10 inosilicates

30
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Diopside: CaMg [Si 2 O 6 ] b Where are the Si-O-Si-O chains??

description

insolicates, mineralogy

Transcript of 10 inosilicates

Page 1: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

Diopside: CaMg [Si2O6]

b

Where are the Si-O-Si-O chains??

Page 2: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

b

Page 3: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

b

Page 4: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

b

Page 5: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

b

Page 6: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

b

Page 7: 10 inosilicates

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)

Perspective view

Page 8: 10 inosilicates

Inosilicates: single chains- pyroxenes

M1 octahedron

Page 9: 10 inosilicates

Inosilicates: single chains- pyroxenes

M1 octahedron

Page 10: 10 inosilicates

Inosilicates: single chains- pyroxenes

M1 octahedron

(+) type by convention

(+)

Page 11: 10 inosilicates

Inosilicates: single chains- pyroxenes

M1 octahedron

This is a (-) type

(-)

Page 12: 10 inosilicates

Inosilicates: single chains- pyroxenes

T

M1

T

Creates an “I-beam”

like unit in the

structure.

Page 13: 10 inosilicates

Inosilicates: single chains- pyroxenes

T

M1

T

Creates an “I-beam”

like unit in the

structure

(+)

Page 14: 10 inosilicates

The pyroxene

structure is then

composed of

alternating I-beams

Clinopyroxenes have

all I-beams oriented

the same: all are (+)

in this orientation

(+)

(+)(+)

(+)(+)

Inosilicates: single chains- pyroxenes

Note that M1 sites are

smaller than M2 sites, since

they are at the apices of the

tetrahedral chains

Page 15: 10 inosilicates

The pyroxene

structure is then

composed of

alternation I-beams

Clinopyroxenes have

all I-beams oriented

the same: all are (+)

in this orientation

(+)

(+)(+)

Inosilicates: single chains- pyroxenes

(+)(+)

Page 16: 10 inosilicates

The tetrahedral chain

above the M1s is thus

offset from that below

The M2 slabs have a

similar effect

The result is a

monoclinic unit cell,

hence clinopyroxenes

Inosilicates: single chains- pyroxenes

c

a

(+) M1

(+) M2

(+) M2

Page 17: 10 inosilicates

Orthopyroxenes have

alternating (+) and (-)

I-beams

the offsets thus

compensate and result

in an orthorhombic

unit cell

This also explains the

double a cell dimension

and why orthopyroxenes

have {210} cleavages

instead of {110) as in

clinopyroxenes (although

both are at 90o)

Inosilicates: single chains- pyroxenes

c

a

(+) M1

(-) M1

(-) M2

(+) M2

Page 18: 10 inosilicates

Pyroxene Chemistry

The pyroxene quadrilateral and opx-cpx solvusCoexisting opx + cpx in many rocks (pigeonite only in volcanics)

Diopside Hedenbergite

Wollastonite (pyroxenoid)

Enstatite Ferrosilite

orthopyroxenes

clinopyroxenes

pigeonite (Mg,Fe)2Si2O6 Ca(Mg,Fe)Si2O6

pigeonite

orthopyroxenes

Solvus

1200oC

1000oC

800oC

Augite

Miscibility Gap

Page 19: 10 inosilicates

Pyroxene Chemistry

“Non-quad” pyroxenesJadeite

NaAlSi2O6

Ca(Mg,Fe)Si2O6

Aegirine

NaFe3+Si2O6

Diopside-Hedenbergite

Ca-Tschermack’s

molecule CaAl2SiO6

Omphaciteaegirine-

augite

Augite

Spodumene:

LiAlSi2O6

Page 20: 10 inosilicates

Pyroxenoids“Ideal” pyroxene chains

with 5.2 A repeat (2

tetrahedra) become

distorted as other cations

occupy VI sites

Wollastonite

(Ca M1)

3-tet repeat

Rhodonite

MnSiO3

5-tet repeat

Pyroxmangite

(Mn, Fe)SiO3

7-tet repeat

Pyroxene

2-tet repeat

7.1 A12.5 A

17.4 A

5.2 A

Page 21: 10 inosilicates

Inosilicates: double chains- amphiboles

Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg)

yellow = M4 (Ca)

