10.FourierAnalysis

download 10.FourierAnalysis

of 29

Transcript of 10.FourierAnalysis

  • 8/7/2019 10.FourierAnalysis

    1/29

    T

    T

    2

    2

    22

    21

    t

    y

    vx

    y

    x

    x!

    x

    xmaF!

    Standing Waves Progressive Waves

    tL

    xnn[

    Tcossin

    vtxf

    Stretched string

    Newtons 2ndWave Equation

  • 8/7/2019 10.FourierAnalysis

    2/29

    nnn

    nn tx

    Atxy H[

    P

    T

    ! cos

    2sin,

    g

    !

    !

    1

    cos2

    sin,

    n

    nn

    n

    n tx

    txy H[

    P

    T

    Anywave motiononthe stringcanbe described bya sum of these modes!

    Fourier Analysis

    Normal Modes:

    n = 1 n = 2 n = 3

    JosephFourier, 1768-1830

    Oneequation,infinityunknowns

    thanksfornothin Joe!

  • 8/7/2019 10.FourierAnalysis

    3/29

    !

    !1

    sin

    nn L

    xnBxy

    T

    Focus on x first!

    How to find a specific Bn?

    !

    !

    L

    n

    n

    L

    dxL

    xn

    L

    xndx

    L

    xnxy

    0 1

    *

    0

    *

    sinsinsinTTT

    ? AJUJUJU !coscossinsin

    2

    1

    dx

    L

    x

    L

    xL

    g

    !

    !

    1

    **

    coscos2

    TT

    This reduces series to 1 term!

    Mathematically

    Multiplyby nth harmonic and integrate.

  • 8/7/2019 10.FourierAnalysis

    4/29

    L

    n

    n

    L

    xnn

    nn

    L

    L

    xnn

    nn

    LB

    01

    *

    *

    *

    *sinsin

    2

    g

    !

    !T

    T

    T

    T

    g

    !

    !1

    *

    *

    *

    *00sinsin

    2n

    n nnnn

    Lnn

    nn

    LBT

    TT

    T

    *nn {

    *nn !

    0! 0! all terms zero!

    uh oh.0! 0!0

    xgxf

    xg

    xf

    cxcx d

    d

    pp

    limlim

    LHopitals Rule:

    Iff(c)=0 andg(c)=0 then

    x

  • 8/7/2019 10.FourierAnalysis

    5/29

    1

    cos

    2

    * T

    T

    LBn!

    2

    *Ln!

    2

    sin*

    0

    * LBdx

    L

    xnxy n

    L

    !

    T

    dxL

    xnxy

    LB

    L

    n

    !0

    sinT

    !

    !

    1

    sinn

    nL

    xnBxy

    T

    Any shape between 0 andL

  • 8/7/2019 10.FourierAnalysis

    6/29

    n=1 n=2 n=3 n=4 n=5 n=6

    Positivecontribution

    zerocontribution

    zerocontribution

    zerocontribution

    zerocontribution

    zerocontribution

    zerocontribution

    Positivecontribution

    zerocontribution

    zerocontribution

    zerocontribution

    zerocontribution

    Graphically.

    0sinsin0

    21 !

    L

    dxL

    xn

    L

    xn TTorthogonal

    n*=1

    n*=2

  • 8/7/2019 10.FourierAnalysis

    7/29

    0 L

    dxL

    xncx

    LB

    L

    n

    !0

    sin2 T

    Integrate by parts:

    ? A d!db

    a

    b

    a

    b

    a

    dxxgxfxgxfdxxgxf

    xxx

    c

    00

    ccT

    T

    T

    T

    c = slope

  • 8/7/2019 10.FourierAnalysis

    8/29

    LL

    nL

    xn

    n

    L

    L

    xn

    n

    Lx

    L

    c

    00

    ccT

    T

    T

    T

    L

    nL

    xn

    n

    L

    L

    xnx

    n

    c

    0

    sicos2

    T

    T

    T

    T

    ? A000cos2 TT

    nLn

    Bn

    TT

    n

    n

    LBn cos!

    g

    !

