1: X too:= X Yn} X, - University of...

11
Problem 1: a) Check if the following spaces are metric spaces: i) X = too:= {(Xn)nEN: Xn E IR for each nand suplxnl < oo}. d(x,y) = sup{lxn-Ynl: n EN}. ii) X = foo, d(x,y) = #{n EN: xn #- Yn} (Hamming distance). iii) Take X to be London. For every pair of points x, y E X, let d(x, y) be the distance that a car needs to drive from x to y. (Taxicab metric, this is not the distance "as the crow flies"). iv) Let X be a chess board, and for any pair of squares x, yE X, d(x, y) is the number of steps that a knight needs to go from x to y. v) As iv, but now with a bishop. b) The diameter of metric space (X, d) is sup{d(x, y) : x, y E X}. Find the diameters of the examples given in Notes 1. c) Find the diameters of the examples in part a). Problem 2: Show that for all x, y, z in a metric space (X, d): d(x, y) 2 Id(x, z) - d(z, y)l· Problem 3: An (open) ball of radius r is B(x;r) = {y EX: d(x,y) < r}. A closed ball or radius r is B(x; r) = {y EX: d(x, y) ::; r}. Take X = IR2. Draw the open ball B(O; 1) (Le., the unit ball) if a) d is Euclidean metric. b) d is sum metric. c) d is sup metric. d) d is discrete metric. Problem 4: a) If d1 and d2 a metrics, check if the following functions are also metrics: i) d1 + d2; ii) max{d1, d2}; iii) min{d1, d2l; iv) ~d1 + ~d2' v) d1 . d2. b) For each of the four axioms in the definition of metric, find an example d that fails it but satisfies the other three axioms. Problem 5: Let X = 0([0,1]) and fn(t) = tn be a sequence in X. a) What is the limit in the sup metric? b) What is the limit in the L1 metric? c) Show that in any metric, a sequence can have at most one limit. Problem 6: a) Let x = (2-n)nEN, y = «( -1)n2-n)nEN and z = (1,0,0,0, ... ). a) Compute IlxllI, Ily111, and IlzliI- Also compute d1(x, y), d1(x, z) and d1(y, z). b) Compute Ilxlloo and Ilzlloo' c) Compute IIxllp and Ilzllp verify what happens as p -+ 00.

Transcript of 1: X too:= X Yn} X, - University of...

Page 1: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

Problem 1: a) Check if the following spaces are metric spaces:i) X = too:= {(Xn)nEN: Xn E IR for each nand suplxnl < oo}. d(x,y) = sup{lxn-Ynl: n EN}.ii) X = foo, d(x,y) = #{n EN: xn #- Yn} (Hamming distance).iii) Take X to be London. For every pair of points x, y E X, let d(x, y) be the distance that acar needs to drive from x to y. (Taxicab metric, this is not the distance "as the crow flies").iv) Let X be a chess board, and for any pair of squares x, yE X, d(x, y) is the number of stepsthat a knight needs to go from x to y.

v) As iv, but now with a bishop.

b) The diameter of metric space (X, d) is sup{d(x, y) : x, y E X}. Find the diameters of theexamples given in Notes 1.c) Find the diameters of the examples in part a).

Problem 2: Show that for all x, y, z in a metric space (X, d): d(x, y) 2 Id(x, z) - d(z, y)l·

Problem 3: An (open) ball of radius r is B(x;r) = {y EX: d(x,y) < r}. A closed ballor radius r is B(x; r) = {y EX: d(x, y) ::; r}. Take X = IR2. Draw the open ball B(O; 1) (Le.,the unit ball) ifa) d is Euclidean metric.b) d is sum metric.c) d is sup metric.d) d is discrete metric.

Problem 4: a) If d1 and d2 a metrics, check if the following functions are also metrics:i) d1 + d2;

ii) max{d1, d2};

iii) min{d1, d2l;

iv) ~d1 + ~d2'v) d1 . d2.

b) For each of the four axioms in the definition of metric, find an example d that fails it butsatisfies the other three axioms.

Problem 5: Let X = 0([0,1]) and fn(t) = tn be a sequence in X.a) What is the limit in the sup metric?b) What is the limit in the L1 metric?c) Show that in any metric, a sequence can have at most one limit.

Problem 6: a) Let x = (2-n)nEN, y = «( -1)n2-n)nEN and z = (1,0,0,0, ... ).a) Compute IlxllI, Ily111,and IlzliI- Also compute d1(x, y), d1(x, z) and d1(y, z).

b) Compute Ilxllooand Ilzlloo'c) Compute IIxllp and Ilzllp verify what happens as p -+ 00.

