10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra...

download 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance Concrete

of 9

Transcript of 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra...

  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    1/9

    MaterialsandDesign59(2014)19

    ContentslistsavailableatScienceDirect

    Materials

    and

    Design

    journalhomepage:www.elsevier.com/locate/matdes

    The

    effect

    of

    nanosilica

    addition

    on

    flowability,

    strength

    and

    transport

    properties

    of

    ultra

    high

    performance

    concrete

    EhsanGhafaria,*, HugoCostab, EduardoJulioa, AntonioPortugalc, LuisaDur aesc

    aICIST,IST-TechnicalUniversityofLisbon,Portugal

    bICIST,ISEC-PolytechnicInstituteofCoimbra,PortugalcDept.ofChemicalEngineering,UniversityofCoimbra,Portugal

    a

    r

    t

    i

    c

    l

    e

    i

    n

    f

    o

    Articlehistory:

    Received

    26

    October

    2013

    Accepted22February2014

    Keywords:

    Ultrahighperformanceconcrete

    Nanosilica

    Pozzolanicreactivity

    Microstructure

    Transportproperties

    a

    b

    s

    t

    r

    a

    c

    t

    The

    experimental

    study

    herein

    presented

    was

    conducted

    aiming

    to

    evaluate

    the

    influence

    of

    nanosilica

    (nS)

    addition

    on

    properties

    of

    ultra-high

    performance

    concrete

    (UHPC).

    Thermo

    gravimetric

    analysis

    results

    indicated

    that

    nS

    consumes

    much

    more

    Ca(OH)2ascomparedtosilicafume,specificallyattheearlyages.

    Mercury

    intrusion

    porosimetry

    measurements

    proved

    that

    the

    addition

    of

    nS

    particles

    leads

    to

    reduction

    of

    capillary

    pores.

    Scanning

    electron

    microscope

    observation

    revealed

    that

    the

    inclusion

    of

    nS

    can

    also

    efficiently

    improve

    the

    interfacial

    transition

    zone

    between

    the

    aggregates

    and

    the

    binding

    paste.

    The

    addition

    of

    nS

    also

    resulted

    in

    an

    enhancement

    in

    compressive

    strength

    as

    well

    as

    in

    transport

    properties

    of

    UHPC.

    The

    optimum

    amount

    of

    cement

    replacement

    by

    nS

    in

    cement

    paste

    to

    achieve

    the

    best

    performance

    was

    3

    wt.%.

    However,

    the

    improper

    dispersion

    of

    nS

    was

    found

    as

    a

    deterrent

    factor

    to

    introduce

    higher

    percentage

    of

    nS

    into

    the

    cement

    paste.

    c 2014

    Elsevier

    Ltd.

    All

    rights

    reserved.

    1.

    Introduction

    Ultra-high performance concrete (UHPC) is one of the mostpromisingtypesofconcrete,whichhasbeendevelopedinthelast

    decade[13].Thisinnovativehigh-techmaterialischaracterizedby

    adensemicrostructure,whichpresentsbothultra-highcompressive

    strengthandultra-highdurability[45].Themaincompositionof

    UHPCcontainsalargeamountofcement,usuallybetween800and

    1100kg/m3,whichisaroundthreetofourtimesmorethanthequan-tityofcementinnormalconcrete[5].Therefore,theblendingofce-

    mentwithhighpozzolanicfinematerials,suchasnanosilica(nS),can

    beasuitableoptiontoreducethehighvolumeofcementintheUHPC

    proportioning.

    Nevertheless,theefficiencyofUHPCisparticularlydependenton

    itsdensity.Infact,byoptimizingtheparticlepacking,anultra-high

    consolidationoftheconcretematrixcanbereached.Thiscanbeob-

    tained

    through

    an

    almost

    perfect

    grain

    size

    distribution,

    by

    incor-

    poratingahomogeneousgradientoffineandcoarseparticlesinthe

    mixture.Inthisscope,theuseofnSaspozzolanicadditionishighly

    effective.Actually,duetoitsextremelysmallsizeparticles,nScanfill

    thevoidsbetweencementandsilicafumeparticles,leadingtohigher

    packinglevel(filler effect)andalsogeneratingadenserbinding

    matrix,withmorecalciumsilicatehydrate(C-S-H).Consequently,a

    *Correspondingauthor.Tel.:+351911831229.

