100 Volts 0 Volts v o,x. x V(x) 50 150 100 200 50 Volts 200 Volts.

169
100 Volts 0 Volts v o,x
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    250
  • download

    6

Transcript of 100 Volts 0 Volts v o,x. x V(x) 50 150 100 200 50 Volts 200 Volts.

100 Volts

0 Volts

vo,x

x

V(x)

50

150

100

200

200 Volts

-200 Volts 200 Volts

z

ycoordinates

x

10 V 0 V

(note the perpendicular intersections)

10 V 0 V x

y

(line of symmetry is x-axis where y=0)

V(x,0)

yields

x (cm)

yields

Ex(x,0)

V/m 15002.

3

)03.05(.

)107(

x

V

x (cm)

x

U(x)potential energy

stableequilibrium(FNET = 0)

unstableequilibrium(FNET = 0)

negative slope(FNET to right)

positive slope(FNET to left)

A B

C D

x

U(x)potential energy

A: stableequilibrium C: unstable

Equilibrium

D: FNET to right

B: FNET to left

A B

C D

x

U(x)potential energy

A B

C D

x

V(x)electric potential

A Bbegin

x

y

+

Radial electric vector field of a charged conducting circle

x

+

y

_

_

y

x

y

_

y

U(x,y)potential energy

FNET to right and forward)

x

dotted lines showconstant energy

y

U(x,y)potential energy

FNET to right and forward)x

(dotted lines showconstant energy:“equipotentials”)

(equipotentialscloser where steepest)

y

V(x,y)electric potential

(potential energy per unit charge)

E(x,y)x

dotted lines showconstant electric

potential+

+

solid lines showelectric field

arrow shows electricfield direction on

positive test charge

y

V(x,y)

x

(dotted lines show constant electric potential)

+

+

(solid lines showelectric field)

(arrow shows forceon test charge)

++

y

V(x,y)Electrical potential

energy per unit charge

x

(equipotentialscloser where steepest)

+(dotted lines show constant electric potential while solid lines show electric field)

y

V(x,y)

x

(dotted lines show constant electric potential)

+(solid lines showelectric field)

y

V(x,y)

x

dotted lines showconstant electric

potential+solid lines showelectric field

y

+

y

x

yV=4 volts

A

B

q

V=7 volts

V=5 voltsE=?

V=7 volts

V=5 voltsE=?

d = 2 cm

100 V/m

x

y

Q = 35o

Q must be estimated ormeasured with a protractorto calculate the legs (x andY components of E).

57 V/m

82 V/m

10o15o

30o

45o

60o75o

y

V(x,y)

E(x,y)

x

dotted lines showconstant electric

potential

_

+

solid lines showelectric field

arrow shows electricfield direction on

positive test charge

y

V(x,y)

x

_

+

+ + + ++ + + ++ + + ++ + + ++ + + ++ + + ++ + +

VI

LACROSS SECTION

BA

TT

ER

Y

+

BA

TT

ER

Y

+

ITOTAL

IA IB IC

IE

ID

BA

TT

ER

Y

+

BA

TT

ER

Y

+

BA

TT

ER

Y

+ PU

MP

(handle)(spinning

paddlewheel)ee e e e

e

e

e

e

e e

e

eee

RVsourceR

RVsourceR

ab c

de

fg

h

RVsource

R

Vsource

R

resistorsin series

RVsourceR

resistorsin parallel

RVsource

6 W3 V

3V 6 W

BATTERY+

the ground

BATTERY+

the ground

current can never flow current may flow(depending on the properties of the ground)

BATTERY+

the ground

9-VO

LTB

AT

TE

RY

+ _

9-VOLTBATTERY+

_

+

-

N S

Unmagnetized iron filings before being placed in magnetic field.

S N

S N

SN

NS

compass

Needle direction?Draw needle in compass circle.

STOPPRELAB

-----

-- -

-+ +

++++

Uncharged conducting coin grounded to Earth.

+

-- -

- ---

- The presence of positive charge createsan electric field at the coin surface that attracts electrons from the Earth to negativelycharge the coin.

E

+

- ---

Removing the grounding wire leavesthe coin positively charged.The Earth is a giant reservoir of charge,we do not worry about the fact that it hassome miniscule amount of excess positive charge.

E

+

- ---

The presence of positive charge creates an electric field at the coin surface that causes macroscopic charge separation. (The coins positive charges are forced to be far away from the positively charged object.)

E

+++ +

+- ---

+++ +

L EON

E

+

- ---

If some fool’s hand comes into contact with the coin, the coin’s positive charges can move even further fromthe charged object by moving into the hand (and body).

E

++

++

L EON

E

+- ---

++

++

+

- ---

Removal of the hand leaves a negatively charged coin.The hand is a large reservoir of charge and we will not worry about the miniscule amount of excess positivecharge in the hand (and body) unless a very strong electricfield had been present.

E

+

- ---

E

In presence of positively charged object. Positively charged object removed.

?

