1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

72
1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation

Transcript of 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

Page 1: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

1Microelectronics Processing Course - J. Salzman - Jan. 2002

Microelectronics Processing Oxidation

Page 2: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

2Microelectronics Processing Course - J. Salzman - Jan. 2002

Content

Properties of SiO2

Oxidation Process Functions of SiO2

Equipment for Si Oxidation

Mechanism of Si Oxidation

Factors affecting oxidation

Doping Substrate

Orientation Pressure Chlorine addition

Dopant Redistribution Polysilicon Oxidation Additional Oxidation

Processes

Page 3: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

3Microelectronics Processing Course - J. Salzman - Jan. 2002

Thermal SiO2 Properties

Page 4: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

4Microelectronics Processing Course - J. Salzman - Jan. 2002

Thermal SiO2 Properties (cont.)

(7) Amorphous material

Page 5: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

5Microelectronics Processing Course - J. Salzman - Jan. 2002

Oxidation Techniques

• Thermal Oxidation

• Rapid Thermal Oxidation

Oxidation Process

Thermal Oxidation Techniques

• Wet Oxidation

Si (solid) + H20 SiO2 (solid) + 2H2

• Dry Oxidation

Si (solid) + O2 (gas) SiO2(solid)

Page 6: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

6Microelectronics Processing Course - J. Salzman - Jan. 2002

Conceptual Si Oxidation System

Thermal Oxidation

• Heat is added to the oxidation tube during the reaction ..between oxidants and silicon

- 900-1,200C temperature range- Oxide growth rate increases as a result of heat

• Used to grow oxides between 60-10,000Å

Page 7: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

7Microelectronics Processing Course - J. Salzman - Jan. 2002

Thermal Oxidation Process Wafers are placed in wafer load station

• Dry nitrogen is introduced into chamber - Nitrogen prevents oxidation from occurring

• Nitrogen gas flow shut off and oxygen added to chamber- Occurs when furnace has reached maximum temperature- Oxygen can be in a dry gas or in a water vapor state

• Nitrogen gas reintroduced into chamber- Stops oxidation process

• Wafers are removed from furnace and inspected

Dry Thermal Oxidation Characteristics

• Oxidant is dry oxygen

• Used to grow oxides less than 1000Å thick

• Slow process- 140 - 250Å / hour

Page 8: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

8Microelectronics Processing Course - J. Salzman - Jan. 2002

Dry Thermal Oxidation Process

Thin Oxide Growth

• Thin oxides grown (<150Å) for features smaller than 1 ..million

- MOS transistors, MOS gates, and dielectric components

• Additional of chemical species to oxygen decreases ..oxide growth rate (only in special cases)

- Hydrochloric acid (HCI)- Trichloroethylene (TCE)- Trichloroethane (TCA)

• Decreasing pressure slows down oxide growth rate

Page 9: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

9Microelectronics Processing Course - J. Salzman - Jan. 2002

Wet Thermal Oxidation

Wet Thermal Oxidation Characteristics

• Oxidant is water vapor

• Fast oxidation rate- Oxide growth rate is 1000-1200Å / hour

• Preferred oxidation process for growth of thick oxides

Page 10: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

10Microelectronics Processing Course - J. Salzman - Jan. 2002

The goal of oxidation is to grow a high quality oxide layer on a silicon substrate

Goal of Oxidation Process

Page 11: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

11Microelectronics Processing Course - J. Salzman - Jan. 2002

Passivation

• Physically protects wafers from scratches and particle ..contamination

• Traps mobile ions in oxide layer

Functions of Oxide Layers (1)

Page 12: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

12Microelectronics Processing Course - J. Salzman - Jan. 2002

Masking

• During Diffusion, Ion Implantation, and Etching

Function of Oxide Layers (2)

SiO2

Page 13: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

13Microelectronics Processing Course - J. Salzman - Jan. 2002

Insulating Material

• Gate region- Thin layer of oxide- Allows an inductive charge to pass between gate metal and silicon

Function of Oxide Layers (3)