Tremolite:

Ca2Mg5 [Si8O22] (OH)2

b

Page 22: 10 inosilicates

Inosilicates: double chains- amphiboles

Hornblende:

K,<1(Ca, Na)2-3 (Mg, Fe,

Al)5 [(Si,Al)8O22] (OH)2

b

Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2

light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na+K)

little turquoise ball = H

Page 23: 10 inosilicates

Inosilicates: double chains- amphiboles

Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2

light blue = M3 (all Mg, Fe)

Hornblende:

K,<1(Ca, Na)2-3 (Mg, Fe,

Al)5 [(Si,Al)8O22] (OH)2

Same I-beam

architecture, but

the I-beams are

fatter (double

chains)

Page 24: 10 inosilicates

Inosilicates: double chains- amphiboles

b

(+) (+)

(+)

(+)

(+)

Same I-beam

architecture, but

the I-beams are

fatter (double

chains)

All are (+) on

clinoamphiboles

and alternate in

orthoamphiboles

Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2

light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na,K)

little turquoise ball = H

Hornblende:

K,<1(Ca, Na)2-3 (Mg, Fe,

Al)5 [(Si,Al)8O22] (OH)2

Page 25: 10 inosilicates

Inosilicates: double chains- amphiboles

Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2

light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na, K)

little turquoise ball = H

Hornblende:

K,<1(Ca, Na)2-3 (Mg, Fe,

Al)5 [(Si,Al)8O22] (OH)2

M1-M3 are small sites

M4 is larger (Ca)

A-site is really big

Variety of sites

great chemical range

Page 26: 10 inosilicates

Inosilicates: double chains- amphiboles

Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2

light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)

little turquoise ball = H

Hornblende:

K,<1(Ca, Na)2-3 (Mg, Fe,

Al)5 [(Si,Al)8O22] (OH)2

(OH) is in center of

tetrahedral ring where O

is a part of M1 and M3

octahedra

(OH)

Page 27: 10 inosilicates

See handout for more information

General formula:

W0-1 X2 Y5 [Z8O22] (OH, F, Cl)2

W = Na K

X = Ca Na Mg Fe2+ (Mn Li)

Y = Mg Fe2+ Mn Al Fe3+ Ti

Z = Si Al

Again, the great variety of sites and sizes a great chemical range,

and hence a broad stability range

The hydrous nature implies an upper temperature stability limit

Amphibole Chemistry

Page 28: 10 inosilicates

Ca-Mg-Fe Amphibole “quadrilateral” (good analogy with

pyroxenes)

Amphibole Chemistry

Al and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so

anthophyllite gedrite orthorhombic series extends to Fe-rich gedrite in more Na-

Al-rich compositions

Tremolite

Ca2Mg5Si8O22(OH)2

Ferroactinolite

Ca2Fe5Si8O22(OH)2

Anthophyllite

Mg7Si8O22(OH)2Fe7Si8O22(OH)2

Actinolite

Cummingtonite-grunerite

Orthoamphiboles

Clinoamphiboles

Page 29: 10 inosilicates

Hornblende has Al in the tetrahedral site

Geologists traditionally use the term “hornblende” as a catch-all term for

practically any dark amphibole. Now the common use of the microprobe

has petrologists casting “hornblende” into end-member compositions

and naming amphiboles after a well-represented end-member.

Sodic amphiboles

Glaucophane: Na2 Mg3 Al2 [Si8O22] (OH)2

Riebeckite: Na2 Fe2+3 Fe3+

2 [Si8O22] (OH)2

Sodic amphiboles are commonly blue, and often called “blue

amphiboles”

Amphibole Chemistry

Page 30: 10 inosilicates

Inosilicates

Cleavage angles can be interpreted in terms of weak bonds in M2

sites (around I-beams instead of through them)

Narrow single-chain I-beams 90o cleavages in pyroxenes while wider

double-chain I-beams 60-120o cleavages in amphiboles

pyroxene amphibole

a

b