1.5 V

1.5 V

B. C. D.

1.5 V1.5 VV1.5 V

V+

-

+

-V

+

-V

6.0 V

b

4.5 V

4.5 V

4.5 V

A. B.

6.0 V

B.A.

6.0 V

6.0 Va

b c

d

4.5 V

4.5 V

4.5 V

A. B.

7.5 V

4.5 V

B.A.

7.5 V

4.5 V

6.0 Va

b c

d

4.5 V

4.5 V

4.5 V

A. B.

7.5 V

4.5 V

B.A.

7.5 V

4.5 V

pith ball(conductor)

+Initial attraction

+repulsion after touching

metallicenclosure

solid metallicbar with round end

very thin stripof pure gold

+

+

+

+

++

+

+

+

+__

+

+

_

+

_

+

_

+

_

+

_

+

_

+

_

_

+

_

+

_

+

_

+

_

+

_

_

BA

TT

ER

Y

+

BA

TT

ER

Y

+

R VsourceRVsource

R

A. B.

BA

TT

ER

Y

+

BA

TT

ER

Y

+

BA

TT

ER

Y

+

BA

TT

ER

Y

+

V

1.5

0

3.0

4.5

6.0

-----

-- -

-+ +

++++-----

-- -

-

wal

lba

lloon

stic

ks

to w

all

+

- ---

E

+++ +

R

Vsource

R

R

+ _

_point of

intersection

+ _

_ point of intersectioncan’t happen

+

-

-

+

- +

A B C

R2

V

Requivalent

R1 R2

V

1 W 1 W

1 W 1 W

1 2

9 V

RA

4

10 V R1= 1

R2=4

I2=? V2=?

I1=? V1=?IBattery=?

12 V R1= 5

R2=1

I2=? V2=?

I1=? V1=?IBattery=?

RTotal= ?

R1

R2

10 V

9 V R1= 1 R2= 2

R3=4

I3=? V3=?

I1=? V1=? I2=? V2=?IBattery=?

R1= 8 R2= 8

R4=2 I4=? V4=?

I1=? V1=? I2=? V2=?

R3=2 I3=? V3=?

Rtotal = 5 ohmsIbattery = 2 amps

V1 = V2 = 8 voltsI1 = I2 = 1 amp

V3 = V4 = 2 voltsI3 = I4 = 1 amp

R

Vapplied

I

Vapplied

V

100 Wa b c200 W

V200 W

a

c

b

100 W d

e f

V200 W

a

c

b

100 W d

e f

R

200

100

red 1

black 2 red 2

+

-

black 1

t

V(t)

5

0

-5Dt

I

Vapplied

R1= 8 I1=? V1=?

R2=1 Requivalent = ?Ibattery = ?

V1 = ? I1 = ?

V2 = ? I2 = ?

I2=? V2=?

C

Cb

a

R

d

c

Magnet

BClose is strong

BFar is weak

Magnet

B

IL

Magnet

B

rotate

I I

I

I

I

I

I

DV

N solenoid loops enclosed in the Amperian loop, each with current I.

n is “loop density” N/L of solenoid.

BIN

Am

peria

n lo

op

L

loop Amperianby enclosed total

loopAmperian

whole

IsdB o

Ampere’s Law:

R

LBincident

einduced by B acts like battery.Current flowing through resistor is easily measured.

einduced

External Inductance

R

L

einduced

Oscillating voltage source causes oscillating B inside inductor.Oscillating B inside inductor induces voltage einduced (back EMF).Back EMF makes inductor seem like a resistor to the voltage source.

Self Inductance

R

LBincident

An oscillating external B causes an induced voltage einduced across the inductor.

einduced

External Inductance

R

L

einduced

Oscillating voltage source causes oscillating B inside inductor which induces a voltage einduced across the inductor.

Self Inductance

R

L

Self Inductance:

I

I

I

DC Power Supply+ -

brushes

Magnet

B

I

N

S

S

N

II

a

y

z

{outward}

xB ˆ [T] 3o

y

z

x

V(t)

VL

VR

VS

V(t)

V?V?

VR

V(t)

VL

VC

VR

V(t)

VC

VR

VS

V(t)

V?

VR

V?

V(t)

VL

VC

VR

VS

V(t)

VLVC

VR

VS

t

R [ohm]

C [farad]Vsource

L [henry]

Vs (t) +

-0

Vs (t) Vs (t)-VR(t)

Vs (t)-VR(t)

Vs (t)-VR(t)-VC(t)

Vs (t)-VR(t)-VC(t)Vs (t)-VR(t)-VC(t)- VL(t)=0

+Q

-Q

VS VC

+

+

+

-

-

-

VR

VL

I(t)

t

V(t)

[V]

[t]

[V]

[t]

[V]

[t]

Pulses let through by the diode move speaker withfrequency of desired audio wave.

Quantum mechanical turn-on voltage of diode.

