1 Modern Control Theory Digital Control Lecture 4.

35
1 Modern Control Theory Digital Control Lecture 4
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    227
  • download

    2

Transcript of 1 Modern Control Theory Digital Control Lecture 4.

Page 1: 1 Modern Control Theory Digital Control Lecture 4.

1

Modern Control TheoryDigital Control

Lecture 4

Page 2: 1 Modern Control Theory Digital Control Lecture 4.

2

OutlineThe Root Locus Design Method

Introduction Idea, general aspects. A graphical picture of how changes of

one system parameter will change the closed loop poles. Sketching a root locus

Definitions 6 rules for sketching root locus/root locus characteristics

Selecting the parameter value

Page 3: 1 Modern Control Theory Digital Control Lecture 4.

3

Introduction

0)()()(1

)()()(1

)()()(

)(

)(

sHsGsD

sHsGsD

sGsDsT

sR

sYClosed loop transfer function

Characteristic equation,roots are poles in T(s)

Page 4: 1 Modern Control Theory Digital Control Lecture 4.

4

Introduction

)(,8.1

))((2)(

1

1)(

2

22

2

2

1

pnr

dd

n

nn

n

Mt

jsjssssH

ssH

Dynamic features depend on the pole locations.

For example, time constant , rise time tr, and overshoot Mp

(1st order)

(2nd order)

Page 5: 1 Modern Control Theory Digital Control Lecture 4.

5

Introduction

Root locus Determination of the closed

loop pole locations under varying K.

For example, K could be the control gain.

Ksa

sbK

sL

sKbsa

sa

sbK

sKL

sHsGsD

1

)(

)(

1)(

0)()(

0)(

)(1

0)(1

0)()()(1

The characteristic equation can be written in various ways

Page 6: 1 Modern Control Theory Digital Control Lecture 4.

6

Introduction

Polynomials b(s) and a(s)

n

iim

mnn

m

iim

mmm

pspspsps

asassa

zszszszs

bsbssb

sbsasa

sbsL

121

11

121

11

)()())((

)(

)()())((

)(

als1)polynomi power highest thent to(coefficie

monic are )( and )(,)(

)()(

Page 7: 1 Modern Control Theory Digital Control Lecture 4.

7

Definition of Root Locus

Definition 1 The root locus is the values of s for which 1+KL(s)=0

is satisfied as K varies from 0 to infinity (pos.).

Definition 2 The root locus is the points in the s-plane where the

phase of L(s) is 180°. Def: The angle to the test point from zero number i is i.

Def: The angle to the test point from pole number i is i. Therefore,

In def. 2, notice,

integeran is l ),1(360180 lii

positive and realK for

180)/1(,/1)( KKsL

Page 8: 1 Modern Control Theory Digital Control Lecture 4.

8

Root locus of a motor position control (example)

2

41

2

1,

0)()(

of roots of grapha is locusRoot

)(,1)(

,)1(

1)(,

have, We

)1()(

)(

)(

)(

)( positionmotor -DC

21

2

2

Krr

KsssKbsa

sssasb

sssLAK

ss

AsG

sU

sY

sV

s

a

m

Page 9: 1 Modern Control Theory Digital Control Lecture 4.

9

Root locus of a motor position control (example)

0.5) (here, somefor calculated be can

21part real ,conjugatedcomplex :),(

,41For

[-1;0] interval thein real :),(

,410For

1

0

2

1

2

1),(

loop)-(open,0For 2

41

2

1),(

21

21

21

21

K

rr

K

rr

K

rr

K

Krr

break-away point

Page 10: 1 Modern Control Theory Digital Control Lecture 4.

10

IntroductionSome root loci examples (K from zero to infinity)

Page 11: 1 Modern Control Theory Digital Control Lecture 4.

11

Sketching a Root LocusHow do we find the root

locus?

We could try a lot of test points s0

Sketch by hand (6 rules)

Matlab

s0

p1

Page 12: 1 Modern Control Theory Digital Control Lecture 4.

12

110

10

100

0

1

)(

where

1

)(

1)(

spoint Test

)(

1

)(

1)(

1

ps

Rps

eRpssG

psassG

j

Sketching a Root Locus

s0

p1

What is meant by a test point? For example

Page 13: 1 Modern Control Theory Digital Control Lecture 4.

13

)(exp

)()(

)()()(general, In

1121

21

)()(1

)()(1

010

0100 1

1

nmaa

bb

jan

ja

jbm

jb

n

m

jrr

rr

erer

erer

psps

zszssG

n

m

Sketching a Root Locus

s0

p

p*

integeran is l ),1(360180 :definition locusRoot lii

A inconviniet method !

Page 14: 1 Modern Control Theory Digital Control Lecture 4.

14

Root Locus characteristics(can be used for sketching)

Rule 1 (of 6) The n branches of the locus start at the poles L(s) and

m of these branches end on the zeros of L(s).