    E-mailaddresses:[email protected](E.Ghafari)[email protected](H.Costa)

    [email protected](E.Julio)[email protected](A.Portugal)[email protected](L.Duraes).

    significantimprovementonbothdurabilityandmechanicalproper-

    tiesisobtained.Lietal.[6]showedthatboththecompressiveand

    flexuralstrengthsofconcretecanbeenhancedbyincorporatingnS.Aconcretewithadditionofsilicafume,flyashandnSwasalsostudied

    byCollepardietal.[7].Itwasconcludedthatconcretewiththisternary

    combinationhasabetterperformance,intermsofbothstrengthand

    durability,thanthosejustwithflyash,butsimilartothosejustwith

    silicafume.Li[8]alsofoundthatanadditionofnSresultsanincrease

    inbothearly-agestrengthandlong-termstrength.Alyetal.[9]re-

    portedthatincorporationofahybridcombinationofcolloidalnSand

    wasteglassintothecementmortarsledtoanenhancementofthe

    mechanicalpropertiesincomparisonwithplainmortar.

    Additionally,ithasbeenprovedthattheincorporationnSalso

    improvesthedurabilitypropertiesofconcrete.HeandShi[10]stud-

    iedthechloridepermeabilityandmicrostructureofPortlandcement

    mortarwithdifferenttypesofnano-materials.Thisstudyconfirmed

    that

    an

    addition

    of

    nS

    and

    nano-clay

    significantly

    improves

    the

    chlo-

    ridepenetrationresistanceaswellasthegeneralionicpermeability

    ofcementitiousmortar.AnexperimentalstudyperformedbyJi[11]

    showedthattheadditionofnano-SiO2

    tothemixtureimprovesthe

    waterpermeabilityresistanceofconcrete.

    Moreover,well-dispersednano-particlesactascentersofcrystal-

    lizationofcementhydrates,thereforeacceleratingthehydration[12].

    Qingetal.[13]statedthatthepozzolanicactivityofnano-SiO2

    ismuch

    higherthanthatofsilicafume.Itwasfoundthatthebondstrengthof

    thepaste-to-aggregateinterface,incorporatingnS,ishigherthanthat

    ofspecimenswithsilicafume.Aresearchalsoshowedthatthepoz-

    zolanicactivityofflyashsignificantlyincreasesafterincorporating

    0261-3069/$-seefrontmatterc 2014ElsevierLtd.Allrightsreserved.

    http://dx.doi.org/10.1016/j.matdes.2014.02.051

    http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051http://www.sciencedirect.com/science/journal/02613069http://www.sciencedirect.com/science/journal/02613069http://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdeshttp://www.elsevier.com/locate/matdesmailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.matdes.2014.02.051http://dx.doi.org/10.1016/j.matdes.2014.02.051mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.matdes.2014.02.051&domain=pdfhttp://www.elsevier.com/locate/matdeshttp://www.sciencedirect.com/science/journal/02613069http://dx.doi.org/10.1016/j.matdes.2014.02.051
  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    2/9

    2 E.Ghafarietal./MaterialsandDesign59(2014)19

    Table1

    Chemicalcompositionandphysicalpropertiesofcementandsilicafume.

    Chemicalanalysis(%) Cement Silicafume

    SiO2 20.9 93.6

    Al2O3 4.60 1.3

    Fe2O3 3.15 0.90

    CaO 62.0 0.4

    MgO 2.00 1

    SO2 3.60 0.4

    K

    2

    O

    99.9(%) Amorphous 15 5

  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    4/9

    4 E.Ghafarietal./MaterialsandDesign59(2014)19

    Fig.3.Gaspermeabilityapparatusanddetailofatestingcell.

    theWashburnequation,asinEq.(2):

    D

    =

    4cos

    P

    (2)

    whereDistheporediameter(nm),isthesurfacetensionofmercury(dyne/cm),isthecontactangle()betweenmercuryandsolidandP

    istheappliedpressure(MPa).Thetestapparatususedforporestruc-

    turemeasurementwasAutoPoreIII mercuryporosimeter.Mercury

    densityis13.5335g/mLanditssurfacetensionwastakenas485

    dyne/cm;theselectedcontactanglewas130.

    Themaximummeasuringpressurethatcanbeappliedis200MPa

    (30,000psi),whichmeansthatthesmallestporediameterthatcan

    bemeasuredreachesapproximately6nm(ontheassumptionthatall

    poreshavecylindricalshape).