Modulate Wave Transmitted by Diode to Speaker

[V]0

ANT

GND

A

B

PRIMARYSOLENOID

SECONDARYSOLENOID

ANT

GND

A

B

PRIMARYSOLENOID

SECONDARYSOLENOID

secondary circuit

Lsec

ANT

GND

A

B

PRIMARYSOLENOID

SECONDARYSOLENOID

secondary circuitLsec/2

Diode

A

B

TUNER

3,600 [Hz]

envelope [Hz]

carrier [Hz]

RF Modulator

RFout

lowin

CH2

CH1

modulated

carrier [Hz]

RF Modulator

RFout

lowin CH

1modulated

CH1

modulated

antenna

ground

Iamplitude

fdrive

fresonance

Iamplitude

fdrive

fresonance

A B

9 V R1= 1 R2= 2

R4=4

I4=? V4=?

I1=? V1=? I2=? V2=?IBattery=?

Requivalent=?

BATTERY+

cd

BATTERY+ +

BTotal charge +Q & -Q Total charge +Q & -Q

+ + + + + + + + + + +

+ + + + + + + +

+ + +

+ + ++ + +

- - - - -

- - - - -

- - - - - - - -

- - - - - - - -

(-Q/2)

(-Q/2)

(+Q/2)

(+Q/2)

R1

VS

S1

R2

CS2

R1 = 1x106 [W]R2 = 1x105 [W]C = 1x10-5 [F]Vs = 10 [V]

Thumb shows direction of magnetic field.

B

Wrap fingersin direction ofcurrent.

q

If charge q is negative,reverse B-field direction.

B

I

I

Thumb shows direction of magnetic field.

BA

TT

ER

Y

+

voltage“height”

1.5 [V]

0 [V] DV

= +

1.5

[V] D

V=

-1.5 [V

]

BA

TT

ER

Y

+

voltage“height”

1.5 [V]

0 [V]

BA

TT

ER

Y

voltage“height”

1.5 [V]

0 [V]

voltage

1.5 [V]

0 [V]

position on circuita b c d

1.5 [V]

a d

ad

c

b

BA

TT

ER

Y

+

voltage“height”

a

b c

de

voltage

1.5 [V]

0 [V]

position on circuit

a b c d e a

1.5 [V]1.5 [V] RBULB

a

bc

d

e

BA

TT

ER

Y

+

voltage“height”

1.50 [V]

0 [V]

a

b

c

0.75 [V]

BA

TT

ER

Y

+

voltage“height”

1.50 [V]

0 [V]

0.75 [V]

voltage

1.50 [V]

0 [V]

position on circuita b c

0.75 [V]

a

V

RBulba b cRBulb

VRBulb

a

b

f

RBulb d

c e

a

voltage“height”

1.5 [V]

0 [V]B

AT

TE

RY

+

b c

d f e

voltage

1.50 [V]

0 [V]

position on circuitf d b

0.75 [V]

a c e f aa

display

settings

+ positive terminal for high current measurements (has large fuse)

- negative terminal or “ground”

+ positive terminal

Voltage

VDC

BA

TT

ER

Y

+

? amps

BA

TT

ER

Y

+ BA

TT

ER

Y

+

mA

A B

Amperes

mA

R

BA

TT

ER

Y

+

Amperes

mA

A

R

BA

TT

ER

Y

+

Ohms ()

R

3 V

b

c

dB

AT

TE

RY

+

BA

TT

ER

Yc d

1.5 [V]

0 [V]

3 V

a b

c

d

BA

TT

ER

Y

+

BA

TT

ER

Y

+a b

c

1.5 [V]

3.0 [V]

Vamp=3 V

330

CH1 CH2

red1

red2

bottomground

x-ymode

• 30 V• Ground• 1000 V• 2000 V• 3000 V

constantvoltage ---

--

ground

--

-

---

-- -

-

-

-

-

-

ground

• 30 V• Ground• 1000 V• 2000 V• 3000 V

constantvoltage

chargeseparation

ground

+++++- ---

--

-+++++

+++++

- ---

- --

+

+

++

--

-

-

--

- +

+

evenlyarranged

clusteredpositive

clusterednegative

Real

Imaginary

V R

wtV

L

VCVS

fshift+p

Real

Imaginary

VR

V L

V C

Im{V(t)}

Re{V(t)}

Real

Imaginary

V 0

wt

V(t)=V0eiwt rotates around the complex plane in time.

Voltage

VL

VC

VR

VS

R [ohm]

C [farad]

L [henry]

R [ohm]Vsource

L [henry]

THEORY REALITY

N S

x

A B C D E

x [cm]

10 [V] 8 6 4 2 0

0 2 4 6 8 10

x [cm]

10 8 6 4 2 0 [V]

0 2 4 6 8 10

A B

N solenoid loops enclosed in the Amperian loop, each with current I.

n is “loop density” N/L of solenoid.

BIN

Am

peria

n lo

op

L

loop Amperianby enclosed total

loopAmperian

whole

IsdB o

Ampere’s Law: