1) Key Input Parameters for Simulating Petroleum-Based...

155
The Total Energy and Emissions Analysis for Marine Systems Model The Center for Energy Analysis and Policy Rochester, New York USER GUIDE 6 September 2007

Transcript of 1) Key Input Parameters for Simulating Petroleum-Based...

Page 1: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

The Total Energy and Emissions Analysis for Marine Systems Model

The Center for Energy Analysis and Policy Rochester, New York

USER GUIDE

6 September 2007

Page 2: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

The TEAMS Model and User Guide were developed by:

James J. Winebrake, Ph.D. Director, Center for Energy and Environmental Analysis

Chair, Department of Science, Technology & Society/Public Policy Rochester Institute of Technology

Rochester, NY

James J. Corbett, Ph.D. Marine Policy Program University of Delaware

Newark, DE

Patrick E. Meyer Center for Energy and Environmental Policy

University of Delaware Newark, DE

Work Sponsored by:

United States Department of Transportation, Research and Special Programs Administration

Center for Climate Change Research under project number DTRS56-04-BAA-0001

Special Thanks to:

Mr. Daniel Yuska Office of Environmental Activities

Maritime Administration United States Department of Transportation

Thanks to Christopher Meyer for designing the TEAMS logo.

The authors would also like to thank members of the Technical Review Group who provided invaluable feedback related to the development of the TEAMS Model.

ii

Page 3: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

This report is printed on recycled paper.

iii

Page 4: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

SIMPLIFIED TABLE OF CONTENTS NOTATION .............................................................................................................................................XIII 1. ABSTRACT .............................................................................................................................................. 1 2. BACKGROUND....................................................................................................................................... 2 3. TOTAL FUEL CYCLE ANALYSIS ...................................................................................................... 3 4. FUEL PATHWAYS INCLUDED IN THE TEAMS MODEL ............................................................. 5 5. USES OF THE TEAMS MODEL........................................................................................................... 6 6. INSTALLING AND NAVIGATING THE TEAMS MODEL.............................................................. 7 7. TEAMS MODEL STRUCTURE: SECTION BREAKDOWN ............................................................ 9 8. INTERPRETING THE ‘RESULTS’ AND ‘GRAPHS’ ...................................................................... 80 9. EXAMPLE RESULTS........................................................................................................................... 92 APPENDIX A. CASE STUDIES............................................................................................................. 104 REFERENCES ......................................................................................................................................... 138

iv

Page 5: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

DETAILED TABLE OF CONTENTS NOTATION .............................................................................................................................................XIII 1. ABSTRACT .............................................................................................................................................. 1 2. BACKGROUND....................................................................................................................................... 2 3. TOTAL FUEL CYCLE ANALYSIS ...................................................................................................... 3 4. FUEL PATHWAYS INCLUDED IN THE TEAMS MODEL ............................................................. 5 5. USES OF THE TEAMS MODEL........................................................................................................... 6 6. INSTALLING AND NAVIGATING THE TEAMS MODEL.............................................................. 7

6.1 INSTALLATION ................................................................................................................................ 7 6.2 SPREADSHEET PROTECTION ........................................................................................................ 7 6.3 DATA VERIFICATION...................................................................................................................... 7 6.4 MANUAL CALCULATIONS............................................................................................................. 7 6.5 CIRCULAR CALCULATIONS.......................................................................................................... 8 6.6 ENABLE MACROS ............................................................................................................................ 8

7. TEAMS MODEL STRUCTURE: SECTION BREAKDOWN ............................................................ 9 Sheet 1: “TEAMS” (Introduction Sheet)............................................................................................. 10 Sheet 2: “Inputs” ................................................................................................................................ 11