Page 2: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

Problem 7: a) For which rE IRis En ;r convergent?

b) For which P does (~)nEN belong to RP. And (jn)nEN?c) Let 1 :::;p < q ::; 00. Find a sequence x such that x E £q but x 1- £p.

d) Show that £ife £f1if ::; p < q ::; 00.

Problem 8: a) Check the triangle inequality for (£00,111100)and for (£1, 11lid·b) The triangle inequality also holds for (£P, 11lip) and pE [1,(0), but for pE (1,00) it is much

1harder to check. Can you find a counter-example to show that (£2,11111) is not a normed space?

2

Problem 9: a) Show that any Cauchy sequence can have at most one limit.b) A subsequence of a Cauchy sequence is Cauchy.c) Give an example of a non-Cauchy sequence with a Cauchy subsequence.

Problem 10: Let X = C([-I, 1]) with norm 11lit- Let (fn)nEN be defined by

fn(x) = { ~X-1if x E [~, I),ifxE(_ll) n' n '

if x E [-1, -~].

a) Show that (fn)nEN is Cauchy.b) Is (X, 11lid a Banach space?c) Is (fn)nEN convergent in (L1([-I, 1]),11 111)?

QI

!

Problem 12: Let f be a contraction of the metric space (X, d).

a) Show that f can have at most one fixed point.b) Show that f is continuous.

Problem 11: Let lP'n([a, 1]) be the space of all polynomials p : [a, 1] ~ IR of degree::; nand

lP'([a,l]) be the space of alll1lynomials p : [a, 1] ~ IR of any degree.a) Is lP'n([a, 1]) a linear space" What is its dimension?b) Question a) but now for lP'([a, 1]).

c) Use the norm 111100,i.e. uniform convergence. Is lP'([a, 1]) a proper normed space with thisnorm?

d) Find a sequence (Pn)nEN that converges to f(x) = eX.

e) Is (lP'([a, 1]),11 11(0)a Banach space?f) Show that if Pn ~ 9 in 111100,then f is a continuous function.

"

I~Problem 13: Let X be the space of all Lipschitz functions f : [a, 1] ~ R / \:

a) Is X a linear space? / ~~

b) Is X a subspace of C([a, I])? Give an example of f E C([a, 1]) \ X. / ~ r

c) Is (X, 111100)a Banach space?

(') r,

(~ / (")''" \.\,/ '\'

~~"'- )~~~ ~ ~~

Page 3: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

--

Problem 14: Let (X, d) be a metric space.a) Show that a Lipschitz function is continuous.b) Fix P E X and define f : X --+ ~ by f (x) = d(p, x). Show that f a Lipschitz function. Whatis a smallest Lipschitz constant.c) Let d' on X X X defined by <tt(Xl, Yl), (X2, Y2)) = d(Xl, X2) + d(Yl, Y2). Show that d' is ametric.

d) Let F: X X X --+ ~ be given by F(x,y) ~d(x,y). Conclude that F is continuous.-

Page 4: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

t) Sf.< P Ix•. - J., / ~ 5~p I Y., I+-( 'j '" f ~ s ~I!' I x" I -/-~::-p {1•.•J <:: <>e~ ~

~':r Jfq,-~ -+f<; ~ er(A/ 7') <::;X) If bo·tl? x) yE tOO

.--.-)1 /)f-I V' Ic.. V>t'lf<- I Vl.J2..'1 v~wC', jacx)z.).:; s"'p ()(L,~)f •.J~' S~'.J /,(\\" J""f'j,,-z..,l-t ~f;P 1)(.-1"/ + IJ",-2,.,/'"

~ >:-p jx", -:;",/ +- r~p Iy:-. ~?h I .=- d (K)f! -4- thy! z)

HC./II1t"Alj ~~i{~tr ",j Q jM;;bu" (7':" ~,;X; kcc-~ ~~ "..r-.[tc-....Q I

-tt~1(-£/0", c<- kt~ (0 6 0 . _. ) 0-....1 ({/ I) f) . -) LVoJJ.i ~/ / /

'-/ . (J.[/VI) I""~

H~ N c,f d de w1.(jr I ~ b.e c~.AJ2 er (~ y) f d ( 'f / ,( fcl CA.e /0 0 h. e -I;J C:f S (-r-e.ei: r.

