1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

38
Horst Stöcker, Heidelberg 2009 Di-Jet Suppression and Multi-Mono-Jet Emission – - Signal of QGP or LXD- Black Holes at LHC Horst Stöcker GSI, Goethe+FIAS Frankfurt Inst. for Adv. Studies 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signals LXD-BHs @ LHC: ALICE, ATLAS, CMS 3 Muliple Monojets from Hawking-Evaporating signal TeV-BHs! Source of Strangeness and Charm, Beauty and Truth+ SuSy-Partners Need EM-Cal in ALICE for better > 100 GeV reach in pt 4 TeV-BHs explode in QCD+SuSy-Knudsen-plasma? 5 Stable charged TeV-BH-Remnants? Observe TRACK in

description

Di-Jet Suppression and Multi-Mono-Jet Emission – - Signal of QGP or LXD- Black Holes at LHC H orst Stöcker GSI, Goethe+FIAS Frankfurt Inst. for Adv. Studies. 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signals LXD-BHs @ LHC: ALICE, ATLAS, CMS - PowerPoint PPT Presentation

Transcript of 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Page 1: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Di-Jet Suppression and Multi-Mono-Jet Emission – - Signal of QGP or LXD- Black Holes at LHC

Horst Stöcker GSI, Goethe+FIAS Frankfurt Inst. for Adv. Studies

Di-Jet Suppression and Multi-Mono-Jet Emission – - Signal of QGP or LXD- Black Holes at LHC

Horst Stöcker GSI, Goethe+FIAS Frankfurt Inst. for Adv. Studies

1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a. ?!

2 Di- Jet suppression- Signals LXD-BHs @ LHC: ALICE, ATLAS, CMS

3 Muliple Monojets from Hawking-Evaporating signal TeV-BHs!Source of Strangeness and Charm, Beauty and Truth+ SuSy-PartnersNeed EM-Cal in ALICE for better > 100 GeV reach in pt

4 TeV-BHs explode in QCD+SuSy-Knudsen-plasma?

5 Stable charged TeV-BH-Remnants? Observe TRACK in TPC!

6 BH- Production 1000*enhanced in Pb+Pb event@ 5.5 ATeV

Page 2: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Thanks toThanks to

• Ben Koch (U Santiago, Chile)

• Ulrich Harbach (ITP, Germany)

• Christoph Rahmede (Sissa, Italy)

• Thomas Burschil (ITP, Frankfurt)

• Martin Kober (ITP, Frankfurt)

• Sabine Hossenfelder (Stockholm)

• Stefan Hofmann (LMU, München)

• Marcus Bleicher (FIAS + ITP, Germany)

Based on: Phys.Rev.D66:101502,2002, Phys.Lett.B548:73-76,2002, J.Phys.G28:1657-1665,2002, Phys.Lett.B566:233-239,2003, Int.J.Mod.Phys.D13:1453-1460,2004, JHEP 0510:053,2005,…

Page 3: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

B

A BH

X

BH-Production Probabilities LHC =Black Hole Factory?

BH-Production Probabilities LHC =Black Hole Factory?

Problem: No fundamental scattering operatorfor

Model for cross section:impact parameter b

Parton model:fold structure fct.With BH-“formfactor”!

|A> + |B> --> BH + X

Page 4: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

# of black holes predicted# of black holes predicted

L. Hewett, B. Lillie and T. G. Rizzo, arXiv:hep-ph/0503178

Page 5: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Black Holes at CollidersBlack Holes at Colliders

• BH created when two particles of high enough energy pass within ~ rs .

Eardley, Giddings, PRD (2002)Yoshino, Nambu, PRD (2003)

Dimopoulos, Landsberg, PRL (2001)

• Large Hadron Collider: ECOM = 14 TeVpp BH + X

• LHC may produce 100 of black holes per second, starting ~ 2008

109 BH per year

LHC: S. Hossenfelder, M.B., et al., PRD 66 (2002)Tevatron: M. Bleicher et al., PLB548 (2002)

Page 6: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Page 7: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Production probabilities of BH per pp-event: NANOBARN!1000x increased per central Pb+Pb event: Ncoll=200, b<3fm!

*Bleicher, Hofmann, Hossenfelder, Stoecker ** Hossenfelder Phys.Lett.B598:82-98,2004 Phys.Lett. B548:73-76,2002

* **

p+p

Pb+Pb

Page 8: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Pb+Pb vs ppPb+Pb vs pp

Luminosity difference: 1027 vs 1034 /cm/s

Page 9: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

OBSERVATION of LXD-BHs in ppOBSERVATION of LXD-BHs in pp

• Suppression of QCD-Di-Jets @ pt >Mf ~ 1TeV

• Emission of Multiple Mono-Jets (Hawking-Rad)

• viscous Kapusta-Hawking SM-Plasma T ~ 1TeV

• Charged Stable Black Hole Remnant BHR: • Stiff Track in TPC

Page 10: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

High pT Di-Jet -Suppression in p+p at LHC: High pT Di-Jet -Suppression in p+p at LHC:

High pT ~ Mf sppression in AB -> Jet(pT)+X

=> #Jet(pT) << #Jet(pT) in LXDs in D=4

=> 1/pt physics: hidden behind horizon!

Di- Jets with M> Mf vanish behind Schwarzschild radius Rh

LHC - where are my Di-Jets gone?

Page 11: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

IF (LXD- Black Holes at 14 TeV in pp@ LHC).THEN. (NO High pT- events, No 2*500GeV Di-Jets@LHC

LXD-BHs => No Di-Jets w. M=E1+E2 > 1 TeV

QCD

QCD

ALICE can differentiate LXD- BHs from QCD- Background! (see T. Humanic, ALICE Int. Note)

d =7

Page 12: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Hard Scattering: NO Di-Jets, but BHs !Hard Scattering: NO Di-Jets, but BHs !Jet event in eecollision STAR p + p jet event

See Multi-Mono-Jets in LHC energy p+p & Au+Au ?

ALICE P+P: no-di-jet events!

Page 13: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

SignaturesSignatures

• Event shapes (thermal emission)

• Modifies hadron spectra

• Exotic particle production

• Cut-off in pT spectra

• Remnants?

Page 14: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

DecayDecay

- "Balding phase":BH gets rid of its hair mainly via gravitational radiation not visible in detector

- Hawking phase: decay mainly into standard-model particles.

- R. Emparan, G. T. Horowitz and R. C. Myers Phys. Rev. Lett. 85, 499 - S. B. Giddings and S. Thomas, Phys. Rev. D 65 056010 (2002).- C. M. Harris, M. J. Palmer, M. A. Parker, P. Richardson, A. Sabetfakhri and B. R. Webber, [arXiv:hep-ph/0411022]...

- Final state...

Page 15: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Final state - Final state -

1. - Hawking radiation continues until MBH....Mf and then performs something like a final decay

or

2. - Rapid decay slows down to form eventually quasi stable remnant

- Y. B. Zel’dovich, in: ”Proc. 2nd Seminar in Quantum Gravity”, edited by M. A. Markov and P. C. West, Plenum, New York (1984).- R. J. Adler, P. Chen and D. I. Santiago, Gen. Rel. Grav. 33, 2101 (2001)- J. D. Barrow, E. J. Copeland and A. R. Liddle, Phys. Rev. D 46, 645 (1992).- S. Coleman, J. Preskill and F. Wilczek, Mod. Phys. Lett. A6 1631 (1991).- S. Hossenfelder, M. Bleicher, S. Hofmann, H. Stocker and A. Kotwal, Phys. Lett. B 566, 233- T.G. Rizzo, hep-ph/0601029

Two possible scenarios:

Page 16: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Charybdis*:Charybdis*:

*C. M. Harris, P. Richardson and B. R. Webber, JHEP 0308, 033 (2003) [arXiv:hep-ph/0307305]

(Scylla)

1. Generate black hole2. Hawking decay according to Planck statistics3. As soon as MBH<Mf perform final n-body decay on remaining black hole4. Check charges, and Pythia does particle evolution etc.

Pythia

1. Generate black hole2. Hawking decay according to modified Planck statistics3. No final decay,but stop as soon as MBH-MR<1GeV

4. Check charges, and Pythia does particle evolution etc.

Page 17: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

2 Micro- Black Hole - emitts very hard multiple Monojets due to microcanonic Hawking- Radiation of SMP + SuSy-Partners in Brane (3+1Dim): S,C,B,T - abundant!

+ Kaluza- Klein Tower excitations into BULK (d- Dim)

2 Micro- Black Hole - emitts very hard multiple Monojets due to microcanonic Hawking- Radiation of SMP + SuSy-Partners in Brane (3+1Dim): S,C,B,T - abundant!

+ Kaluza- Klein Tower excitations into BULK (d- Dim)

Page 18: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Hadron spectrumHadron spectrum

• Get hadron spectrum from parton fragmentation

• Charged hadrons from BHsexceed pQCD at high pT

• Bump near Hawking temperature

From I. Sarcevic et al (2007)

Page 19: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

TeV- Mono-Jet Production probabilities much bigger than in QCD!

* Hossenfelder, Hofmann, Bleicher, Stöcker: Phys.Rev.D66:101502,2002**Lönnblad, Sjödahl: hep-ph/0505181

* (@14TeV) **

Page 20: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Exotic particle productionExotic particle production

sQuarks

MPl=1 TeV, MBH=3 TeV

MPl=2 (3) TeV, MBH=5 TeV

MPl=3 (5) TeV, MBH=7 TeV

SMGluino

d=4

Cham

blin, Cooper, N

ayak PR

D (2004)

see also Landsberg PR

L (2002)

Page 21: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

T~1 TeV: Kapusta-Hawking-Knudsen-PlasmaT~1 TeV: Kapusta-Hawking-Knudsen-Plasma

• Extreme Hawking energy density in p+p! • QGP in Pb+Pb• Multiple hard Jets with hundreds of GeV each!• Heavy Quark Jets in „Kapusta-Hawking Plasma“?• Knudsen Gas: No Thermalization!? • Formation of HOT plasma? VISCOSITY!• T > 100 GeV: 1000 * Tcrit-QCD• Hydrodynamic Detonation? Viscous Blast Wave?• „Soft“, Thermal emission rates• Strange, Charm, Bottom, Truth abundant!• + Electroweak-, Higgs- and SUSY particles!

Page 22: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Modified decay in the presenceof quasi stable black hole

Modified decay in the presenceof quasi stable black hole

Corrections to the standard hawking evaporationshould be presumably suppressed by factors of MR/MBH

therefore the entropy of a micro-black hole can be written as

Micro-canonically the mass evolution is given by

This gives only in the limit M>>MR the macro canonical Hawking rate

Page 23: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

4. Stable Mp-BHRemnant - left after Evaporation?4. Stable Mp-BHRemnant - left after Evaporation?

motivates evaporation rate:

Stable BH-Remnants “BHR”

- GUP & QG motivation for BHRs: M. Maziashvili Phys. Lett. B635 (2006) 232 R. Adler, P. Chen, D Santiago Gen.Rel.Grav. 33 (2001) 2101-2108- BHR in Einstein-Gauss-Bonnet string gravity: S. Alexejev et al, Class.Quant.Grav. 19 (2002) 4431- BHR from Stringy corr. Einst.-Hilbert action, Lovelock higher-order curvature: T. Rizzo, JHEP 0506 (2005) - AdS/CFT and BHRs: R. Casadio, hep-ph/0304099  

Page 24: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

RemnantsRemnants

• Include remnant in Charybdis by a modification of the emission spectrum

• Try direct measurement of heavy charged remnant

Ashes of the black hole

MPl=1TeV, Mrem=1 TeV

See also Bonano, Reuter (Renormalized coupling constant) and Rizzo et al (Modified gravity)

Same effect, different origin

Koch, Hossenfelder, Bleicher (2007)

Page 25: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

MicrocanonicalHawking-Evaporation

Produces MultipleMono- Jets

Relics: Metastable LXD-BHs at LHCHossenfelder, Koch, Bleicher

.... . .. .. .