1) Key Input Parameters for Simulating Petroleum-Based Fuels.................................................................... 11 1.1) Efficiency for Petroleum Recovery.......................................................................................................... 11 1.2) Petroleum Based Efficiency Options ....................................................................................................... 11 2) Key Input Parameters for Simulating Natural Gas-Based Fuels ................................................................. 12 2.1) Simulation Scenarios: Key Assumptions for Simulations for NG Based Fuel Pathways......................... 12 2.2) Selection of LNG & FTD Production Pathways: Share of NG or FG as Energy Feedstock.................... 13 2.3) Assumptions Regarding Boiling-Off Effects of Liquefied Natural Gas................................................... 13 2.4) Transportation Distances of Moving Feedstock or Fuel .......................................................................... 14 2.5) Distance from Gas Fields to Production Plants........................................................................................ 15 3) Simulation of Biodiesel: Allocation of Upstream Energy Use and Emissions............................................ 15 4) Key Input Parameters for Simulation of Electric Generation...................................................................... 16 4.1) Selection of Model-Calculated or User-Input Emission Factors.............................................................. 16 4.2) Electricity Generation Mix ...................................................................................................................... 16 5) Key Input Parameters for Simulating Main Engine Operations.................................................................. 17 5.1) Main Engine Variables ............................................................................................................................ 17 5.2) Trip Distance and Time ........................................................................................................................... 18 5.3) Engine Characterization per Mode........................................................................................................... 18 5.4) Fuel and Energy Consumption of Fuel Types.......................................................................................... 19 5.4a) Selection of Model-Calculated or User Input Fuel Consumption Values............................................... 19 5.4b) Calculation of Fuel Use using Convention Diesel as Baseline Fuel....................................................... 20 5.4c) Calculation of Fuel Use using Alternative Fuels.................................................................................... 20 5.4d) Fuel Consumption.................................................................................................................................. 21 6) Key Input Parameters for Simulating Auxiliary Engine Operations ........................................................... 21 6.1) Auxiliary Engine Fuel Type to Present on Results Sheet......................................................................... 21 6.2) Auxiliary Engine Variables...................................................................................................................... 22 6.3) Auxiliary Engine Characterization........................................................................................................... 22 6.4) Auxiliary: Fuel and Energy Consumption of Fuel Types......................................................................... 23 6.4a) Auxiliary: Selection of Model-Calculated or User-Input Fuel Consumption Values ............................. 23 6.4b) Calculation of Auxiliary Engine Fuel Use Using Convention Diesel as Baseline Fuel ......................... 24 6.4c) Calculation of Auxiliary Engine Fuel Use Using Alternative Fuels....................................................... 24 6.4d) Fuel Consumption.................................................................................................................................. 25 7) Fuel Blend Inputs........................................................................................................................................ 26 7.1) Share of an Alternative Fuel in an Alternative Fuel Blend ...................................................................... 26 7.2) Type of Diesel for Alternative Fuel Blends ............................................................................................. 26

Sheet 3: “EF” ..................................................................................................................................... 27

v

Page 6: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

1) Emission Factors of Fuel Combustion for Stationary Applications ............................................................ 27 2) Emission Factors of Fuel Combustion: Feedstock and Fuel Transportation ............................................... 29 2.1) Emission Ratios by Fuel Type Relative to Baseline Fuel ........................................................................ 29 2.2) Emission Factors of Fuel Combustion: Origin to Destination.................................................................. 31 2.3) Emission Factors of Fuel Combustion: Destination to Origin.................................................................. 33 2.4) Emission Factors of Fuel Combustion: Vessel Operation........................................................................ 35

Sheet 4: “Fuel_Specs”........................................................................................................................ 36 1) Specifications of Fuels................................................................................................................................ 36 2) Global Warming Potentials of Greenhouse Gasses: relative to CO2 ........................................................... 37 3) Carbon and Sulfur Ratios of Pollutants....................................................................................................... 37

Sheet 5: “T&D”.................................................................................................................................. 38 1) Cargo Payload by Transportation Mode and by Product Fuel Type: Tons ................................................. 38 2) Horsepower Requirements for Ocean Tanker and Barges: Calculated with Cargo Capacity: HP............... 38 3) Fuel Economy and Resultant Energy Consumption of Heavy-Duty Trucks............................................... 39 4) Calculation of Energy Consumption for Ocean Tanker and Barge............................................................. 39 5) Energy Intensity of Rail Transportation: Btu/ton-mile ............................................................................... 40 6) Share of Power Generation Technologies for Pipeline Compression Stations............................................ 40 7) Energy Intensity of Pipeline Transportation: Btu/ton mile ......................................................................... 41 8) Energy Intensity Ratios of Different Process Fuels Used in a Given Transportation Mode: Relative to Baseline Fuel for the Given Mode .................................................................................................................. 41 9) Energy Consumption and Emissions of Feedstock and Fuel Transportation .............................................. 42 10) Summary of Energy Consumption and Emissions for Each Fuel ............................................................. 44 11) Energy Consumption and Emissions from Transportation Related Fuel Production ................................ 46

Sheet 6: “Petroleum” ......................................................................................................................... 47 1) Shares of Combustion Processes for Each Stage ........................................................................................ 47 2) Calculations of Energy Consumption and Emissions for Petroleum Fuels by Stage .................................. 48 3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage ............................................................................................................................................................... 50

Sheet 7: “NG” .................................................................................................................................... 51 1) Scenario Control and Key Input Parameters ............................................................................................... 51 2) Shares of Combustion Processes for Each Stage ........................................................................................ 52 3) Calculations of Energy Consumption and Emissions for Each Stage ......................................................... 53 4) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage ............................................................................................................................................................... 55

Sheet 8: “AG_Inputs”......................................................................................................................... 57 1) Shares of Combustion Processes for Each Stage ........................................................................................ 57 2) Calculations of Energy Consumption and Emissions for Each Stage ......................................................... 58

Sheet 9: “BD”..................................................................................................................................... 60 1) Scenario Control and Key Input Parameters ............................................................................................... 60 2) Soybean Use Key Variables........................................................................................................................ 61 3) Shares of Combustion Processes for Each Stage ........................................................................................ 62 4) Calculations of Energy Consumption and Emissions for Each Stage ......................................................... 63 5) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage ............................................................................................................................................................... 65

Sheet 10: “Coal” ................................................................................................................................ 66 1) Shares of Combustion Processes for Each Stage ........................................................................................ 66 2) Calculations of Energy Consumption and Emissions for Each Stage ......................................................... 67 3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput ........... 69