    Inordertoprovidetheinformationabouttheporesizedistribution

    ofconcrete,MIPtestwasperformedonsmall-coredsamplestakenout

    fromthespecimens.Thesampleswerethenwashedwithacetoneto

    terminatehydration.Beforeperformingthetest,thesampleswere

    alsoovendriedfor48htoremovemoistureofthepores.

    Thegaspermeabilitystandsasacriticalmaterialparameter,which

    characterizesthestructureandthedurabilityofconcrete.Thegas

    permeabilitytestwasperformedaccordingtoRilemTC116-PCD:

    Recommendations[31].Foreachmixture,threecylinderspecimens

    with100mmdiameterand50mmheightwereprepared.Thecylin-derspecimensshouldbebroughttothesamemoisturecondition

    beforethegaspermeabilitytestcanbeperformed.Inthisscope,the

    specimenswerestoredinalaboratoryatmosphereat20 2Cand

    RHof65 5%foraperiodof28days.Specimenswerethensealed

    withcellophanefilmandintroducedintoplasticcontainers,which

    arethenproperlysealedtoreducetheevaporationofwaterfromthe

    specimen.Theschematicexperimentalsetupformeasuringthegas

    permeabilityofconcreteisillustratedinFig.3.Thisapparatuscan

    beusedformeasuringvaluesofthegaspermeabilityintherangeof

    1019to1014m2.

    ThegaspermeabilitycoefficientcanbedeterminedbyEq.(3)

    whichisbasedontheHagenPoiseuillerelationforlaminarflowofa

    compressiblefluidthroughaporousbodywithsmallcapillariesand

    understeady-stateconditions[32].

    K=2QP0L

    AP2 P2a

    (3)

    wherekistheeffectivegaspermeabilitycoefficient(m2),Qisthe

    volumeflowrateofthefluid(m3/s),Aisthecross-sectionalareaof

    thespecimen(m2),Listhethicknessofthespecimeninthedirection

    offlow(m),isthedynamicviscosityofthefluidattesttemperature(Ns/m2),Pistheinletpressure(absolute)(N/m2),Paistheoutlet

    pressureassumedinthistesttobeequaltoatmosphericpressure

    (N/m2)andP0

    isthepressureatwhichthevolumeflowrateisde-

    termined,assumedinthistesttobetheatmosphericpressurePa(N/m2)

    Fig.4.Conductivitycurvewithtimeforpozzolanwatersuspensions.

    Fig.5.Relativelossincorrectedconductivityoflimepozzolanwatersuspensions.

    3.

    Results

    and

    discussion

    3.1. PozzolanicreactivityofnSandSFincementpastes

    Theresultsanalysisoftheconductivityofthepozzolanwater

    suspensionsareshowninFig.4.TheincorporationofbothnSandSF

    intowaterresultedinanincreaseinthesuspensionsconductivity,due

    toionstransferfromnSandSFintowater.ThenSwatersuspension

    gavehigherconductivityvaluethanSFwatersuspensionduetoits

    highercontentofwater-solubleions.

    Fig.5showstherelative loss inconductivityof limewater

    pozzolansuspensionwithtimeforbothSFandnSadditions.After

    addingnSandSFtothissolution,thevalueofconductivitydecreased

    withtime,whichimpliesthattheconcentrationofbothCa2+and

    OH ionsdecreasedwithtime.Themainreasonforthisreduction

    canbeattributedtotheinteractionbetweenthemandthepozzolanicmaterialsthatwereadded,whichfinallyresultedinlimefixationdue

    tothepozzolanicreactivity.Theresultsindicatedthat,after30min-

    utesonly,thevalueofrelativelossinconductivityreached51%and

    20%byaddingnSandSF,respectively.AsitisshowninFig.5,nS

    showedaconsiderablyhigherreactivitythansilicafumeatearlyages

    (31%)whichcanbeattributedtorelativelyhigherspecificsurfacear-

    easofnS(Table2)[33].Althoughthiseffectbecamelesssignificant

    byapproachingtheendofthe240-minutetestingperiod,itwasob-

    servedthatintheendthereactivityofnSwas21%higherthanSF,

    whichimpliesahigherpozzolanicreactivityofnSthatSF.