3) Rule()(

1) Rule)((0)(,(end) if

(poles) 0)(,(start)0 if

1

)(

)(0)()(

,order of is )( and ,order of is )(

Notice,

sa

zerossbK

saK

Ksa

sbsKbsa

mnmsbnsa

Page 15: 1 Modern Control Theory Digital Control Lecture 4.

15

Root Locus characteristics

Rule 2 (of 6) The loci on the real axis (real-axis part) are to the left

of an odd number of poles plus zeros.

Notice, if we take a test point s0 on the real axis :

• The angle of complex poles cancel each other.• Angles from real poles or zeros are 0° if s0 are to the right.• Angles from real poles or zeros are 180° if s0 are to the left.• Total angle = 180° + 360° l

Page 16: 1 Modern Control Theory Digital Control Lecture 4.

16

Root Locus characteristics

Rule 3 (of 6) For large s and K, n-m branches of the loci are

asymptotic to lines at angles l radiating out from a point s = on the real axis.

mn

zp

mnlmn

l

ii

l

,,2,1,)1(360180

l

For example

Page 17: 1 Modern Control Theory Digital Control Lecture 4.

17

Root Locus characteristics

180 havemust weNotice,

,0)(

11

pages),next (see ionApproximat

01

for ionapproximat an derive can we largeFor

3) Rule()(

1) Rule(0)(0)(, If

,/1)()(

)(have, We

1

11

11

n-m

ii

mn

nnn

mmm

α)(s

Rs

K

asas

bsbsK

s

sa

sbsLK

mnKsLsa

sb

s0

°

Example,n-m = 4

Thus, l°

Page 18: 1 Modern Control Theory Digital Control Lecture 4.

18

Root Locus characteristics

)1()()()(

)(

so ,for small are )( and )( Notice,

)()(

)())((

2 that assuming , find usLet

,)()()(

)()()(

)(

)(

)()()()( Notice,

,)(

)(1

)(

)(

11

11

2

111111

21

11

11

1

11

11

11

11

sqssqssQsb

sa

ssRsO

baqqba

sRsOsqsbssas

sRsbssqssas

n-mQ(s)

ssqssQsb

sRsbsQ

sb

sa

sRsbsQsa

mnKsb

sa

Ksa

sb

mnmnmn

n

nnnnnn

mmmnmnnn

mnmn

Page 19: 1 Modern Control Theory Digital Control Lecture 4.

19

Root Locus characteristics

0)(

11

1

)(

1 have weSo,

)( where,

)(

)()(11

1)(

)(

have weNow,

0 around,1)1(Taylor notice First,

11

11

1

11

1

mnmn

mn

mnmn

mn

r

sK

Ks

mn

q

mn

qsK

mn

qs

mns

qs

s

qsK

s

qsK

sb

sa

xxrx

Page 20: 1 Modern Control Theory Digital Control Lecture 4.

20

Root Locus characteristics

mn

zp

mn

ba

mn

zzzzb

s

zszszsbsbssb

ppppa

s

pspspsasassa

ii

im

m

nmmm

in

n

nnnn

)(

have weNow,

: is oft coefficien The

)())(()(

: is oft coefficien The

)())(()(

Notice, .at look usLet

111

211

1

211

1

211

1

211

1

= Starting point for the asymptotes

Page 21: 1 Modern Control Theory Digital Control Lecture 4.

21

Root Locus characteristics

n-m=1 n-m=2 n-m=3 n-m=4

mn

zp

mnlmn

l

ii

l

,,2,1

,)1(360180

3 Rule

For ex.,n-m=3

Page 22: 1 Modern Control Theory Digital Control Lecture 4.

22

Root Locus characteristicsRule 4 (of 6)

The angle of departure of a branch of the locus from a pole of multiplicity q is given by (1)

The angle of departure of a branch of the locus from a zero of multiplicity q is given by (2)

)1(360180)2(

)(

)()(

)(

)( mult. of Zero

)1(360180)1(

)(

)(

)(

1

)(

)( mult. of Pole

,

0

,

0

lq

sa

sbzs

sa

sbq,

lq

sa

sb

pssa

sbq,

liiidepl

q

liiidepl

q

Notice, the situation is similar to the approximation in Rule 3

Page 23: 1 Modern Control Theory Digital Control Lecture 4.

23

Root Locus characteristics

arrldepl

liiarrli

liidepli

ii

qq

q

q

l

,,

,

,

and find can weSo,

Notice,

)1(360180

have weBecause

s0

Departure and arrival?For K increasing from zero to infinity poles go towards zeros or infinity. Thus,• A branch corresponding to a pole departs at some angle.• A branch corresponding to a zero arrives at some angle.

In general, we must find as0 such thatangle(L(s))=180°

Vary s0 untilangle(L(s))=180°

Page 24: 1 Modern Control Theory Digital Control Lecture 4.

