1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet...

22
1 Tibet Air Shower Array Tibet Air Shower Array Results and Future Plan Results and Future Plan - Gamma Ray Observation - - Gamma Ray Observation - K. Kawata For the Tibet AS Collaboration ICRR, University of Tokyo International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007 Sendai, Japan, September 11-15, 2007

Transcript of 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet...

Page 1: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

1

Tibet Air Shower ArrayTibet Air Shower ArrayResults and Future PlanResults and Future Plan

- Gamma Ray Observation -- Gamma Ray Observation -

K. Kawata

For the Tibet AS Collaboration

ICRR, University of Tokyo

International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007Sendai, Japan, September 11-15, 2007

Page 2: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

2

Contents

Tibet Air Shower Array

Recent Results Crab Nebula MGRO J2019+37 (Cygnus Region) MGRO J1908+06

Future Plan (Tibet muon detector project) Simulation Sensitivity Expected Results Prototype MD

Summary

Page 3: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

3

The Tibet AS CollaborationM.Amenomori1, X.J.Bi2, D.Chen3, S.W.Cui4, Danzengluobu5, L.K.Ding2, X.H.Ding5, C.Fan6,C.F.Feng6, Zhaoyang Feng2, Z.Y.Feng7, X.Y.Gao8, Q.X.Geng8, H.W.Guo5, H.H.He2, M.He6, K.Hibino9, N.Hotta10,

Haibing Hu5, H.B.Hu2, J.Huang11, Q.Huang7, H.Y.Jia7, F.Kajino12, K.Kasahara13, Y.Katayose3, C.Kato14, K.Kawata11, Labaciren5, G.M.Le15, A.F.Li6, J.Y.Li6, Y.-Q.Lou16, H.Lu2, S.L.Lu2, X.R.Meng5, K.Mizutani13,17, J.Mu8, K.Munakata14, A.Nagai18, H.Nanjo1, M.Nishizawa19, M.Ohnishi11, I.Ohta20, H.Onuma17, T.Ouchi9, S.Ozawa11, J.R.Ren2, T.Saito21, T.Y.Saito22, M.Sakata12, T.K.Sako11, M.Shibata3, A.Shiomi9,11, T.Shirai9, H.Sugimoto23, M.Takita11, Y.H.Tan2, N.Tateyama9, S.Torii13, H.Tsuchiya24, S.Udo11, B.Wang8, H.Wang2, X.Wang11, Y.Wang2, Y.G.Wang6, H.R.Wu2, L.Xue6, Y.Yamamoto12, C.T.Yan11, X.C.Yang8, S.Yasue25,

Z.H.Ye15, G.C.Yu7, A.F.Yuan5, T.Yuda9, H.M.Zhang2, J.L.Zhang2, N.J.Zhang6, X.Y.Zhang6, Y.Zhang2, Yi Zhang2, Zhaxisangzhu5 and X.X.Zhou7

(1) Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan.

(2) Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

(3) Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan.

(4) Department of Physics, Hebei Normal University, Shijiazhuang 050016, China.

(5) Department of Mathematics and Physics, Tibet University, Lhasa 850000, China.

(6) Department of Physics, Shandong University, Jinan 250100, China.

(7) Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China.

(8) Department of Physics, Yunnan University, Kunming 650091, China.

(9) Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan.

(10) Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan.

(11) Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan.

(12) Department of Physics, Konan University, Kobe 658-8501, Japan.

(13) Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

(14) Department of Physics, Shinshu University, Matsumoto 390-8621, Japan.

(15) Center of Space Science and Application Research, Chinese Academy of Sciences, Beijing 100080, China.

(16) Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, China.

(17) Department of Physics, Saitama University, Saitama 338-8570, Japan.

(18) Advanced Media Network Center, Utsunomiya University, Utsunomiya 321-8585, Japan.

(19) National Institute of Informatics, Tokyo 101-8430, Japan.