IV) irlCof i~1kj!& r .~ ~c1-{qJ ~c. ~ r:~ x {~J'J tL) sRot~ (c/1 ~itu£.M"c Lr)~(M -j-t ~q~1 r~&r:~ X +J VlQ 2.. _

Mf Cl ,,~-til-C·. If b,sJ1vp cU--t -pact? f?~{2/(_R_--5 CVt.-, ~lHA 1_QJ.J{ ~ e~5~wa 1..e-f

~)tJ

cI(e-., OR: £v<aPriv:_).::: ~ --' ~?ftc"",((K~ j (1) = ~) (}L'~ < A~ i-IC'l""VH;:J ~

('v~ ~ IJ L£. a~ivt~t) ) Jt~ (e{ (c,bI) .) /) 1(<50) ;;-- ()Q )

ol(~ (C(Cr;.,bJ).) /1 1&) ~~ ci,Cr..... (Aio'/1 //Iv1~cf S'r~) :::--00

:: IV

Page 5: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

<7.-:..cM W7 2 :rr d (;~:J'Z.) ?, d L y) .~} ) ~ ~ fr~~ /'" e'1kJ1/y

th,\~) ~ dCx"y) 'l-cf(Y) 2) df~S d(t{/'/)~ d(,(,,2.)-J(yIZ)::::' Jtl{~z)-j{71z.)1.

If ch If; z) <" cl I.'1/ 2-) / ,k.", u.u. d( 1'.12) ,< cl (,{" y) t J ( ,(/,,:) 10

f VI of cl (~ y) ~ d (y; -z) - et [~ Z) :: I et (,(/ 2) -- d (y/ z-) I '

tP.-

i;Y 'j/I/(() ~ JfJ ,~.J(K., l1) .: /lltCX <. dJ.AI y) ) dl (XI' Y) '~ Ne'v If d( ((~y) ~ CI2/~r)

cez"f'''14 w,t/. ~ d/,.{~yJ ~ d,,(X.j2)+~C2)'J) ~ ~,« dILxJ-z.)::tJ.i(x-,~)}-i-

W/(:;~ < cJl(~/yJ J d.t[~l'yj1 .:::: mQk{~JJl5 (x';~Jt- f,t.t.o./i'.( dpdJ (t-'J)'

(v) As i)It) No! (.t ry~-hiC.? -it 4- iVte/V(_J!~ ft,IJ,; I~ U~~ ~ ((f.<J £«-~iec~ ) ~ ~ o-.jclz.'

"'W ,-fl x'.;' (}/ 1:::. f;. j :z " f . .

~ [,(J Z) . ~ (XI ~) ~ I. { := / f .: -+- j ~ ~ (,{J 7) ofJtl r) + ~ (jJ z) dz (j.) 2, )

Page 6: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

C?r,it~s-.a.)-r~

p (7 ; ••Iz.v f-s..el~ii

IJ

-f~

>1

·1

[1:::;

}. f -=i11.-+<.><>({t)=

t'"(;>

f--rft<i.- ~~a.b

C) It XI1-;;. Cl G-•••.i x", -4 L al-- ~ j~ -fl~;J -ttVL

fdL (]7 g 2-C -tiu(£ 0k «.1- G- IN cJ I\i E-lIv _fCLal{ ~tl/.(-.*) IiIt ~ /Vc-... cl ex,,)~) <. £

(**J 1I~~ Nb er LX:.., , 1,) ~: .[

~ Ie..e- N' ~ hw 1<--<.' NqI I~}.) ~ fe//. 1'l~!'I ~ ~ IJ.Z

01 ( q; b) .$ d (t)j K•.•) -I- d (;(., If:,) < z +- £. = 2 (' .

'~4t-- --tiej ;"j hue. ~ ~~ <[70.) 5>0 d {a, b} -R~i te e.eeJ 0-,

~ Cl =-.b,

Page 7: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

a) 2- IhV'

(Co-... v.uy--- ~ fC/!. i" >- idl V<ttr'" ~ f~ y- ~ 1

tl..; ~~I {~~~!}j E2 (p fYl Jr p > I.

Ql/uI I tP (t7/ P f [ ~,2],

C) ---re k is P < r ~ 00 o",i r ~h'Clf ,£-/~ PO.J '1'.

~ (~)~I t f ~6 (~)y; <= -[ 1 lec&-10t ~ <) ()~I J» i '~.2j?f'

JP 0-00 J-D {",tu.- X>f(1 III ..--} X€ {60", bc..~ r'/ er~r , .... .,) -~ ">:">.>".). 'F

d) -(0. ke- X € 1 P.;, 50 ~ I K,nI f <: €X) < ,,-t. ~uJ ,:...~j(; Je/l alia l:-

) J-V}I- 0 .) ja Jt~ 1-1 IV e-IIV ~kC.jJ -£oi V.,~ N./ IX..,I < I ,~ y-~PC/U1- ;:?/x;"lq ~ ~ I x",/~ +- ~ I X'111() • 1-1 1-1. -;;;: j '1 >:'/'''+1

$--. ----

+ 2 /;(~/'fh-:-NH

li X t-jll(X) =- ><.cp (r Xh f Y•.I) .s 1,"-1" ({Xl< I + '7,.. I ) -S 5'-<f~ ~

'- /1 X 1/0() + 11 j 1/00

=- ~ /1", 'f-V,,/ oS :2 I Xh /rlI,,, 1 .;:' Z {x,) I- 2" IVj.,,1 .•.• F." ,.,.... /

c) // X I(X == (~ ,[CV,;) ~ '7e- ~ X = (I) 0) 6) - - ) J 'I c:: (Ci) I) 0j (/. )

~ /1 x~ it' If ~ = II {I ( (.) 0 0 . - ) /h ;:- (.r; + Ji) 2. '=' S-I /2.. J j ./) .J /z.-

/1 X i~z = 11riff;, :;-f J 10 fIx f-yti;z. > /1 x}f!l. + If yll1z.- .•

Page 8: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

cp,."fg~. J c) .h.E (0.)" ~It{ k a c.....c![; P>-"f ""- '"'- 'V, tC

t-wc>f~:6 ;> J.:..) d- Ci",j ~,. 14h £.~j dec"c).3; ..,Cl'- Cl h -- Q-' ..J N f i.<- eR c£-f- of ( et",;; Cl) c e fe.-t. cif VI ~ 1\/

.fWH vPcx ~ .3- /; J (.,vP -tKc { d (4.., > a) c £- t",,- off t-1 i? ;; .

-la k 11 =- wr. a K {/VJ IVj . ·T-e-... d i q y 4") -s d ( a;; c...) + cf ( (j '" > G )

< E- i- £: -::: f dt 4.> ;;;),/ J".~f cCv< ~ -e 1 ch 0..> a) =- 0),.....

J 0 Cc::-c:;,

b) /~I:- (Cl",)~e/f/ g Gur.ePy 9"'-<1f (i-lt)kf-ItJ! atA-J ~L-I.-U-tU-

(v, IN .su et -tKot- Ytk- -- ~ .

(J I ~ ~:?o dN J ~ tea {- 01 (' q ~ 1 <' £-r... I '"

k J~ -tt~/ hI.. ~ /v ft otf f} /<. ~ F- -( t~-/(/ (Oh", J Cl"'-e) < C ,) 5'c> (~k ) lee-IN U Cc: ~.ci} ,

c) CX((}. fu ( an )vz e--/N 1'7 Ji<. (,vI tR Q", -:: (- 1/'. ~"1 Co£-, ) i-1~N

ot tA.v{r .J %1.< f ( 01.2 •.• ) I-! E:-/A( I j CC/h Y 1-0- •• f- 1) Cl kJ7(' 1'-1

;o0/[ le C~ e~f.

Page 9: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

q.,ef{k-1 /1 0.) !Pn ([0; t1) eCrU/1St of JL (fi >-1', I.e) f?~CA..

~h.I:c..f' i .(1, .:co -j .:x-I 0 10 :1 :, "- R...-..<- gl""=- t'(~IIA-, >'11--1.

~) /l(t-v/ I]) c~tJ-t 11L- f~'/~ I!vr.e~ c~J!~o /(~S

1{1--,.2(~X~'~.] Jo;{;J <2Vl (~r..,,·.!.e c/rWte-t--0'{04-zoiJ I?~ fpc.CQ,l2-) /1 p /~ =- §«--e ( p ft.--) I iJ o. ~"I ,-P p(f.-):: qo 1- q, + r .." -f-~ +'-1)-t(:-[;<>,'] r--tL-, !l p /1 Cb :- :> 'f. Ip ({-) I --5- ( Ct\, I+-· ...-+ I q~ f < ~ .

y, t:E-~6,11

CfJr£ (2 a) it Q C~M-fl.act~~ f ~ F~c1 pv;:k pCiV/cl f ., tL drpJpJ = Jrf(f») fEf)) $ C dCf,1) {cA- s~

~.t: {J y 01 ( p.l f) =-0 a-.-u/ f _,=, p .

A) 0/ a.L e ? 0 O./IIJ~l1CA:r 4 vli cl;.:£ . Jf ;x)7 e-X Cl--1..rL

j uelZ ~c t d(?C/ '/) < S --' ~YL

d (((,{)/ f(y») ~. c dC"<I) <::; c· S = c·£ < ~J ~<.--J:.~fL;.J~ ~i~,fl'~ i C4-:!rhv,,!j" 1e, ~ et; ~ (J (,,",cC.-~cL.. tc( 2/)/ e-X} 5cr r l.J UVZ I/?-~ CV1--.+, •..·uC>i.<J •

Page 10: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

I'-------------------------------~ -- --

fiK)= G ~ ~C~

jnt-R/$ ~-- o.

,.•..•.. ,>-----

C?rcJ!J2~ }3 c) k~ f, g ~ L:fScL ~h/ So:! ~,i1~ r 5 cR, £ 2. CC-0 31c.uls !<r (!.~i k er / ~ ,

/ (ft-3) LX) - er +J) Cy) I:: ( FCi() - f(i> ~ T J(x) -J (j) /

~ IflA>-fC;)J r-1Jk>-Jty>! ,<: /(t /;(~)i 1- 1<;; iX'!!

:; (Kf-l- kj) I x -J) -> S& kr i-~ IJ 4fcL~!L CCA-7S/e,..,11f1-J'

~w«~ ~ / (jI() Ix) -(1j)(:p j ; I~J 1rL~)-f1d ~ 11\1 k;. IX-i!) j'o

tAf IJ 4JJl~!-2. av/-K 45cLid>. c?'"J~.slo.•1 /~j kt .~) If f %cvf /psc.{!,!z- cC4-tS'te-i I~'J E?O ';J ~fxC/l-y a",o/ d: ~/;<

{L 'f 1,<-'11< ~ J -tL. fr'<')-fc:tJ/ -5 K [9C-;i c k,~ .=- e .

.J 0 f IJ • CG'/-./r •• <-<-owl ( o,..../.Q.-v-u., (..{1'1fv'l.-W~ CCM /1 ~ !A.oc<--j) •

~u- X c C([O,iJ) ..

~ H~WJW-u r:<)c:;fx l) c""'!'V<"()W1 gfl<7dl.i?(JfJ!'!L <n.C01i].

Ivr&c( If /,( ~ ~ Lfj?J,{2- Ct/YlSfc:utJ {te"<.- tWe- COq

-tCLt X=-o-,> j =- I ~+-I)Z -' L I FC;(}- fCI)/ :: ID - };.,(l./: i ;> is. -L ~ ) kH Lkr,)2.

~ ;( XJY~~1-) £ Jt~lA~~u-. JI~ 3~ ?,E[X~J] J,<-~L

/~(X!-~cr)1 ~ 1/:'- f J : t\C~) !X-y( -= z..f;; IX-11 ~ ; 1;<'7'

4nJ t XjY~ ;~/ L J~{,rJ-f.,('f)/ ~ n/x-y{.

j 0 F Ra.r- 4f~!2.- c~st ...! Vl.

-J/c,~/ ~ UV! (p~ p~;£ IJ

/1 f~-r/~ = ~~p !~[n -rc- I ~ ~«p-/;- !:-.sYnL

Page 11: 1: X too:= X Yn} X, - University of Surreypersonal.maths.surrey.ac.uk/st/S.Zelik/teach/Exercises.pdf · Problem 1: a) Check if the following spaces are metric spaces: i) X = too:=

cp,.4wt If,- Q) ~ qy~Wr /3b)

~) /f{;()-fLj)/ ~ let (p" ,J- dtp1'jJ/ ;::: Jet);}..> So /<:/U Q ~fJc2, t2- cc-...,J1o-",~·

If- iJ Jjo 6L J~t COhJ~(r'Y2-e- fb- Q3-r~X-=- fR.:' Wirf ifl:r.Vv!Wl/0 JM..e,~(c) p-=(6JOJO)) ;;J(;o{I) 6Jo),,'j:{r.;iJ 0)_

c) JN? tL c0 L7 I~~t; ~cl ( (XI) '7,) .J (x 2- J y,,) ): ~ { K, J y, > -r- cl ( x"-) 72-)

~ u!(x'.J2,)j- of (z/J/') -r J{KZ} 2;<) i- d/c;..;'f1..)

-' cI( ~ I z) -I- cl (x'z/ 2.z-) -+ d ( .1,.1 'ji h-dc2 2J f?)

- d((\)~j)) (XzJlz») + d((2'JJ,)/(2?-J'j?-)) ,

J) F ("XI 'I) =- d ICx, '!) .:$' d ( ( p./ 7) + 4 I ( f/ ,d

IS A(p~Ke~J 15--lA- J'-<~ f ~e-vo 4f£!c. I~ol~ .J

~ ---t), J 0 d IS 4ycRJ2- "-f4) ~ /s QJ .

~: