1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS...

18
1 NAXOS - GREECE HEP 2014 NAXOS - GREECE HEP 2014 S. Maltezos S. Maltezos DESIGN OF THE MM GAS SYSTEM DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos , T. Alexopoulos, S. Maltezos, S. Karentzos , V. Gika V. Gika National Technical University of Athens National Technical University of Athens

description

3 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos The main goal: is the required renewals Calculation of the required gas flow Flow rate of each MM MP with renewals r (which is our main goal): For each wheel: 16 sectors x 2 typeMM/sector x 8 planes/typeMM = 256 planes (MM types: LM1&2 or SM1&2) For the design we consider r=10 renewals per day

Transcript of 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS...

Page 1: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

11 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

DESIGN OF THE MM GAS SYSTEMDESIGN OF THE MM GAS SYSTEM

NTUA

T. Alexopoulos, S. Maltezos, S. Karentzos , T. Alexopoulos, S. Maltezos, S. Karentzos , V. GikaV. GikaNational Technical University of AthensNational Technical University of Athens

Page 2: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

22 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

OutlineOutline

The gas distribution and its desired specifications The gas distribution and its desired specifications

Relevant theoretical equations and definitionsRelevant theoretical equations and definitions

Simulation with “Pipe Flow”Simulation with “Pipe Flow”

Simulation results and discussionSimulation results and discussion

Conclusions and ProspectsConclusions and Prospects

Page 3: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

33 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

The main goal: is the required renewalsThe main goal: is the required renewals

Calculation of the required gas flowCalculation of the required gas flow

(in l/h)24MP

MPrVQ Flow rate of each MM MP with renewals r (which is our main goal):

For each wheel:

16 sectors x 2 typeMM/sector x 8 planes/typeMM = 256 planes(MM types: LM1&2 or SM1&2)

For the design we consider r=10 renewals per day

Page 4: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

44 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

3D representation of the gas distribution of NSW 3D representation of the gas distribution of NSW

Page 5: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

55 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Where we have to pay attention?Where we have to pay attention?

Uniform gas flow along the MultipletsUniform gas flow along the Multiplets

As small as possible pressure in the detector planes (average pressure less As small as possible pressure in the detector planes (average pressure less than 2 mbar)than 2 mbar)

Avoiding negative pressure values in the gas outlets (because of risk of OAvoiding negative pressure values in the gas outlets (because of risk of O22 insertion)insertion)

Controllable pressure in the outlet points very close to 0. Thus, preferably, Controllable pressure in the outlet points very close to 0. Thus, preferably, the gas return lines have to be connected to the outlets with lower variation of the gas return lines have to be connected to the outlets with lower variation of elevation (coming from inner circle of wedges).elevation (coming from inner circle of wedges).

Page 6: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

66 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Fundamental equations from Fluid MechanicsFundamental equations from Fluid Mechanics

2 21 1 1 1 2 2 2 2

1 12 2z z visc lossp p p p p

Bernoulli’s equationBernoulli’s equation

ααii is equal to1 for turbulence flow (uniform profile of the velocity) and equal to 2 is equal to1 for turbulence flow (uniform profile of the velocity) and equal to 2 for laminar flow (parabolic profile of the velocity). The equation is applied in two for laminar flow (parabolic profile of the velocity). The equation is applied in two particular cross-sections (1 and 2) along the fluid flow. Also we have:particular cross-sections (1 and 2) along the fluid flow. Also we have:

4 4

128 128visc loss

L p Lp Q ZD Q D

Poiseuille’s law and impedance expression (holds only for laminar flow) Poiseuille’s law and impedance expression (holds only for laminar flow)

2 21 2 2 2 1 1 2 1

12 z z visc lossp p p p p p

In case of pipe segments initiating from elevation 0 and going back to 0: In case of pipe segments initiating from elevation 0 and going back to 0:

2 22 1 2 2 1 1

1 1

102

N N

z z i i visc lossi i

p p p g z p p

In case of turbulence flow the impedance In case of turbulence flow the impedance ZZ becomes nonlinear. becomes nonlinear.

Page 7: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

77 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation with Pipe Flow Simulation with Pipe Flow A typical diagram showing the simulation of the LM wedgesA typical diagram showing the simulation of the LM wedges

Page 8: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

88 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation with Pipe Flow (magnified) Simulation with Pipe Flow (magnified) Magnified part for the sectors 1 and 3Magnified part for the sectors 1 and 3

Page 9: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

99 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Configuration 1Simulation Results: Configuration 1

Gas supply from outer circleGas supply from outer circle

Page 10: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1010 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Configuration 1Simulation Results: Configuration 1

Page 11: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1111 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Configuration 1Simulation Results: Configuration 1

Page 12: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1212 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Configuration 2Simulation Results: Configuration 2

Gas supply from outer (upper half) and inner (lower half) circleGas supply from outer (upper half) and inner (lower half) circle

Page 13: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1313 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Configuration 2Simulation Results: Configuration 2

Page 14: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1414 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Configuration 2Simulation Results: Configuration 2

Page 15: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1515 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Comparison between 1 and 2Simulation Results: Comparison between 1 and 2

Gas supply from outer circleGas supply from outer circle Gas supply from outer (upper half) andGas supply from outer (upper half) and inner (lower half) circleinner (lower half) circle

Page 16: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1616 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Simulation Results: Comparison between 1 and 2Simulation Results: Comparison between 1 and 2

We establish that the pressure is lower in the configuration from outer We establish that the pressure is lower in the configuration from outer circle compared to that from outer (upper half) and inner (lower half). circle compared to that from outer (upper half) and inner (lower half).

Page 17: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1717 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

Design of a small scale natural model (1:4) Design of a small scale natural model (1:4)

Conserve the value of Reynolds number:Conserve the value of Reynolds number:

Specify the appropriate parameters, gas flow Q and characteristic size PSpecify the appropriate parameters, gas flow Q and characteristic size P

In each section we have to:In each section we have to:

ab Perimeter:

Our goal is to study the real dynamic behavior of the gas flow in a Our goal is to study the real dynamic behavior of the gas flow in a chamber plane recording the transient mixing with atmospheric air and chamber plane recording the transient mixing with atmospheric air and the evolution of its pushing out by time.the evolution of its pushing out by time.

,

e e14

n n Q Q PR R Q Q QP P P

2( ) 2P b a

1.6 l/hQ

4e QRP

For LM Multiplets:1.1 l/hQFor SM Multiplets:

Page 18: 1 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos DESIGN OF THE MM GAS SYSTEM NTUA T. Alexopoulos, S. Maltezos, S. Karentzos, V.

1818 NAXOS - GREECE HEP 2014 S. Maltezos NAXOS - GREECE HEP 2014 S. Maltezos

We have investigated the optimal solution for the gas distribution scheme.

We simulated the most candidate configuration providing gas to LM and SM multiplets in series.

The appropriate direction of providing the gas mixture (from inner or outer diameter) has been studied and proposed.

A study of small scale natural model is on the way expecting useful results for the transient gas flow in the detector planes.

Conclusions and future workConclusions and future work