(20) Tochigi Study Center, University of the Air, Utsunomiya 321-0943, Japan.

(21) Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan.

(22) Max-Planck-Institut für Physik, München D-80805, Deutschland.

(23) Shonan Institute of Technology, Fujisawa 251-8511, Japan.

(24) RIKEN, Wako 351-0198, Japan.

(25) School of General Education, Shinshu University, Matsumoto 390-8621, Japan.

Page 4: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

4

Tibet-III Air Shower (AS) Array

Number of Scinti. Det. 0.5 m2 x 789 Effective Area for AS ~37,000 m2

Energy region ~TeV - 100 PeV Angular Resolution ~0.4 @10 TeV (Gamma rays) ~0.2 @100 TeV Energy Resolution ~70% @10 TeV (Gamma rays) ~40% @100TeV F.O.V. ~2 sr

Tibet Muon Detectors (Future Image)Yangbajing, Tibet, CHINA, 4300m a.s.l.

2nd particlesTiming &Energy deposit

Page 5: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

5

30th ICRC 2007, Merida, Mexico

Consistent with other observations using IACT

Preliminary

Energy Spectrum of Gamma raysfrom the Crab Nebula

Centered atCrab position

Page 6: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

6

Moon Shadow

Constant fitting-0.0034o 0.011o+

Systematic pointing error < 0.01o

Absolute EnergyScale error –4.4% +- 7.9%stat +- 8%sys

Energy dependence ofDisplacementsCaused by Geomagnetic field

Verification Absolute energy scale Angular resolution Pointing error

Page 7: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

7

Northern Sky Survey & Cygnus Region

Red --without Red --without Crab and Crab and

Mrk421and Mrk421and Cygnus Cygnus regionregion

Preliminary result

Preliminary result

smooth radius 1.5°smooth radius 1.5°

MGRO J2019+37Tibet: 5.8

30th ICRC 2007, Merida, Mexico

Page 8: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

8

MGRO J2019+37 Energy Spectrum

100%

100% g

am

ma-ra

ys a

ssum

ed

gam

ma-ra

ys a

ssum

ed

Milagro flux is E2dN/dE=(3.49±0.47stat ±1.05sys)x10-12TeVcm-2s-1 from 3x3 square degree bin centered on the location of Hotspot (304.83o,36.83o) at 12TeV, assuming a differential source spectrum of E-2.6(reference : ApJ658:2007).

Preliminary

30th ICRC 2007, Merida, Mexico

Tibet AS has no ability for Gamma/Hadron separation

Assuming 100% of the excess is caused by gamma rays

Not inconsistent with Milagro fluxMilagro

Page 9: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

9

MGRO J1908+06

Tibet AS:In 2003,marginal excess~4.4σ (pre-trial)

SubsequentlyMilagro:clear excess(MGRO J1908+06)

J.L. Zhang for the Tibet ASγ Collaboration, 28th ICRC, vol. 4, pp 2405 - 2408

(2003)Amenomori et al., 29th ICRC, vol. 4,

pp 93 - 96 (2005)Amenomori et.al, ApJ 633,1005 (2005)

MGRO J1908+06

Milagro error circle (stat.+sys.)G40.5-0.5

G39.2-0.3

GeV J1907+0557

Tibet error circle

Page 10: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

10

Tibet Muon Detector (MD) Array7.2m x 7.2m x 1.5m depth Water pool20”PMT x 2   (HAMAMATSU R3600)Underground 2.5m ( ~515g/cm2~19X0)

Material: Concrete pool White paint     192 detctors         Total ~10,000 m2

Counting the number of muons accompanying an air showerGamma/Hadron separation

extends AS to~83,000m2

MD ~10,000m2

Page 11: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

11

Muon Number vs. Shower Size (Simulation) : Sum of particle density by all scintillation det. Shower SizeNPE:Sum of photoelectrons by all muon det. Muon number   

( Shower Size)

NP

E(

Muo

n N

um

ber)

10TeV 100TeV 1000TeV

20%50%80%

(gamma)

0

(~10TeV)

0

(~100TeV)

Gamma

Gamma

CR

CR

99.8%Rejection

Page 12: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

12

Tibet AS Array 83,000m2

+Tibet MD Array

10,000m2

Crab orbit

Sensitivity to Point-like Gamma-ray Source

Search window size0.3 degrees >50TeV,while angular resolution<0.3 degrees.