Page 14: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

14Microelectronics Processing Course - J. Salzman - Jan. 2002

Dielectric Material

• Insulating material between metal layers- Field Oxide

Function of Oxide Layers (4)

Page 15: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

15Microelectronics Processing Course - J. Salzman - Jan. 2002

Dielectric Material

• Tunneling oxide- Allows electrons to pass through oxide without resistance

Function of Oxide Layers (5)

Page 16: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

16Microelectronics Processing Course - J. Salzman - Jan. 2002

Functions and Thickness of Oxide Layers

Page 17: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

17Microelectronics Processing Course - J. Salzman - Jan. 2002

Projections for Si Technology

Future projections for silicon technology taken from the SIA NTRS*

Year of First DRAMShipment

1997 1999 2003 2006 2009 2012Minimum Feature Size (nm) 250 180 130 100 70 50DRAM Bits/Chip 256M 1G 4G 16G 64G 256GMinimum Supply Voltage(volts)

1.8-2.5 1.5-1.8 1.2-1.5 0.9-1.2 0.6-0.9 0.5-0.6

Gate Oxide Tox Equivalent(nm)

4-5 3-4 2-3 1.5-2 <1.5 <1.0

Thickness Control (% 3 σ) ± 4 ± 4 ± 4-6 ± 4-8 ± 4-8 ± 4-8Equivalent Maximum E-field(MV cm-1 )

4-5 5 5 >5 >5 >5

Gate Oxide Leakage (DRAM)(pA μm-2)

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tunnel Oxide (nm) 8.5 8 7.5 7 6.5 6Maximum Wiring Levels 6 6-7 7 7-8 8-9 9Dielectric Constant, K forIntermetal Insulator

3.0-4.1 2.5-3.0 1.5-2.0 1.5-2.0 <1.5 <1.5

*NTRS- National Technology Roadmap for Semiconductors

Page 18: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

18Microelectronics Processing Course - J. Salzman - Jan. 2002

Oxidation occurs in tube furnace- Vertical Tube Furnace- Horizontal Tube Furnace

Thermal Oxidation Equipment

Page 19: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

19Microelectronics Processing Course - J. Salzman - Jan. 2002

Bubbler

Wet Thermal Oxidation Techniques

Page 20: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

20Microelectronics Processing Course - J. Salzman - Jan. 2002

Flash System

Wet Thermal Oxidation Techniques

Page 21: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

21Microelectronics Processing Course - J. Salzman - Jan. 2002

Dryox System

Wet Thermal Oxidation Techniques

Page 22: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

22Microelectronics Processing Course - J. Salzman - Jan. 2002

Thickness of Si consumed during oxidation

Page 23: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

23Microelectronics Processing Course - J. Salzman - Jan. 2002

Kinetics of Si02 Growth - Oxide Growth Mechanism

1. Oxidant (O2) reacts with silicon atoms

2. Silicon atoms are consumed by reaction

3. Layer of oxide forms on silicon surface

Page 24: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

24Microelectronics Processing Course - J. Salzman - Jan. 2002

Linear Parabolic Model

• Linear (first) Stage of Oxidation- Chemical reaction between silicon and oxidants at wafer surface- Reaction limited by number of silicon atoms available to react with oxidants- During the first 500Å of oxide growth, the oxide grows linearly with time- Growth rate begins to slow down as oxide layer grows

Oxide Growth Mechanism (1)

Page 25: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

25Microelectronics Processing Course - J. Salzman - Jan. 2002

Linear Parabolic Model

• Parabolic Stage- Begins when 1,000Å of oxide has been grown on silicon- Silicon atoms are no longer exposed directly to oxidants- Oxidants diffuse through oxide to reach silicon- Reaction limited by diffusion rate of oxidant

Oxide Growth Mechanism (2)

Page 26: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

26Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (1)

Page 27: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

27Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (2)

Page 28: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

28Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (3)

Page 29: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

29Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (4)

Page 30: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

30Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (5)

Page 31: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

31Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (6)

Page 32: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

32Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (7)

Page 33: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

33Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (8)