    TheresultsofXRDofthecementpastewithandwithoutnSat28-

    daysofageareshowninFig.6.Thepozzolanicactivitiesofmaterials

    werecomparedbasedonCa(OH)2consumptionwhichisobtained

    bytheintensityvariationofthemaindiffractionpeaks.Asitcanbe

  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    5/9

    E.Ghafarietal./MaterialsandDesign59(2014)19 5

    Fig.6.ChemicalcompoundsofA0,A1andA2at28days,obtainedfromtheXRD

    technique.

    Fig.7.TGAdiagramforA0,A1andA2at28days.

    seen,theintensityofthecrystalfacesofCa(OH)2

    ofA2samplewas

    considerablylowerthanthatofthereferencesample(A0).Infact,the

    intensityofcrystalfaceofA2andA1cementpastesampleis65%and

    60%lower,respectivelythanthatofA0sample.Theresultsindicated

    thatnSconsumed10%moreCa(OH)2

    thanthepastecontainingsilica

    fume.SincesomeamountofCa(OH)2inhardenedcementpasteis

    inamorphousform,theamorphousconsumptionofCa(OH)2cannotbewellcharacterizedbyXRDanalysis[34].Asacomparison,itis

    well-knownthatTGAanalysisgivesthemostaccurateresults[35].

    TheTGAcurvesforthreedifferentcementpastesofA0,A1andA2

    at28daysofageareshowninFig.7.Theweightlossvs.temperature

    curveforhardenedcementpaste,betweentemperaturesof105460C,canbedividedintotwointervals.Themasslossinthefirstinterval

    110380Crepresentsthedecompositionofthehydrationproducts,

    andthemasslossfromtemperature380Cand460Cisassociated

    withdehydroxylationoftheCa(OH)2

    [36].AspresentedinFig.7,the

    valuesofmasslossfortheA1andA2cementpastessamplesare

    higherthanA0cementpasteinthetemperatureintervalof110380C,whichisduetotheformationofmorehydratedCSHgel.The

    highestmasslossvalueof6l.18%isobservedforthepastecontaining

    nS.Forthetemperatureintervalof380460C,itwasobservedthat

    theincorporationofnSresultedinadecreaseinthevalueofmass

    loss.Thereductionofmasslossvalueinthisintervalimpliedthe

    consumptionofCa(OH)2

    duetohigherpozzolanicactivityofnS.

    ThenormalizedamountsofconsumedCa(OH)2inallthehardened

    cementpastesasapercentageofinitiallyavailableCa(OH)2

    areshown

    inFig.8.Theresultsindicatethatafter90daysofcuring,theCa(OH)2

    contentinA0sampleincreased,whereasinA1andA2samplethe

    Ca(OH)2contentreducedwithtime.ItcanalsobeseeninFig.8that

    theCa(OH)2

    contentsofA2andA1samplesat7dayscuringreducedby

    73%and81%respectively,comparedtoA0sample,whichisincreased

    by24%.Attheendof28and90days,nSconsumed85%and89%of

    theinitiallyavailableCa(OH)2whichwas6%and5%higherthanthe

    consumptionamountbySF.

    Fig.8.ThenormalizedCa(OH)2contentofA0,A1andA2cementpastesat7,28and90

    days.

    TheTGAandXRDresultsconfirmedthepozzolanicactivityevalu-

    ationresultsfromtheelectricalconductivitymeasurementsoflime

    pozzolansuspensions.

    3.2. Freshandhardenedstateproperties

    ItisusuallyexpectedthatthehigherspecificsurfaceareaofthenSimplyanincreaseinwaterdemandofconcretemixture,which

    cansomewhataffecttheworkability.However,Collepardietal.[37]

    studiedthepropertiesofself-compactingconcretecontainingnSand

    foundoutthatthepresenceofnSmakesthemixturemorecohesive

    andreducesbleedingwaterandsegregation,whichfinallyimproves

    therheologicalbehaviorofconcreteinfreshstate.

    ThespreadontheflowtableresultsarealsogiveninTable5.The

    resultsapparentlyshowedthatthereisaconsiderabledecreasein

    slumpflowvalueswhennS(wt.%)isincorporatedintothemixture.

    TheadditionofnS(wt.%)intothemortarshadasignificanteffecton

    thewateramountrequiredinthemixture.

    Anincorporationof1%nSdidnotcauseasignificantchangeinthe

    valueofminislump.However,mixtureswithnS=2wt.%andnS=3

    wt.%showareductionof9mmand12mm,respectively,inthespreaddiameterincomparisonwiththereferencemixture.Ahighreduction

    inspreadvalue(19mm)wasobservedbyincreasingthenScontent

    from3to4wt.%.Infact,asignificantamountofwaterinthemix

    wasabsorbedbynSparticles,whichfinallyresultedinasignificant

    decreaseinworkability.Asaconsequence,thereisnosufficientwater

    availableforlubricationallowingparticlesfreemovement[38].The

    obtainedresultsinthisstudyconfirmedthefactthat,foraconstant

    volumeofpowder,thereplacementofcementbyafinepowderpar-

    ticlewithhighspecificsurfaceareawillincreasethewaterdemand

    inordertomaintaintheworkabilityofthemixture[3940].

    Theaveragevaluesofcompressivestrengthat7,28and90days

    areshown,forallthespecimens,inFig.9.Theerrorbarsindicatethe

    standarddeviationsontheindividualvalues.Itcanbeseenthatthe

    additionofnano-SiO2significantlyincreasedtheearly-agecompres-sivestrength.

    Theadditionof3(wt.%)nSresultedina24%increaseat7days,

    whichis40%higherthanthatobservedwiththereferencemixture.

    Thehighercompressivestrengthisduetofasterpozzolanicreactivity

    ofnanoparticles,inthepresenceofCa(OH)2,makingthemicrostruc-

    turedenser.Additionally,theincorporationofnSparticlescanac-

    celeratethehydrationprocessofC3

    Sclinkerphaseduetothelarge

    andhighlyreactivesurfaceofthenanoparticles[4142].However,

    theresultsshowedthattheadditionofnShadamodesteffectatthe

    ageof28and90days,sothatthehighestcompressivestrengthwas

    144MPaand148MPaforM3specimen,whichwasonly8%and6.5%

    higherthanthereferencemixture.Thisbehaviorconfirmsthefact

    thatthemostpartofthepozzolanicreactivityofnSincementpasteis

    completedatearlyages[33,4344].Theseresultsareconsistentwith

  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    6/9

    6 E.Ghafarietal./MaterialsandDesign59(2014)19

    Table5

    Slump,waterabsorptionandMIPtestresults.

    Waterabsorption(%) MIPtest

    Samples Slump(mm) Totalporosity(%) Capillarypores(%)

    M0(control) 193 1.212 6.35 2.65

    M1 191 1.110 4.74 2.56

    M2 184 0.95 4.66 2.44

    M3 181 0.808 4.3 1.72

    M4 174 0.856 4.8 2.33

    Fig.9.Compressivestrength(MPa)ofnSparticleblendedconcretespecimens.

    theresultsofTGAandconductivityanalysis.

    ItcanbeobservedthatthecompressivestrengthincreaseswithnS

    particlesupto3wt.%replacement.However,compressivestrength

    decreasedslightlywhenthereplacementlevelreached4%wt.%.Thus,

    ahigherreplacementofcementbynSdidnotleadtoanimprovement

    incompressivestrength,whichcanbeduetoimproperdispersionof

    nSparticlesinthemixture.InfactnSparticles,duetotheirhighsur-

    faceenergy,haveapronouncedtendencytowardsagglomeration.The

    dispersionofnanoparticleswithinthecementpasteisasignificant

    factorgoverningtheperformanceoftheseproducts.Whennanopar-

    ticlesareaddedinexcesstothemixture,thesearenotuniformlydispersedinthecementpaste,andasaconsequenceweekareas

    appearinthecementmortarduetoagglomeration.Therefore,the

    disagglomerationofnanoparticlesiscrucialtoachievethecomposite

    materialswithimprovedproperties[12].Inaddition,theamountsof

    nSinthemixturescanalsohavebeenexceededthequantityrequired

    forconsumingtheCa(OH)2

    andthisexcessiveamountofsilicadid

    notcontributetoenhancethecompressivestrength.Theinsufficient

    workabilityofM4canrepresentanextracausefordecreasingthe

    compressivestrengthsincethereisnosufficientwateravailableto

    contributeforlubricationwhichallowsparticlesfreemovement.

    3.3. Microstructureandporestructure

    Theobtainedporesizedistributionplot,coveringtheporesizerangefromaround400mdownto5nm,isshowninFig.10.Itcan

    beseenthatallMIPplotsofmixturescontainingnSstandslightly

    belowthereferencemixture(M0),particularlyintherange0.340

    m,whichcorrespondstothecapillarypores[38].Inthiscritical

    interval,M0exhibitedmorecumulativevolumeofthepores,whereas

    M3specimenhadthelowestamountofporevolumeinthementioned

    range.Inaddition,allthespecimenshavemuchmoreporesranging

    from0.0006mto0.03m,whichcorrespondstothegelpores[45].

    Theamountoftotalporevolumeandcapillaryporesisalsopre-

    sentedinTable5.ResultsshowedthatporestructuresofM1,M2,

    M3andM4arefinerthanthoseofthereferencemixture.Itcanbe

    observedthatbyincreasingnScontent,thevolumeofcapillarypores

    inspecimensalwaysdecreases,whichshowsthatthedensityofcon-

    creteisincreasedandtheporestructureisrefined.Theincorporation

    Fig.10.Mercuryintrusionporosimetryresults.

    ofnSintothemixturesledtoadecreaseintotalporosityupto25.3%,

    26.7%,32.1%and24.5%,forM1,M2,M3andM4specimens,respec-

    tively.TheresultsalsoindicatedthatM3sampleshowedthelowest

    valueofthecapillarypores(1.72vol.%),whichwas35%lowerthan

    thecapillaryporescontentofM0mixture.Thiscanbeduetothe

    discontinuityofcapillaryporesbyformationofmoreCSHgel.

    Themicrostructuresofthespecimenswereanalyzedbyscanning

    electronmicroscopy(SEM).Fig.11(a)and(b)showsanoverviewof

    themicrostructureofM2andM0usingthesamemagnification.In

    general,theanalysisofallimagesdidnotrevealanysubstantialdif-

    ferencesinthemicrostructureofallspecimens.However,itwasfound

    thattheamountofcapillaryporesinM0specimenswashigherthan

    in

    M3

    specimens

    (see

    Fig.

    11

    (b)

    and

    (c)).

    The

    incorporation

    of

    nS

    led

    toafurtherdensificationinthemicrostructureandtoaconcurrent

    reductionincapillaryporosityofconcretemixtures.Incomparison

    withM0specimens,themicrostructureofM3specimenswasvery

    denseandfewplatedshapecalciumhydroxidewasobserved.Itis

    wellknownthatportlandite,amineraloxide,hasadetrimentalef-

    fectonbondstrengthofaggregates-to-paste[11],whichcausesa

    significantreductionindurabilityandinmechanicalproperties.Re-

    sultsshowedthatnScaneffectivelyreducetheamountofportlandite,

    leadingtoadensermicrostructureofinterfacialtransitionzone(ITZ)

    betweenaggregateandpaste.Insufficientbondbetweenaggregate

    andpastewasfoundinM0specimens(seeFig.11(c)),whileaperfect

    bindingpaste-to-aggregatesadhesioninM3specimens(Fig.11(d))

    wasobserved,comparedtoM0specimens(Fig.11(c)).

    3.4. Transportproperties

    Theresultsobtainedforwaterabsorptionarealsopresentedin

    Table5.TheadditionofnSwasfoundtobeeffectiveinreducingthe

    waterabsorption.Itcanbeseenthattheamountofabsorbedwater

    inthesamplesdecreasedbyincreasingthenScontent.Theaddition

    ofnSby1,2,3and4wt.%ledtodecreasesinwaterabsorptionin

    samplesby8.5%,21%,33%and29%,respectively.

    TheresultsalsoshowedthataddingnStocementpastemixesled

    tomuchlowersorptivitycoefficientwhencomparedtothereference

    mixture.InFig.12,thewaterabsorptionversusthesquarerootof

    timeisplottedforallmixtures.Anonlinearcorrelationwasobtained

    forthedatabetween1minand6h,whilealinearcorrelationwas

    determinedforthedatabetween1and7days.Table6presentstwo

  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    7/9

    E.Ghafarietal./MaterialsandDesign59(2014)19 7

    Fig.11.SEMmicrographofUHPCmixturesatageof28days:(a)microstructureof

    UHPC-NS;(b)microstructureofUHPC;(c)interfacialtransitionzone(ITZ)microstruc-

    turebetweenaggregateandpasteinUHPCspecimen;and(d)interfacialtransition

    zone(ITZ)microstructurebetweenaggregateandpasteinUHPC-NSspecimen.

    Fig.12.Regressionmodelofwatersorptivityofspecimens.

    differentregressionequations,determinedbyleast-squareregression

    forthetimeof6hbeforeandthetimeof24hafter.Theinitialrateof

    absorptioncannotbedeterminedsincethedatabetween1minand

    6hdonotfollowalinearcorrelation.However,thenonlinearregres-

    sionplots(Fig.12)alongwithnonlinearregressionequations(Table

    6)revealedthatM3specimensabsorbedlesswaterthantheother

    specimensuntil6h.Thesecondaryrateofwaterabsorptioncoeffi-

    cients(kg/m2/h0.5)isdefinedastheslopeofthelinethatisthebest

    fittowaterabsorptionplottedagainstthesquarerootoftime(h1/2)

    usingallthepointsfrom1dayto7days.Theverylowsorptivityco-

    efficientof0.0178(kg/m2/h0.5)wasobtainedfortheM3specimens,whichwas15%lowerthanthereferencemixturecoefficient(M0).

    Theachievedresultsofwaterabsorptionandwatersorptivityco-efficientwereingoodagreementwithcapillaryporosityvaluesob-

    tainedbytheMIPtest.Assorptionofwaterismainlythroughcapillary

    pores[46],therefore,thelowerwaterabsorptionandsorptivitycoef-

    ficientcanbeduetoporestructurerefinementandhigherconcrete

    compactness.

    Thegaspermeabilityofthreecylindricalspecimensofeachmix

    wasmeasuredatthesametimebythecembureauapparatus.The

    coefficientsofgaspermeabilitywereobtainedbyperformingthetest

    withaninletpressureof0.5,1.5and2.5barandaregiveninFig.13.

    Thegaspermeabilitycoefficientsofallthemixturesarewithinthe

    sameorderofmagnitudeandtheerrorbarsindicatethestandard

    deviationsontheindividualvalues.Regardlessoftheinletpressure,

    resultsindicatedthatallmixturescontainingnS(M1,M2,M3andM4)

    showedlowergaspermeabilitycoefficientsincomparisonwithM0

    Fig.13.GasPermeabilitycoefficientofspecimens.

    samples.TheadditionofnStothemixtureblendsledtoadecrease

    ingaspermeabilitycoefficientupto7.5%,24.2%,31.9%and25.7%for

    M1,M2,M3andM4specimens,respectively.Themaximumstandard

    deviationmeasuredfortheindividualvaluesreached0.18 1019

    m2.

    Ithasbeenfoundthatthepenetrationofthegasmainlydepends

    ontheopenporosityofthecementpaste,theaggregatesandtheproportionofthesetwocomponentsinthemixtures[47],andwitha

    higherporosity,gasescanpenetratetheconcretemoreeasily[48].

    Theobtainedresultsinthisstudyrevealedastrongrelationbe-

    tweenporosityofconcretespecimensandthegaspermeabilitycoef-

    ficient.Thisrelationhasalsobeenfoundforself-compactingconcrete

    andhigh-volumeflyashconcrete[4849].

    Theresultsprovedthattherefinementoftheporestructureof

    concretewasakeyissuetoimprovethecharacteristicsofconcrete

    samples.Infact,mostaspectsofconcretedurabilityaredirectlyre-

    latedwithitsporousstructure,sincecapillaryporesareresponsible

    forfluidsmigrationintheconcretematrix.Therefore,asthevalueof

    capillaryporesdecreases,theresistancetoaggressiveenvironments

    improvessignificantly.

    4.

    Conclusions

    Theexperimentalstudyhereindescribedwasconductedaiming

    toevaluatethepozzolanicbehaviorofnSanditseffectonthemi-

    crostructureofUHPC,aswellasonitsmechanicalandtransport

    properties.Thefollowingconclusionsarehighlighted:

    (1)TheincorporationofnSintocementpastewithverylowwater/cementratiocanincreasetheamountofhydrationproducts

    andthusitcancauseasignificantreductionintheamount

    ofportlandite.ItcanbestatedthatnSwithhigherspecific

    surfaceareashavehigherrateofpozzolanicreactivitythanSF,

    atearlyages.TGAresultsrevealedthatnSconsumemuchmore

    Ca(OH)2ascomparedtoSF.(2)TheadditionofnStothemixturesreducesthespreadonflow

    table.Thewaterdemandinthemixturesalsoincreasesremark-

    ablydependingonthepercentageofreplacement.Thehighest

    amountofnSthatcanbeincorporatedkeepinganacceptable

    rangeofslumpflowis3wt.%.