24

Root Locus characteristicsRule 5 (of 6)

The locus crosses the j axis at points where the Routh criterion shows a transition from roots in the left half-plane to roots in the right half-plane.

Routh: A system is stable if and only if all the elements in the first column of the Routh array are positive => limits for stable K values.

0)Row(s

3)Row(s

2)Row(s

1)Row(s

1)Row(s

0

3213-n

3212-n

5311-n

42n

cccn

bbbn

aaan

aan

21

31

11

51

4

12

31

2

11

det1

1det

1

1det

1

bb

aa

bc

aa

a

ab

aa

a

ab

Page 25: 1 Modern Control Theory Digital Control Lecture 4.

25

Root Locus characteristics

Rule 6 (of 6) The locus will have multiplicative roots of q at points

on the locus where (1) applies. The branches will approach a point of q roots at

angles separated by (2) and will depart at angles with the same separation.

q

l

ds

dba

ds

dab

)1(360180)2(

0)1(

Page 26: 1 Modern Control Theory Digital Control Lecture 4.

26

Root Locus characteristicsThe locus will have multiplicative roots of q in the point s=r1

)()()()( 11 sfrssbKsa q

01

rsds

dba

ds

dab

We diffrentiate with respect to s

10

)()()(...)()( 12

111 rs

qq

ds

sdfrsrsrsq

ds

dbK

ds

da

1)(

)(1 rssb

saK

Page 27: 1 Modern Control Theory Digital Control Lecture 4.

27

Root Locus sketchingExampleRoot locus for double integrator with P-control

Rule 1: The locus has two branches that starts in s=0. There are no zeros. Thus, the branches do not end at zeros.

Rule 3: Two branches have asymptotes for s going to infinity. We get

02

0

270

90

2

)1(360180)1(360180

mn

zp

l

mn

l

ii

l

Eq.)(Char.01

1)(,1

)(22

skksD

ssG pp

Page 28: 1 Modern Control Theory Digital Control Lecture 4.

28

Sketching a Root Locus

Rule 2: No branches that the real axis.

Rule 4: Same argument and conclusion as rule 3.

Eq.)(Char.01

1)(,1

)(22

skksD

ssG pp

Rule 5: The loci remain on the imaginary axis. Thus, no crossings of the j-axis.

Rule 6: Easy to see, no further multiple poles. Verification:

0021)(

10

1)(,)(

22

2

ssds

ds

ds

sd

ds

dba

ds

dab

sbssa

Page 29: 1 Modern Control Theory Digital Control Lecture 4.

29

Sketching a Root Locus

Eq.)(Char.0)1(

101

)1(1

1and

Eq.)(Char.01

)(1

)(,1

)(

22

2

2

s

sK

ss

K

k

kkK

sskk

skksDs

sG

D

pD

Dp

Dp

ExampleRoot locus for satellite attitude control with PD-control

Page 30: 1 Modern Control Theory Digital Control Lecture 4.

30

Sketching a Root Locus

90 areat 0 pole double thefrom departure of angles The

:4 Rule

axis real negative thealong asymptote one is there,1 Because

:3 Rule

locus theon is 1 ofleft the toaxis real The

:2 Rule

infinity. approachesother The

.1at zero theon s terminateOne

.0at start that branches twoare There

:1 Rule

1)1(0

)1(1

22

s

mn

s

s

s

Ks

s

s

sK

Page 31: 1 Modern Control Theory Digital Control Lecture 4.

31

Sketching a Root Locus

2,002)1(

2,1,)(,1)(

from found are roots multiple of points The :6 Rule

1

axis.imaginary thecrossnot does locus theThus,

below.array thefind wecriterion, s Routh'Applying :5 Rule

Eq.)(Char.0)1(

1

2

2

2

issssds

dba

ds

dab

sds

da

ds

dbssassb

K

K

K

s

sK

Page 32: 1 Modern Control Theory Digital Control Lecture 4.

32

Sketching a Root Locus

Page 33: 1 Modern Control Theory Digital Control Lecture 4.

33

Selecting the Parameter ValueThe (positive) root locus

A plot of all possible locations of roots to the equation 1+KL(s)=0 for some real positive value of K.

The purpose of design is to select a particular value of K that will meet the specifications for static and dynamic characteristics.

For a given root locus we have (1). Thus, for some desired pole locations it is possible to find K.

LK

sLK

1

)(

1)1(

Page 34: 1 Modern Control Theory Digital Control Lecture 4.

34

Selecting the Parameter Value

657.7*1.2*4)()()(

1

))((

1

then,5.0 want say we usLet

, ,at Poles

)44)(44(

1

)16)4((

1

302000

32000

321

2

ssssssL

K

sssss)L(s

sss

jsjss

ssL(s)

Example

Page 35: 1 Modern Control Theory Digital Control Lecture 4.

35

Selecting the Parameter ValueMatlab

A root locus can be plotted using Matlab rlocus(sysL)

Selection of K [K,p]=rlocfind(sysL)