)0()( 2

    2

    p

    zff

    ffPSDfPSD

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    22/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 22

    Phase Noise Model (2)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    23/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 23

    Frequency Offset/Symbol Clock Accuracy

    Symbol clock frequency tolerance in most systems is

    specified at +/- 20 ppm

    Reasonable cost/performance tradeoff

    Frequency offset of13.675 ppm at the receiver,

    relative to the transmitter may be used [7]

    The symbol clock of the same relative offset as the

    carrier frequency offset may be used

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    24/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 24

    I/Q Imbalance Modeling (1)

    Following model may be used for I/Q imbalance modeling [8]:

    where y(t)is the ideal complex transmit signal, yd(t)is the distorted

    complex signal, and distortion coefficients are given as

    where and are phase and gain imbalances, respectively

    )(*)()( tytyty rrd

    )2/sin()2/cos(

    )2/sin()2/cos(

    rrrr

    rrrr

    jv

    j

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    25/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 25

    I/Q Imbalance Modeling (2)

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.515

    20

    25

    30

    35

    40

    45

    50

    55

    IQ gain imbalance (dB)

    TX

    EVM(

    dB)

    TX EVM vs. flat TX IQ imbalanace (with no pre-compensation), TX Floor SNR of 50dB

    Phase imb. =0

    Phase imb. =1

    Phase imb. =2

    Phase imb. =3

    Phase imb. =4

    Phase imb. =5

    Phase imb. =6

    TxEVM(-dB)

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    26/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 26

    I/Q Imbalance Modeling (3)

    We propose that including I/Q imbalance in the

    simulations be optional

    Slides presented here regarding I/Q imbalance may

    serve as a reference

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    27/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 27

    Conclusion

    We propose the following impairments/parameters to

    be included in the simulations:

    PA distortion

    OBO

    Phase noise

    Frequency/Symbol Clock offset

    We propose that inclusion of the I/Q imbalance

    impairment is optional

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    28/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 28

    References [1] A.A.M. Saleh, "Frequency-independent and frequency-dependent nonlinear

    models of TWT amplifiers," IEEE Trans. Communications, vol. COM-29,November 1981, pp.1715-1720.

    [2] C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for aDigital Sound Broadcasting System", in Proceedings of the Second EuropeanConference on Satellite Communications, Liege, Belgium, Oct. 22-24, 1991, pp.179-184.

    [3] M. Honkanen and Sven-Gustav Haggman, New Aspects on Nonlinear PowerAmplifier Modeling in Radio Communication System Simulations, Proc. IEEEInt. Symp. On Personal, Indoor, and Mobile Comm, PIMRC 97, Helsinki, Finland,Sep.1-4, 1997, pp. 844-848.

    [4] A. Ghorbani, and M. Sheikhan, The effect of Solid State Power Amplifiers(SSPAs) Nonlinearities on MPSK and M-QAM Signal Transmission, Sixth Int'lConference on Digital Processing of Signals in Comm., 1991, pp. 193-197.

    [5] IEEE Document 15-06-0477-01-003c-rf-impairment-models-60ghz-band-

    sysphy-simulation.pdf. [6] Mikko Varonen, et. al.Millimeter-Wave Amplifiers in 65-nm CMOS.

    ESSCIRC 2007. 11-13 Sep. 2007. pp. 280-283.

    [7] IEEE Document 11-03-0814-31-000n-comparison-criteria.doc.

    [8] Alireza Tarighat,and Ali H. Sayed, Joint Compensation of Transmitter andReceiver Impairments in OFDM Systems, IEEE Transactions on WirelessCommunications, VOL. 6, NO. 1, January 2007, pp. 240-247.

  • 7/27/2019 11 09 1213-01-00ad 60ghz Impairments Modeling

    29/29

    doc.: IEEE 802.11-09/1213r1

    Submission

    November 2009

    Vinko Erceg, BroadcomSlide 29

    References

    [9] Yongwang Ding and Ramesh Harjani, A High-Efficiency CMOS +22-dBm

    Linear Power Amplifier, IEEE Journal of Solid-State Circuits, VOL. 40, NO. 9,

    September 2005, pp. 1895-1900.

    [10] Mostafa Elmala, Jeyanandh Paramesh, and Krishnamurthy Soumyanath, A

    90-nm CMOS Doherty Power Amplifier With Minimum AM-PM Distortion,

    IEEE Journal of Solid-State Circuits, VOL. 41, NO. 6, June 2006, pp. 1323-1332.

    [11] Mathias Pauli, Udo Wachsmann, Magnus Sundelin, and Peter Schramm,

    Transmitter Impairments in OFDM-Based Wireless LAN, Vehicular Technology

    Conference, 53rd VTC 2001 Spring, VOL 1, 6-9 May 2001, pp. 692696.