Sheet 11: “Uranium”.......................................................................................................................... 70 1) Shares of Combustion Processes for Each Stage ........................................................................................ 70 2) Calculations of Energy Consumption and Emissions for Each Stage ......................................................... 71 3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage ............................................................................................................................................................... 73

Sheet 12: “Electric” ........................................................................................................................... 74 1) Scenario Control and Key Input Parameters ............................................................................................... 74 2) Electricity Generation Mixes, Combustion Technology Shares, and Power Plant Energy Conversion Efficiencies ..................................................................................................................................................... 75 3) Electric Transmission and Distribution Loss .............................................................................................. 75 4) Power Plant Emissions: in Grams per kWh of Electricity available at Power Plant Gate........................... 76 5) Power Plant Emissions: Grams per kWh of Electricity Available at User Sites (wall outlets) ................... 77 6) Power Plant Energy Use and Emissions: per mmBtu of Electricity Available at User Sites (wall outlets). 78

vi

Page 7: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

7) Fuel-Cycle Energy Use and Emissions of Electric Generation: Btu or Grams per mmBtu of Electricity Available at User Sites (wall outlets) .............................................................................................................. 79 User Next Steps:.............................................................................................................................................. 79

8. INTERPRETING THE ‘RESULTS’ AND ‘GRAPHS’ ...................................................................... 80 Sheet 13: “Results”............................................................................................................................. 80

1) Well-to-Pump Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Available at Fuel Station Pumps ................................................................................................................................................. 81 2) Auxiliary Engine Well-to-Hull Energy Consumption and Emissions: Per Trip.......................................... 82 2.1) Auxiliary Engine Energy Consumption and Emissions: Feedstock, Fuel & Operation ........................... 82 2.2) Auxiliary Engine Fuel Type to Present in the Following Results Grids .................................................. 84 3) Main and Auxiliary Engine Well-to-Hull Energy Consumption and Emissions: per Trip.......................... 85

Sheet 14: “Graphs” ............................................................................................................................ 89 1) Contribution of Each Stage to Total Fuel-Cycle Energy Consumption and Emissions .............................. 89 2) Reductions in Energy Use and Emissions by Fuel Type............................................................................. 91

9. EXAMPLE RESULTS........................................................................................................................... 92 APPENDIX A. CASE STUDIES............................................................................................................. 104

A.1 CASE STUDY 1: FERRY VESSEL........................................................................................................ 104 A.2 CASE STUDY 2: TANKER VESSEL..................................................................................................... 114 A.3 CASE STUDY 3: CONTAINER VESSEL ............................................................................................... 125

REFERENCES ......................................................................................................................................... 138

vii

Page 8: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

FIGURES

FIGURE 1: FUEL PATHWAYS INCLUDED IN TEAMS ........................................................................................ 5 FIGURE 2: THE 14 “TABS” OF THE TEAMS MODEL ........................................................................................ 9 FIGURE 3: TEAMS INTRODUCTION PANEL ................................................................................................... 10 FIGURE 4: INPUTS SECTION 1.1 ..................................................................................................................... 11 FIGURE 5: INPUTS SECTION 1.2 ..................................................................................................................... 11 FIGURE 6: INPUTS SECTION 2.1 ..................................................................................................................... 12 FIGURE 7: INPUTS SECTION 2.1 ..................................................................................................................... 13 FIGURE 8: INPUTS SECTION 2.3 ..................................................................................................................... 13 FIGURE 9: INPUTS SECTION 2.4 ..................................................................................................................... 14 FIGURE 10: INPUTS SECTION 2.5 ................................................................................................................... 15 FIGURE 11: INPUTS SECTION 3 ...................................................................................................................... 15 FIGURE 12: INPUTS SECTION 4.1 ................................................................................................................... 16 FIGURE 13: INPUTS SECTION 4.2 ................................................................................................................... 16 FIGURE 14: INPUTS SECTION 5.1 ................................................................................................................... 17 FIGURE 15: INPUTS SECTION 5.2 ................................................................................................................... 18 FIGURE 16: INPUTS SECTION 5.3 ................................................................................................................... 18 FIGURE 17: INPUTS SECTION 5.4A ................................................................................................................. 19 FIGURE 18: INPUTS SECTIONS 5.4B AND 5.4C ................................................................................................ 20 FIGURE 19: INPUTS SECTION 5.4D ................................................................................................................. 21 FIGURE 20: INPUTS SECTION 6.1 ................................................................................................................... 21 FIGURE 21: INPUTS SECTIONS 6.2 AND 6.3 .................................................................................................... 22 FIGURE 22: INPUTS SECTION 6.4A ................................................................................................................. 23 FIGURE 23: INPUTS SECTIONS 6.4B AND 6.4C ................................................................................................ 24 FIGURE 24: INPUTS SECTION 6.4D ................................................................................................................. 25 FIGURE 25: INPUTS SECTIONS 7.1 AND 7.2 .................................................................................................... 26 FIGURE 26: EF SECTION 1 ............................................................................................................................. 28 FIGURE 27: EF SECTION 2.1 .......................................................................................................................... 30 FIGURE 28: EF SECTION 2.2 .......................................................................................................................... 32 FIGURE 29: EF SECTION 2.3 .......................................................................................................................... 34 FIGURE 30: EF SECTION 2.4 .......................................................................................................................... 35 FIGURE 31: FUEL SPECS SECTION 1............................................................................................................... 36 FIGURE 32: FUEL SPECS SECTION 2............................................................................................................... 37 FIGURE 33: FUEL SPECS SECTION 3............................................................................................................... 37 FIGURE 34: T&D SECTION 1 ......................................................................................................................... 38 FIGURE 35: T&D SECTION 2 ......................................................................................................................... 38 FIGURE 36: T&D SECTION 3 ......................................................................................................................... 39 FIGURE 37: T&D SECTION 4 ......................................................................................................................... 39 FIGURE 38: T&D SECTION 5 ......................................................................................................................... 40 FIGURE 39: T&D SECTION 5 ......................................................................................................................... 40 FIGURE 40: T&D SECTION 7 ......................................................................................................................... 41 FIGURE 41: T&D SECTION 8 ......................................................................................................................... 41 FIGURE 42: T&D SECTION 9 ......................................................................................................................... 43 FIGURE 43: T&D SECTION 10 ....................................................................................................................... 45 FIGURE 44: T&D SECTION 11 ....................................................................................................................... 46 FIGURE 45: PETROLEUM SECTION 1 .............................................................................................................. 47 FIGURE 46: PETROLEUM SECTION 2 .............................................................................................................. 49 FIGURE 47: PETROLEUM SECTION 3 .............................................................................................................. 50 FIGURE 48: NG SECTION 1 ............................................................................................................................ 51 FIGURE 49: NG SECTION 2 ............................................................................................................................ 52 FIGURE 50: NG SECTION 3 ............................................................................................................................ 54 FIGURE 51: NG SECTION 4 ............................................................................................................................ 56 FIGURE 52: AG INPUTS SECTION 1 ................................................................................................................ 57 FIGURE 53: AG INPUTS SECTION 2 ................................................................................................................ 59