Hard Mono-Jets Emitted

Page 26: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

MicrocanonicalHawking-Evaporati.With Mf-BHR leftover: BHR=1 Track in ALICE-TPC@LHCPlus multiple jets or plasma

.... . .. .. .

Hard Mono-Jets Emitted

Numerical SimulationKoch, Hossenfelder, Bleicher: JHEP 10 (2005) 053

See also Hossenfelder, Bleicher, Hofmann, Stoecker, Ashutosh, Kotwal Phys.Lett.B566.233-239 (2003)

BHR

Page 28: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Events with BHRemnants in pt-spectra - distinguishable from disappearing BHs?

Quenching!!

Events with BHRemnants in pt-spectra - distinguishable from disappearing BHs?

Quenching!!

Koch, Hossenfelder, Bleicher: JHEP 10 (2005) 053

soft

Quench

Page 29: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

ResultsResults

Quasi stable black holes distinguishable from complete BH decay:

B.Koch, M.Bleicher and S.Hossenfelder, ``Black hole remnants at the LHC,'' JHEP 0510 (2005) 053

Page 30: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

ResultsResults

- A charged remnant could be seen in the detector directly

S.Hossenfelder, B.Koch and M.Bleicher, ``Trapping black hole remnants,'' arXiv:hep-ph/0507140.

don´t discard it ;-)

Page 31: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

- A completely decaying BH requests careful triggering and selection of observables:

T. Humanic, "Extra-dimensional physics with p+p in the ALICE Experiment„ Alice-Internal note- (preliminary)

Page 32: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Signatures for black holes at the LHCSignatures for black holes at the LHCHorst Stöcker, GSI Helmholtzzentrum

FiAS + Institut für Theoretische Physik

Goethe Universität Frankfurt

Page 33: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Focus 32/1999

Page 34: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Do mini black holes pose a risk?Do mini black holes pose a risk?

Koch, Bleicher, Stoecker, Phys.Lett.B (2009)see also Giddings, Mangano PRD (2008)

Page 35: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

The main line of the argumentThe main line of the argument

• Black holes have been produced by cosmic rays over the whole history of the earth (sun)

• If the earth still exists, there is no risk• Potential problem:

black holes from cosmic rays may move through the earth, whileblack hole at LHC are produced at rest

• Solution: Calculate if, black holes from CR events would also be stopped in the earth

Page 36: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

Effective charge of black hole on its way through the earth

Effective charge of black hole on its way through the earth

• The black hole absorbs charge randomly, i.e. random walk in charge space

• Doing this the black hole acquires an average charge of |QBH|>0.16e

• The energy loss of a charged particle can be calculated from the well known and well tested Bethe Bloch formula

Page 37: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

ResultResult

• Using parameters for the earth, black holes with an effective charge of |QBH|>0.4e could be stopped inside the earth (this limit decreases by orders of magnitude if pair production is included!)

• However, for the Sun one obtain a limit of |QBH|>0.04e to stop a black hole

The existence of the Sun proves that black holes pose no thread

Page 38: 1 LXD- TeV-BHs in p+p @ LHC - 10^8 p.a.! 2 Di- Jet suppression- Signals

Horst Stöcker, Heidelberg 2009

ConclusionsConclusions• If black holes are produced at LHC, the chance

of their observation is excellent• They will result in

- a modified hadron spectrum- create new particles- show clearly distinguishable event characteristics- and might even leave detectable remnants

• However, further detailed numerical studies will be necessary to provide quantitative guidance

Currentlower bounds