Page 34: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

34Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model (9)

Page 35: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

35Microelectronics Processing Course - J. Salzman - Jan. 2002

Limiting cases in Si oxidation

(a) (b)a) Interface reaction is the rate limiting stepb) Limited by oxidant transport through the SiO2 rate

Page 36: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

36Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove Model Parameters

Page 37: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

37Microelectronics Processing Course - J. Salzman - Jan. 2002

Deal-Grove model (10) - Effect of temperature on the rate constants B, and B/A

B(T)=Boexp(-EA/kT)(B/A)(T)=(B/A)oexp(-EA/kT)

Page 38: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

38Microelectronics Processing Course - J. Salzman - Jan. 2002

Values for the coefficients Do and EA

Each of the coefficients B, and B/A has an Arrhenius relationshipof the type: D=D0exp(-EA/kT)

Page 39: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

39Microelectronics Processing Course - J. Salzman - Jan. 2002

Diffusivities of some materials in silicon glass

Page 40: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

40Microelectronics Processing Course - J. Salzman - Jan. 2002

Examples

Page 41: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

41Microelectronics Processing Course - J. Salzman - Jan. 2002

Effect of Xi on Wafer Topography (1)

Page 42: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

42Microelectronics Processing Course - J. Salzman - Jan. 2002

Effect of Xi on Wafer Topography (2)

Page 43: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

43Microelectronics Processing Course - J. Salzman - Jan. 2002

Factors that Affect Oxidation

Page 44: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

44Microelectronics Processing Course - J. Salzman - Jan. 2002

High Doping concentration effect

Dopants in silicon

• Dopants increase oxide growth rate - During Linear Stage of oxidation N-type dopants

increase growth rate

• Dopants cause differential oxidation- Results in the formation of steps- Affects etching process

Page 45: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

45Microelectronics Processing Course - J. Salzman - Jan. 2002

High Doping concentration effect

Page 46: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

46Microelectronics Processing Course - J. Salzman - Jan. 2002

Growth Rate Dependence on Si Substrate Orientation

Wafer Orientation

• Oxide grows faster on <111> wafers

- more silicon atoms available to react with oxidant

• Affects oxide growth rate during Linear Stage

Page 47: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

47Microelectronics Processing Course - J. Salzman - Jan. 2002

Origin of Substrate Orientation Effect

Page 48: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

48Microelectronics Processing Course - J. Salzman - Jan. 2002

Substrate Orientation Effect - Oxidation Charts

(a) (b)Growth of SiO2 on <100> and <111> oriented Si wafers:(a) dry oxygen; (b) steam.

Page 49: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

49Microelectronics Processing Course - J. Salzman - Jan. 2002

Atmospheric pressure - Slow oxide growth rate

• An increase in pressure increase oxide growth rate

• Increasing pressure allows temperature to be ..decreased

- Oxide growth rate remains the same- For every 10atm of pressure the temperature can be reduced 30°C

•Dry Thermal oxidation- Pressure in oxidation tube increased

• Wet Thermal oxidation- Steam pressure introduced into oxidation tube

Effect of High Pressure Oxidation

Page 50: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

50Microelectronics Processing Course - J. Salzman - Jan. 2002

Effect of High Pressure Oxidation

Page 51: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

51Microelectronics Processing Course - J. Salzman - Jan. 2002

High Pressure Oxidation

Page 52: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

52Microelectronics Processing Course - J. Salzman - Jan. 2002

Chlorine species - Anhydrous chloride (CI2)- Anhydrous hydrogen chloride (HCI)- Trichloroethylene – TCE- Trichloroethane – TCA

• Oxide growth rate increases

• Oxide cleaner

• Device performance is improved

Chlorine added with Oxidants

Page 53: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

53Microelectronics Processing Course - J. Salzman - Jan. 2002

Oxidation With Cl Containing Gas

Page 54: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

54Microelectronics Processing Course - J. Salzman - Jan. 2002

Effect of HCl on Oxidation Rate

Page 55: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

55Microelectronics Processing Course - J. Salzman - Jan. 2002

Local Oxidation of Si (LOCOS)

Page 56: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

56Microelectronics Processing Course - J. Salzman - Jan. 2002

Local Oxidation

Page 57: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

57Microelectronics Processing Course - J. Salzman - Jan. 2002

Dopant Redistribution During Thermal Oxidation (1)

Dopant concentration Dopant concentration

Page 58: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

58Microelectronics Processing Course - J. Salzman - Jan. 2002

Dopants affect device performance - The change in dopant location and concentration during oxidation can affect the device operation- N-type dopants move deeper into silicon so high concentration at the silicon/silicon dioxide interface- P-type dopants move into the silicon dioxide and deplete the silicon layer

Dopant Redistribution During Thermal Oxidation (2)

Page 59: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

59Microelectronics Processing Course - J. Salzman - Jan. 2002

Dopant Redistribution During Thermal Oxidation (3)

Page 60: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

60Microelectronics Processing Course - J. Salzman - Jan. 2002

Dopant Redistribution During Thermal Oxidation (4)

Page 61: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

61Microelectronics Processing Course - J. Salzman - Jan. 2002

Dopant Redistribution During Thermal Oxidation (5)

a) boronb) boron withhydrogen ambientc) Phosphorusd) gallium

Page 62: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

62Microelectronics Processing Course - J. Salzman - Jan. 2002

Thin Oxide Growth

Page 63: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

63Microelectronics Processing Course - J. Salzman - Jan. 2002

Structure of SiO2-Si Interface

Page 64: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

64Microelectronics Processing Course - J. Salzman - Jan. 2002

Thin Oxide Tunneling Current Comparison

Page 65: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

65Microelectronics Processing Course - J. Salzman - Jan. 2002

Polycrystalline Si Oxidation

Page 66: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

66Microelectronics Processing Course - J. Salzman - Jan. 2002

Polysilicon Oxidation

Page 67: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

67Microelectronics Processing Course - J. Salzman - Jan. 2002

Oxide inspection techniques

Surface Inspection

Oxide Thickness

Oxide Cleanliness

Page 68: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

68Microelectronics Processing Course - J. Salzman - Jan. 2002

Anodic Oxidation Process

• Wafer is attached to a positive electrode

• Wafer is immersed in bath of potassium nitrate ..(KNO3)

• Immersion tank contains a negative electrode

• Oxygen produced when current is applied

• Reaction between silicon and oxygen occurs

Additional (Chemical) Oxidation Processes

Page 69: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

69Microelectronics Processing Course - J. Salzman - Jan. 2002

Anodic Oxidation Characteristics

• Oxidation reaction occurs at the surface of the oxide- Silicon atoms move to top of oxide layer during oxidation

• Used to grow oxide on wafers that will be tested for ..dopant location and concentration

Additional Oxidation Processes

Page 70: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

70Microelectronics Processing Course - J. Salzman - Jan. 2002

Rapid Thermal Oxidation Equipment

Additional Oxidation Processes

Page 71: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

71Microelectronics Processing Course - J. Salzman - Jan. 2002

Thermal Nitridation Characteristics

• Alternative method to Oxidation

• Oxidant is nitrogen- Pure ammonia gas (NH3)- Ammonia plasma

• Reaction produces silicon nitride (Si3N4)- Reaction occurs at the gas/silicon nitride interface- Silicon atoms diffuse through silicon nitride layer during process

• Silicon nitride is a good substitute for silicon dioxide- Silicon nitride is denser than silicon dioxide- Silicon nitride has a higher dielectric rating

Additional Processes - Thermal Nitridation

Page 72: 1 Microelectronics Processing Course - J. Salzman - Jan. 2002 Microelectronics Processing Oxidation.

72Microelectronics Processing Course - J. Salzman - Jan. 2002

Thermal Nitridation Disadvantage

• Process puts high level of strain on wafer- Thermal expansion rate of silicon nitride is 2 times greater than silicon dioxide- High temperature processing techniques (950- 1200°C) results in wafer strain

Additional Oxidation Processes