viii

Page 9: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

FIGURE 54: BD SECTION 1 ............................................................................................................................ 60 FIGURE 55: BD SECTION 2 ............................................................................................................................ 61 FIGURE 56: BD SECTION 3 ............................................................................................................................ 62 FIGURE 57: BD SECTION 4 ............................................................................................................................ 64 FIGURE 58: BD SECTION 5 ............................................................................................................................ 65 FIGURE 59: COAL SECTION 1......................................................................................................................... 66 FIGURE 60: COAL SECTION 2......................................................................................................................... 68 FIGURE 61: COAL SECTION 3......................................................................................................................... 69 FIGURE 62: URANIUM SECTION 1 .................................................................................................................. 70 FIGURE 63: URANIUM SECTION 2 .................................................................................................................. 72 FIGURE 64: URANIUM SECTION 3 .................................................................................................................. 73 FIGURE 65: ELECTRIC SECTION 1 .................................................................................................................. 74 FIGURE 66: ELECTRIC SECTION 2 .................................................................................................................. 75 FIGURE 67: ELECTRIC SECTION 3 .................................................................................................................. 75 FIGURE 68: ELECTRIC SECTION 4 .................................................................................................................. 76 FIGURE 69: ELECTRIC SECTION 5 .................................................................................................................. 77 FIGURE 70: ELECTRIC SECTION 6 .................................................................................................................. 78 FIGURE 71: ELECTRIC SECTION 7 .................................................................................................................. 79 FIGURE 72: RESULTS SECTION 1.................................................................................................................... 81 FIGURE 73: RESULTS SECTION 2.1................................................................................................................. 83 FIGURE 74: RESULTS SECTION 2.2................................................................................................................. 84 FIGURE 75: RESULTS SECTION 3 (PART 1 OF 2).............................................................................................. 86 FIGURE 76: RESULTS SECTION 3 (PART 2 OF 2).............................................................................................. 87 FIGURE 77: RESULTS SECTION 4.................................................................................................................... 88 FIGURE 78: GRAPHS SECTION 1 – EXAMPLE GRAPHICAL RESULTS ............................................................... 90 FIGURE 79: GRAPHS SECTION 2 – EXAMPLE GRAPHICAL RESULTS ............................................................... 91 FIGURE 80: TABULAR RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL) .......................................... 93 FIGURE 81: GRAPHICAL RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL)....................................... 93 FIGURE 82: TABULAR RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL) ......................................................... 94 FIGURE 83: GRAPHICAL RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL)...................................................... 94 FIGURE 84: TABULAR RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL) .............................................. 95 FIGURE 85: GRAPHICAL RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL)........................................... 95 FIGURE 86: TABULAR RESULTS (MAIN ENGINE FUEL: NATURAL GAS)........................................................ 96 FIGURE 87: GRAPHICAL RESULTS (MAIN ENGINE FUEL: NATURAL GAS) .................................................... 96 FIGURE 88: TABULAR RESULTS (MAIN ENGINE FUEL: BIODIESEL) ............................................................... 97 FIGURE 89: GRAPHICAL RESULTS (MAIN ENGINE FUEL: BIODIESEL)............................................................ 97 FIGURE 90: TABULAR RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH DIESEL) ...................................... 98 FIGURE 91: GRAPHICAL RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH DIESEL)................................... 98 FIGURE 92: TABULAR RESULTS - PERCENT CHANGES ENERGY CONSUMPTION AND EMISSIONS RELATIVE TO

CONVENTIONAL DIESEL ...................................................................................................................... 99 FIGURE 93: GRAPHICAL RESULTS – PERCENT CHANGE IN TOTAL ENERGY CONSUMPTION........................... 99 FIGURE 94: GRAPHICAL RESULTS – PERCENT CHANGE IN FOSSIL FUEL CONSUMPTION ............................... 99 FIGURE 95: GRAPHICAL RESULTS – PERCENT CHANGE IN PETROLEUM CONSUMPTION .............................. 100 FIGURE 96: GRAPHICAL RESULTS – PERCENT CHANGE IN CO2 EMISSIONS ................................................ 100 FIGURE 97: GRAPHICAL RESULTS – PERCENT CHANGE IN CH4 EMISSIONS ................................................ 100 FIGURE 98: GRAPHICAL RESULTS – PERCENT CHANGE IN N2O EMISSIONS ................................................ 101 FIGURE 99: GRAPHICAL RESULTS – PERCENT CHANGE IN GREENHOUSE GAS EMISSIONS .......................... 101 FIGURE 100: GRAPHICAL RESULTS – PERCENT CHANGE IN VOC EMISSIONS ............................................. 101 FIGURE 101: GRAPHICAL RESULTS – PERCENT CHANGE IN CO EMISSIONS ................................................ 102 FIGURE 102: GRAPHICAL RESULTS – PERCENT CHANGE IN NOX EMISSIONS.............................................. 102 FIGURE 103: GRAPHICAL RESULTS – PERCENT CHANGE IN PM10 EMISSIONS ............................................ 102 FIGURE 104: GRAPHICAL RESULTS – PERCENT CHANGE IN SOX EMISSIONS .............................................. 103 FIGURE 105: FERRY CASE STUDY INPUTS SECTION 1.2 ......................................................................... 104 FIGURE 106: FERRY CASE STUDY INPUTS SECTION 2.4 ......................................................................... 105 FIGURE 107: FERRY CASE STUDY INPUTS SECTION 5.1 ......................................................................... 105 FIGURE 108: FERRY CASE STUDY INPUTS SECTION 5.2 ......................................................................... 105

ix

Page 10: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

FIGURE 109: FERRY CASE STUDY INPUTS SECTION 5.3 ......................................................................... 106 FIGURE 110: FERRY CASE STUDY INPUTS SECTION 6.2 ......................................................................... 106 FIGURE 111: FERRY CASE STUDY INPUTS SECTION 6.3 ......................................................................... 106 FIGURE 112: FERRY CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL).107FIGURE 113: FERRY CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL)

...........................................................................................................................................................107FIGURE 114: FERRY CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL)............... 108 FIGURE 115: FERRY CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL) ........... 108 FIGURE 116: FERRY CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL) ... 109 FIGURE 117: FERRY CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL) .109FIGURE 118: FERRY CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: NATURAL GAS) .............. 110 FIGURE 119: FERRY CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: NATURAL GAS)........... 110 FIGURE 120: FERRY CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: BIODIESEL) .................... 111 FIGURE 121: FERRY CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: BIODIESEL) ................. 111 FIGURE 122: FERRY CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH DIESEL)

...........................................................................................................................................................112FIGURE 123: FERRY CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH

DIESEL) ............................................................................................................................................. 112 FIGURE 124: FERRY CASE STUDY RESULTS W2H ENERGY & EMISSION % CHANGES .......................... 113 FIGURE 125: TANKER CASE STUDY INPUTS SECTION 1.2...................................................................... 115 FIGURE 126: TANKER CASE STUDY INPUTS SECTION 2.4...................................................................... 115 FIGURE 127: TANKER CASE STUDY INPUTS SECTION 5.1...................................................................... 116 FIGURE 128: TANKER CASE STUDY INPUTS SECTION 5.2...................................................................... 116 FIGURE 129: TANKER CASE STUDY INPUTS SECTION 5.3...................................................................... 116 FIGURE 130: TANKER CASE STUDY INPUTS SECTION 6.2...................................................................... 117 FIGURE 131: TANKER CASE STUDY INPUTS SECTION 6.3...................................................................... 117 FIGURE 132: TANKER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL)

...........................................................................................................................................................118FIGURE 133: TANKER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL)

...........................................................................................................................................................118FIGURE 134: TANKER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL) ........... 119 FIGURE 135: TANKER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL) ........ 119 FIGURE 136: TANKER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL) .120FIGURE 137: TANKER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL)

...........................................................................................................................................................120FIGURE 138: TANKER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: NATURAL GAS)........... 121 FIGURE 139: TANKER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: NATURAL GAS) ....... 121 FIGURE 140: TANKER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: BIODIESEL) ................. 122 FIGURE 141: TANKER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: BIODIESEL) .............. 122 FIGURE 142: TANKER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH

DIESEL) ............................................................................................................................................. 123 FIGURE 143: TANKER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH

DIESEL) ............................................................................................................................................. 123 FIGURE 144: TANKER CASE STUDY RESULTS W2H ENERGY & EMISSION % CHANGES ....................... 124 FIGURE 145: CONTAINER CASE STUDY ROUTE CHARACTERISTICS FOR TYPICAL CONTAINER SERVICE

...........................................................................................................................................................125FIGURE 146: CONTAINER CASE STUDY INPUTS SECTION 1.2............................................................... 126 FIGURE 147: CONTAINER CASE STUDY INPUTS SECTION 2.4............................................................... 127 FIGURE 148: CONTAINER CASE STUDY INPUTS SECTION 5.1............................................................... 128 FIGURE 149: CONTAINER CASE STUDY INPUTS SECTION 5.2............................................................... 128 FIGURE 150: CONTAINER CASE STUDY INPUTS SECTION 5.3............................................................... 128 FIGURE 151: CONTAINER CASE STUDY INPUTS SECTION 6.2............................................................... 129 FIGURE 152: CONTAINER CASE STUDY INPUTS SECTION 6.3............................................................... 129 FIGURE 153: CONTAINER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: CONVENTIONAL

DIESEL) ............................................................................................................................................. 130

x

Page 11: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

FIGURE 154: CONTAINER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: CONVENTIONAL DIESEL) ............................................................................................................................................. 130

FIGURE 155: CONTAINER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL) .... 131 FIGURE 156: CONTAINER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: RESIDUAL OIL) ..131FIGURE 157: CONTAINER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: LOW-SULFUR DIESEL)

...........................................................................................................................................................132FIGURE 158: CONTAINER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: LOW-SULFUR

DIESEL) ............................................................................................................................................. 132 FIGURE 159: CONTAINER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: NATURAL GAS).... 133 FIGURE 160: CONTAINER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: NATURAL GAS)..133FIGURE 161: CONTAINER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: BIODIESEL) .......... 134 FIGURE 162: CONTAINER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: BIODIESEL) ....... 134 FIGURE 163: CONTAINER CASE STUDY TABULAR RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH

DIESEL) ............................................................................................................................................. 135 FIGURE 164: CONTAINER CASE STUDY GRAPHICAL RESULTS (MAIN ENGINE FUEL: FISCHER-TROPSCH

DIESEL) ............................................................................................................................................. 135 FIGURE 165: CONTAINER CASE STUDY RESULTS W2H ENERGY & EMISSION % CHANGES ................ 136

xi

Page 12: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

xii

Page 13: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

NOTATION Acronyms and Abbreviations AE auxiliary engine BD biodiesel BD20 fuel mixture of 20% biodiesel and 80% conventional diesel CD compact disk CH4 methane CNG compressed natural gas CO carbon monoxide CO2 carbon dioxide CTRL keyboard key: control DOE United States Department of Energy EF emission factor EPA United States Environmental Protection Agency F9 keyboard key: function 9 FG flared gas FT Fischer-Tropsch FTD Fischer-Tropsch diesel GHG greenhouse gas GREET Greenhouse gases, Regulated Emissions, and Energy use in Transportation GUI graphic user interface GWP global warming potential LF Gas landfill gas LNG liquefied natural gas LS low-sulfur N2O nitrous oxide NA North American NE US Northeast United States NG natural gas NGCC natural gas combined cycle NNA non-North-American NOx nitrogen oxides O2 oxygen PC personal computer PM10 particulate matter with a mean aerodynamic diameter of 10 um or less PTH pump-to-hull SCF standard cubic foot SOx sulfur oxides SO2 sulfur dioxide T&D transportation and distribution VOC volatile organic compound WTH well-to-hull WTP well-to-pump

xiii

Page 14: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Units of Measure bbl barrel of oil or natural gas liquids with volume of 42 US gallons Btu British thermal unit(s) g gram(s) gal gallon(s) GPH gallons per hour HP horsepower kW kilowatt(s) kWh kilowatt hour(s) lb pound(s) MB megabyte(s) mi mile(s) mmBtu million British thermal units ppm part(s) per million µm micrometer(s)

xiv

Page 15: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

The Total Energy and Emissions Analysis for Marine Systems Model

(TEAMS)

1. ABSTRACT This User Guide presents the development and operation of the Total Energy & Emissions Analysis for Marine Systems (TEAMS) model. TEAMS, developed in a spreadsheet format, is the first-ever model able to calculate total fuel-cycle emissions and energy use for marine vessels. TEAMS captures “well-to-hull” emissions—that is, emissions along the entire fuel pathway (extraction processing distribution use in vessels). TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil; (2) petroleum to conventional diesel; (3) petroleum to low-sulfur diesel; (4) natural gas to compressed natural gas; (5) natural gas to Fischer-Tropsch diesel; and, (6) soybeans to Biodiesel.

TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide [CO2], nitrous oxide [N2O], and methane [CH4]) and five criteria pollutants (volatile organic compounds [VOCs], carbon monoxide [CO], nitrogen oxides [NOx], particulate matter with aerodynamic diameters of 10 micrometers or less [PM10], and sulfur oxides [SOx]). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels, including cargo ships, passenger ferries, and container ships. This User Guide provides information on how to use TEAMS and includes case studies for three different vessel types.

1

Page 16: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2. BACKGROUND Evidence has mounted that marine vessels are significant sources of air pollution domestically and internationally (Corbett 1997, 2000; Chan 1999; Gupta 2002; Isakson 2001). At the same time, marine transportation services are expanding rapidly in many regions. These trends combine to present a significant environmental problem with respect to greenhouse gas (GHG) emissions and local air pollution. This problem is especially daunting for transportation planners who seek to increase mobility by expanding marine transportation options. The problem is complex, since marine transportation can take many forms. In terms of passenger transport, ferry services are growing in the U.S., particularly in urban coastal waters (DOT 2000; Dunlap 2002; Bay Area Council 1999; Jacobs 2001). These services may offset landside transportation alternatives, but the impacts on GHG emissions and air quality is unclear (Corbett 2002; Farrell 2002, 2003). In addition, past studies have only looked at “end-of-pipe” emissions impacts of the landside v. waterside debate, without analysis of total fuel-cycle emissions. In terms of freight service, maritime freight may produce significantly lower GHG emissions than other means of freight transport. In fact, a recent European Commission White Paper on European Transport Policy for 2010 emphasized the role of Short Sea Shipping in maintaining an efficient transport system in Europe now and in the future, and the DOT Maritime Administration is exploring the development of a robust short sea shipping system to aid in the reduction of growing freight congestion on our Nation's rail and highway systems. But, once again, comparisons of maritime freight with other modes using a total fuel-cycle methodology have yet to be done. Lastly, there is still much uncertainty about the emissions impacts of alternative fuels in our marine transportation systems. The full impacts of switching marine transportation to natural gas, biodiesel, or other fuels are not well-understood, as analyses to date do not consider total fuel-cycle emissions. With the Total Energy & Emissions Analysis for Marine Systems (TEAMS) Model, a complete picture can be presented of the relative environmental impacts of multimodal transportation. If used in conjunction with existing models, waterside v. landside analyses may be conducted for passenger and freight transportation activities. TEAMS also provides the basis for “fair” comparisons between competing alternative marine fuels. Finally, TEAMS allows analysts to partition emissions from freight and ferry vessels into various stages of fuel production and use; this information is vitally important for international GHG inventories and agreements. This User Guide demonstrates how TEAMS can be used to study total fuel cycle emissions from marine vessels. Appendix A of this document presents three case studies to which users can refer to help study particular vessel emissions.

2

Page 17: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3. TOTAL FUEL CYCLE ANALYSIS Understanding the true emissions impacts from marine sources (and in order to accurately conduct technology and policy assessments related to multi-modal transportation networks) requires a total fuel-cycle analysis. Total fuel-cycle analysis involves consideration of energy use and emissions from the extraction of raw fuel (e.g., oil from the well) to use of the processed fuel in the vessel itself. Each stage in the fuel cycle includes activities that produce GHG and criteria pollutant emissions. These emissions are typically caused by fuel combustion during a particular stage, although some non-combustion emissions occur (e.g., natural gas emissions from pipeline leaks, evaporative losses in refueling). The goal of a total fuel-cycle analysis is to account for each of the emissions events along the entire fuel cycle. These analyses are not simple. Process fuel consumed at each upstream stage (for example, in the energy-intensive activity of petroleum refining) also has its own fuelcycle chain that must be considered. These processes are called “up-upstream” processes. Likewise, fuel used to produce the process fuel has an upstream chain associated with it (“up-up-upstream” processes). These upstream chains go on ad infinitum, in what we call the “upn-stream process” (Winebrake & Wang 2001). The concept that upstream chains go on ad infinitum is commonly referred to in biofuel literature as “system expansion” (Kim & Dale 2005). Moreover, marine transportation is the only transportation mode that routinely uses residual fuel, both a waste product of refining other processed fuels from crude oil and a blended product itself.

TEAMS conducts its analysis using a total fuel cycle algorithm similar to that developed by the Center for Transportation Research at Argonne National Laboratory. In 1996, Argonne developed a spreadsheet-based fuel-cycle model dubbed the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Since its creation, the model has been used extensively to calculate the total fuel cycle energy requirements of and emissions from various alternative transportation fuels and advanced vehicle technologies (Wang 1999). GREET has become the standard for total fuel-cycle analysis due to its ability to calculate emissions from upn-stream and downstream fuel-cycle stages for land-side transportation modes. Although GREET has become the standard model for land-side analysis, the model cannot easily be applied to the marine transportation sector. More detailed discussion on the GREET approach has been elaborated in previous work (Wang 1996, 1999).