F.O.V. ~2 sr

Page 13: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

13

Above10 TeV cosmic/gamma ray wide sky survey

Measurement of cut-off energy in gamma ray spectrumSearch for PevatronCosmic ray origin & acceleration mechanism

Diffuse gamma rays from Galactic plane (including Cygnus)Cosmic ray propagation

Monitoring time variable sources (AGN, GRB…)Measure column density of IR photons

Extragalactic background radiationUHCR cascading

Cosmic ray chemical composition around the Knee regionSeparate chemical composition by the number of muons

Physics Motivation

Page 14: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

14

0 decayProtonsE<1000TeV

Gamma rays in the 100 TeV region

Aharonian et al, A&A, 431, 197 (2005)

Hard spectral index at TeV energiesFaint in other wavelengthsTeV J2032+4130 (~5% Crab)

10-1000TeV

InverseCompton

Page 15: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

15

Tibet AS+MD1year, 5σ

Epmax=100TeV

1000TeV

10000TeVVERITAS

decay modelAharonian et al. A&A, 464, 235(2007)Kelner et al., PRD 74, 034018 (2006)  

  TeV J2032+4130

Crab -2.62

Aharonian et al, A&A, 431, 197 (2005)

TeV J2032+4130Unidentified sourceCyg X-3 in Cyg OB2HEGRA obs.~158 hoursExtended ~6.2′decay?

Page 16: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

16

MGRO J2019+37 Cygnus diffuse gamma rays

Beacom et al. astro-ph/070175 (2007)

Integral flux in 3o×3o region

Abdo et al. astro-ph/0611691 (2006)

Page 17: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

17

Diffuse Gamma Rays from Galactic Plane

0°60°120°180° 180°240°300°-10°

10°

EGRET data

Electronmodel Electron

model

0 model0 model

Page 18: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

18

Known Gamma-Ray Sources in the Northern Sky

HESS J1837-069 HESS J1834-087

Cas A LS I +01 303

Large Zenith ~ 37o Large Zenith ~ 39o

Periodic objectMAGIC - Peak flux

VERITAS

Mrk 421Mrk 501

Tibet AS+MD1year

M87

Page 19: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

19

Prototype MD

52 m2 x 2 units

Construction start 1st September 2007complete end of November 2007

Feasibility study of construction Compare with simulation Search for 1000 TeV Gamma rays

Page 20: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

20

Page 21: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

21

Summary Performance of Tibet Air Shower Array:

Angular Resolution 0.2o @100TeVEnergy Resolution ~40% @100TeVSystematic Pointing Error < 0.01o

Absolute Energy Error ~10% Verification by the Moon Shadow

Crab Nebula: Energy spectrum observed by Tibet AS is consistent with other observations using IACTs.

MGRO J2019+37: Tibet flux is not inconsistent with Milagro results, if we assume 100% of the excess is caused by gamma rays.

MGRO J1908+06: Marginal excess was found.

Tibet AS+MD: 10000 m2 Water Cherenkov Muon Detector (~5M US$)

Sensitivity is 5-15% Crab @ 10-100 TeV.

Construction of test MD (52 m2 x 2) started 1st September 2007.

Page 22: 1 Tibet Air Shower Array Results and Future Plan - Gamma Ray Observation - K. Kawata For the Tibet AS  Collaboration ICRR, University of Tokyo International.

22

Thank you!