    (3)CompressivestrengthofUHPCmixturesincreasedwiththein-

    creaseinnScontent,especiallyatearlyages.Theoptimum

    amountofcementreplacementbynS incementpasteto

    achievethehighestcompressivestrengthwas3wt.%.Itwas

    foundthattheproperdispersionofnSisacriticalparameter

    tofacilitatetheincorporationofhigherpercentagesintothe

    cementpastes.

    (4)ThematrixphaseofUHPCcontainingnSissignificantlydenser

    andmorehomogeneousthanthatofthereferencemixture.

  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    8/9

    http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0028http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0027http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0026http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0025http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0024http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0023http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0022http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0021http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0020http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0019http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0018http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0017http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0016http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0015http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0014http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0013http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0012http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0011http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0010http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0009http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0008http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0007http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0006http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0005http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0004http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0003http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0002http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0001
  • 7/25/2019 10 the Effect of Nanosilicaxv Addition on Flowability, Strength and Transport Properties of Ultra High Performance

    9/9

    E.Ghafarietal./MaterialsandDesign59(2014)19 9

    [38]KorpaA,TrettinR.Ultrahighperformancecement-basedcompositeswithad-vancedpropertiescontainingnanoscalepozzolans.In:Proceedingsofthesecondinternationalsymposiumonultrahighperformanceconcrete.Kassel,Germany.2008.

    [39]FerrarisCF,OblaKH,HillR.Theinfluenceofmineraladmixturesontherheologyofcementpasteandconcrete.CemConcrRes2001;31:24555.

    [40]NevilleAM.Propertiesofconcrete.England:ELBSwithAddisonWesleyLong-man;1996.

    [41]LinKL,ChangWC,LinDF,LuoHL,TsaiMC.Effectsofnano-SiO(2)anddifferentashparticlesizesonsludgeash-cementmortar.JEnvironManage2008;88:70814.

    [42]

    Bj

    ornstr

    om

    J,

    Martinelli

    A,

    Matic

    A,

    B

    orjesson

    L,

    Panas

    I.

    Accelerating

    effectsofcolloidalnano-silicaforbeneficialcalciumsilicatehydrateformationince-

    ment.ChemPhysLett2004;392:2428.[43]JoB,KimCH,TaeGh,ParkJB.Characteristicsofcementmortarwithnano-SiO2

    particles.ConstrBuildMater2007;21:13515.[44]

    Pourjavadi

    A,

    Fakoorpoor

    SM,

    Khaloo

    A,

    Hosseini

    P.

    Improving

    the

    performance

    ofcement-basedcompositescontainingsuperabsorbentpolymersbyutilization

    ofnano-SiO2

    particles.MaterDes2012;42:94101.[45]GhafariE,CostaH,JulioE,PortugalA,DuraesL.Enhanceddurabilityofultrahigh

    performanceconcretebyincorporatingsupplementarycementitiousmaterials.In:The2ndinternationalconferencemicrodurabilityDelft.Netherland.2012,p.8694.

    [46]LoTY,CuiHZ,NadeemA,LiZG.Theeffectsofaircontentonpermeabilityoflightweightconcrete.CemConcrRes2006;36:18748.

    [47]TeichmannT,SchmidtM.Influenceofthepackingdensityoffineparticlesonstructure,strengthanddurabilityofUHPCIn:M.SchmidtEF,C.Geisenhanslukeeditor.InternationalSymposiumonUltraHighPerformanceConcreteKassel,GermanySeptember1315,2004.

    [48]

    Heede

    PVD,

    Gruyaert

    E,

    Belie

    ND.

    Transport

    properties

    of

    high-volume

    fly

    ashconcrete:capillarywatersorption,watersorptionundervacuumandgasper-

    meability.CemConcrCompos2010;32:74956.[49]BoelV,AudenaertK,SchutterGD.Gaspermeabilityandcapillaryporosityof

    self-compactingconcrete.MaterStruct2008;41:128390.

    http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0039http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0038http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0037http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0036http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0035http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0034http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0033http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0032http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0031http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0030http://refhub.elsevier.com/S0261-3069(14)00169-1/sbref0029