10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity...

8
CEE 680 Lecture #17 2/24/2020 1 Lecture #17 Acids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated: 24 February 2020 Print version Buffer Intensity Amount of strong acid or base required to cause a specific small shift in pH David Reckhow CEE 680 #17 f -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 pH 2 3 4 5 6 7 8 9 10 11 12 g -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 pH 3.35 pH 4.7 pH 8.35 StartingPoint Mid-point EndPoint dpH dC dpH dC A B 10 -2 M HAc B C pH B C pH Slope = 1/

Transcript of 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity...

Page 1: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

1

Lecture #17

Acids/Bases and Buffers: Fundamentals & Buffer Intensity 

(Benjamin, Chapter 5)

(Stumm & Morgan, Chapt. 3 )

David Reckhow CEE 680 #17 1

Updated: 24 February 2020 Print version

Buffer Intensity Amount of strong acid or base required to cause a specific small shift in pH

David Reckhow CEE 680 #17 2f

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

pH

2

3

4

5

6

7

8

9

10

11

12

g

-0.20.00.20.40.60.81.01.2

pH 3.35

pH 4.7

pH 8.35

Starting Point

Mid-point

End Point

dpH

dC

dpH

dC AB

10-2M HAc

BC

pH

BC

pH

Slope = 1/

Page 2: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

2

Buffers: Acetic Acid with Acid/Base Addition 1. List all species present

(use NaOH and HCl as acid/base)

H+, OH‐, HAc, Ac‐, Na+, Cl‐

2. List all independent equations equilibria

Ka = [H+][Ac‐]/[HAc] = 10‐4.77

Kw = [H+][OH‐] = 10‐14

mass balances CT = [HAc]+[Ac‐]

electroneutrality: (positive charges) = (negative charges) Note: we can’t use the PBE because we’re essentially adding an acid and its conjugate base

[Na+]  + [H+] =  [OH‐] + [Ac‐] + [Cl‐]

David Reckhow CEE 680 #17 3

12

3

4

Six total

CA = [Cl-]CB = [Na+]

56

Acetic Acid with Acid/Base Addition (cont.) 3. Use ENE, substitute & solve for CB‐CA

[Na+]  + [H+] =  [OH‐] + [Ac‐] + [Cl‐]

CB + [H+] = Kw/[H+] + KaCT/{Ka+[H

+]} + CA

CB ‐ CA = Kw/[H+] ‐ [H+] + KaCT/{Ka+[H

+]}

4. Take derivative with respect to [H+]

David Reckhow CEE 680 #17 4

4

Kw = [H+][OH-][OH-] = Kw/[H+]

2

3

1,2,

3,4,

5,6

CT = [HAc]+[Ac-][HAc]= CT - [Ac-]

CA = [Cl-]CB = [Na+]

56

1 Ka = [H+][Ac-]/[HAc] Ka = [H+][Ac-]/ {CT-[Ac-]}KaC-Ka[Ac-]= [H+][Ac-]KaC=[Ac-]{Ka+[H+]}[Ac-]=KaCT/{Ka+[H+]}

1+3

Page 3: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

3

Acetic Acid with Acid/Base Addition (cont.) Take the derivative with respect to [H+] of:

CB =  CA + Kw/[H+] ‐ [H+] + KaCT/{Ka+[H

+]}

But this is not exactly what we want

Factor out  equation

and recall:

David Reckhow CEE 680 #17 5

22][

1][][

HK

KC

H

K

Hd

dC

a

aTwB

dpH

Hd

Hd

dC

dpH

dC BB ][*

][

][303.2][

][303.2

][

303.2

]ln[

303.2

]ln[]log[

HdpH

Hd

H

HdHddpH

HHpH

Acetic Acid with Acid/Base Addition (cont.) so:

and combining:

David Reckhow CEE 680 #17 6

][][303.2

Hd

dCH B

2

22

][

][][

][303.2

][1

][][303.2

HK

HKCH

H

K

HK

KC

H

KH

a

aTw

a

aTw

10][][303.2 TCHOH

2][][

]][[][][303.2

AHA

AHACHOH T

][

][][0

HK

H

C

HA

aT

][

][1

HK

K

C

A

a

a

T

Page 4: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

4

Example

Trichlorophenol

pKa = 6.00

CT = 10‐2

David Reckhow CEE 680 #17 7

f

0.0

0.2

0.4

0.6

0.8

1.0

pH

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lo

g C

-7

-6

-5

-4

-3

-2

-1

0

H+ OH-

Trichlorophenol Trichlorophenate ion

pH

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

g

0.0

0.2

0.4

0.6

0.8

1.0

pH 4

pH 6.0

pH 9

Starting Point

Mid-point

End Point

See also S&M fig 3.10

David Reckhow CEE 680 #17 8

pH

2 3 4 5 6 7 8 9 10 11 12

Bu

ffer

Inte

nsity

, B (

M/p

H)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Local Maximimum@ g=0.5

Local Min.@ g=0

Local Min.@ g=1

Page 5: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

5

Equations for polyprotic acids Analogous to the monoprotic systems

monoprotic

diprotic

triprotic

David Reckhow CEE 680 #17 9

10][][303.2 TCHOH

2110][][303.2 TT CCHOH

322110][][303.2 TTT CCCHOH

Buffer example

Design a buffer using phosphate that will hold its pH at 7.0 0.05 even when adding 10‐3 moles per liter of a strong acid or base

first determine the required buffer intensity

Next look at the buffer equation and try to simplify based on pH range of interest

David Reckhow CEE 680 #17 10

322110][][303.2 TTT CCCHOH

02.005.0

10 3

dpH

dCB

0 0 0 0

Page 6: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

6

Buffer example (cont.) This gives us the simplified version that can be further simplified

David Reckhow CEE 680 #17 11

M

C

KH

H

K

H

KKH

KKH

H

KK

H

KKH

T

037.0

22.4303.202.0

11303.202.0

11303.202.0

303.2

1

1][1

][

1

][

][][1

][][

][

21

2

2

3

221

2

2322

1

0 0 0 0

Acid Neutralizing Capacity

Net deficiency of protons

with respect to a proton reference level

when the reference level is H2CO3, the ANC=Alkalinity

conservative, not affected by T or P

In a monoprotic system:

[ANC] = [A‐] + [OH‐]  ‐ [H+]

= CT1 + [OH‐] ‐ [H+]

David Reckhow CEE 680 #17 12

xf

nf

dpHANC

Page 7: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

7

David Reckhow CEE 680 #17 13

David Reckhow CEE 680 #17 14

Page 8: 10 M HAc Buffer Intensity - UMass AmherstAcids/Bases and Buffers: Fundamentals & Buffer Intensity (Benjamin, Chapter 5) (Stumm & Morgan, Chapt. 3 ) David Reckhow CEE 680 #17 1 Updated:

CEE 680 Lecture #17 2/24/2020

8

To next lecture

David Reckhow CEE 680 #17 15