    ! sin

    nL

    xnBxy

    T

  • 8/7/2019 10.FourierAnalysis

    9/29

    -1.2

    -0.8

    -0.4

    0

    0.4

    0.8

    1.2

    -3 -2 -1 0 1 2 3

    x

    y

    1st

  • 8/7/2019 10.FourierAnalysis

    10/29

    -1.2

    -0.8

    -0.4

    0

    0.4

    0.8

    1.2

    -3 -2 -1 0 1 2 3

    x

    y

    1st

    + 2nd

  • 8/7/2019 10.FourierAnalysis

    11/29

    -1.2

    -0.8

    -0.4

    0

    0.4

    0.8

    1.2

    -3 -2 -1 0 1 2 3

    x

    y

    1st

    + 2nd

    + 3rd

  • 8/7/2019 10.FourierAnalysis

    12/29

    -1.2

    -0.8

    -0.4

    0

    0.4

    0.8

    1.2

    -3 -2 -1 0 1 2 3

    x

    y

    1st

    + 2nd

    + 3rd

    + 4th

  • 8/7/2019 10.FourierAnalysis

    13/29

    -1.2

    -0.8

    -0.4

    0

    0.4

    0.8

    1.2

    -3 -2 -1 0 1 2 3

    x

    y

    1st

    + 2nd

    + 3rd

    + 4th

    + 5th

  • 8/7/2019 10.FourierAnalysis

    14/29

  • 8/7/2019 10.FourierAnalysis

    15/29

    Barrys profile

  • 8/7/2019 10.FourierAnalysis

    16/29

    0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 0

    5 0

    1 0 0

    1 5 0

    2 0 0

    2 5 0

    3 0 0

    3 5 0

    Barrys profile

  • 8/7/2019 10.FourierAnalysis

    17/29

    0 50 100 150 20 0 250 300 350 400 0

    20

    40

    60

    80

    10 0

    12 0

    Barrys 1st harmonic

  • 8/7/2019 10.FourierAnalysis

    18/29

    0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    1 2 0

    Barrys 1st and 2nd harmonic

  • 8/7/2019 10.FourierAnalysis

    19/29

    0 50 1 00 150 20 0 250 300 350 400 -100

    -5 0

    0

    50

    10 0

    15 0

    20 0

    25 0

    Barrys 1st, 2nd, and 3rd harmonic

  • 8/7/2019 10.FourierAnalysis

    20/29

  • 8/7/2019 10.FourierAnalysis

    21/29

    clearload f;f=f-172;plot(f)

    B(200)=0;y(355)=0;for n = 1:200

    for x = 1:355B(n)=B(n)+(2/355)*f(x)*sin(n*pi*x/355);

    end

    end

    figureplot(B,'.')for x = 1:355

    for n = 1:200

    y(x)=y(x)+B(n)*sin(n*pi*x/355);endendfigureplot(y)

  • 8/7/2019 10.FourierAnalysis

    22/29

    Frenchs Fourier Foible:

    g

    !

    !

    1

    si

    n

    nLxnBxy T dxL

    xnxyL

    L

    n !0

    sin T

    Good choice if boundaries are at 0: Not so good for other shapes..

  • 8/7/2019 10.FourierAnalysis

    23/29

    More General:function periodic on intervalx = L to x = L.

    g

    !

    g

    !

    !

    11

    0sincos

    2 nn

    n

    n

    L

    xnB

    L

    xnA

    Axy

    TT

    dxL

    xnxy

    LB

    L

    L

    n

    !

    Tsi

    1

    dxL

    xnxy

    LA

    L

    L

    n

    !T

    cos1

    dxxyL

    A

    L

    L

    !1

    0

  • 8/7/2019 10.FourierAnalysis

    24/29

    Something hard:

    0 L/8 L

    H

    x

    !L

    L

    L

    dxL

    HdxL

    A8

    8

    0

    0011

    80

    HA !

    !L

    L

    L

    n dxLxn

    Ldx

    LxnH

    LA

    8

    8

    0

    cos01cos1 TT

    8

    0

    sin

    L

    n

    L

    xn

    n

    L

    L

    HA

    !T

    T

    !8

    sinT

    T

    n

    n

    HAn

  • 8/7/2019 10.FourierAnalysis

    25/29

    0si

    8

    0

    !

    L

    ndx

    L

    xnH

    LB

    T

    8

    0

    cos

    L

    nL

    xn

    n

    L

    LB

    !T

    T

    !8

    c s1 TT

    nn

    Bn

    g

    !

    g

    !

    !11

    sin8

    cos1cos8

    sin8 nn L

    xnn

    n

    H

    L

    xnn

    n

    HHxy

    TT

    T

    TT

    T

  • 8/7/2019 10.FourierAnalysis

    26/29

    0 L

    0

    H

    MATLAB summation of 1 to 100 terms.

  • 8/7/2019 10.FourierAnalysis

    27/29

    Time dependence?

    Make y(x) an initial condition: y(x,0) = y(x)

    The normal modes will oscillate at [n:

    g

    !

    g

    !

    !11

    0 cossincoscos2

    ,n

    nnnn

    n

    nn txkBtxkAA

    txy [[

    P

    T[

    vvk

    2||

    Given the wavelengths, the frequencies are known.

    This is NOT a consequence of Fourier Analysis

    2

    2

    22

    2

    t

    y

    vx

    y

    x

    x!

    x

    xThis IS a consequence of the wave equation:

  • 8/7/2019 10.FourierAnalysis

    28/29

    0 L

    0

    H

    18,000,000 sinusoids in MATLAB:

  • 8/7/2019 10.FourierAnalysis

    29/29

    Any well behaved repetitive function can bedescribed as an infinite sum of sinusoids withvariable amplitudes (a Fourier Series). On astretched string these correspond to the

    normal modes. Fourier analysis can describearbitrary string shapes as well as progressivewaves and pulses.