TEAMS calculates Btu per trip (Btu/trip) energy use and grams per trip (g/trip) emissions for different marine vessels by taking into account energy use and emissions of combustion and noncombustion events in the upstream and downstream stages of the total fuel-cycle. Like GREET, TEAMS calculates total energy use (all energy sources), fossil energy use (petroleum, natural gas, and coal), and petroleum use. TEAMS calculates emissions of three major greenhouse gases (CO2, N2O, and CH4) and five criteria pollutants (VOCs, CO, NOx, PM10, and SOx). Upstream emissions of these pollutants are first calculated in grams per million Btu (g/mmBtu) of fuel throughput from each upstream stage. Emissions occurring during a stage include those resulting from the combustion of process fuels and from non-combustion processes such as

3

Page 18: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

chemical reactions, fuel leakage, and evaporation. Emissions from the combustion of process fuels for a particular upstream stage are calculated by using the following formula:

000,000,1,,,, ÷⎟⎟⎠

⎞⎜⎜⎝

⎛×= ∑∑

j kkjkjiicm ECEFEM

where, EMcm,i = Combustion emissions of pollutant i in g/mmBtu of fuel throughput,

EFi,j,k = Emission factor of pollutant i for process fuel j with combustion technology k (g/mmBtu of fuel burned), and ECj,k = Consumption of process fuel j with combustion technology k (Btu/mmBtu of fuel throughput).

ECj,k for a given stage is, in turn, calculated by using the following formula:

jtechkfueljkj ShareShareECEC ,, ××= where, EC = Total energy consumption for the given stage (in Btu/mmBtu of fuel throughput); Sharefuelj = Share of process fuel j out of all process fuels consumed during

the stage ; and ⎟⎟⎠

⎞⎜⎜⎝

⎛=∑

jfueljShare 1

Sharetechk,j = Share of combustion technology k out of all combustion

technologies for fuel j . ⎟⎠

⎞⎜⎝

⎛=∑

kjtechkShare 1,

Combustion technology shares (Sharetechk,j) for a given process fuel are influenced by technology performance, technology costs, and emissions regulations for stationary sources. Therefore, the extension of the GREET algorithm in the TEAMS model allows for a comprehensive assessment of marine emissions at all major upstream processes. Adding to these the direct emissions from vessel operation and refueling activities allows one to generate total g/trip estimates of the key pollutants for various vessel types.

4

Page 19: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4. FUEL PATHWAYS INCLUDED IN THE TEAMS MODEL There are six fuel pathways available for simulation in the TEAMS model. For petroleum-based fuel pathways, TEAMS is able to simulate: 1) petroleum to conventional diesel; 2) petroleum to residual oil; and, 3) petroleum to low sulfur diesel. For natural gas-based fuel pathways, TEAMS is able to simulate: 4) petroleum + natural gas to Fischer-Tropsch diesel; and, 5) natural gas to compressed natural gas (including liquid natural gas in certain stages. Lastly, TEAMS is able to simulate: 6) petroleum + soybeans to biodiesel. These pathways are represented visually in Figure 1. Figure 1: Fuel Pathways Included in TEAMS

For plants producing Fischer-Tropsch diesel (FTD), TEAMS includes plant design options to produce: 1) fuels only; 2) fuels and steam (for export); and, 3) fuels and electricity (for export). For the second option, the energy and emission credits from cogenerated steam are estimated by using conventional steam generation with NG. For the third option, the energy and emission credits from cogenerated electricity are estimated by using conventional electricity generation with natural gas combined-cycle (NGCC) turbines.

5

Page 20: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5. USES OF THE TEAMS MODEL Without a total fuel-cycle analysis, comprehensive emissions assessments from transportation modes are not accurate. For this reason, much effort has been placed on understanding the total fuel-cycle impacts of landside technologies (Wang 1996, 1999, 2000; Delucchi 1996, 2002, 2004). With TEAMS, that research has for the first time been extended to marine modes. TEAMS allows decision makers to consider energy use and emissions from the entire fuel cycle when making technology and policy decisions related to marine transportation. Prior to the development of TEAMS, no analytical tools were available for multimodal transportation decision makers to conduct total fuel-cycle analyses. This means that transportation decisions that involve marine modes were not fully informed. This is particularly problematic with respect to situations where marine modes (e.g., passenger ferries and cargo ships) have been compared to other transportation modes (e.g., light-duty vehicles or light rail, and heavy duty diesel trucks and rail freight). TEAMS helps address this methodological gap.

TEAMS may be used in a variety of analyses and projects, such as: • Assessing the full energy and environmental impacts of marine transportation

technologies, including passenger ferry and marine freight transport; • Evaluating the tradeoffs among pollutants and modes; • Comparing emissions impacts of various alternative fuel marine technologies, for

example residual fuel v. diesel v. biodiesel v. natural gas vessels. • Providing supporting information to activities related to emissions inventories for

greenhouse gases; • Allocating emissions related to marine transportation along various parts of the

total fuel cycle, including an identification of where, geographically, those emissions occur;

• Enhancing broader inter-agency (DOT, DOE, EPA) cooperation in marine transportation issues by using a modeling platform (GREET) that is familiar and understood by these agencies; and,

• Assisting with local, regional, and national assessments related to criteria pollutants, greenhouse gas emissions, and petroleum use.

TEAMS may also be instrumental for environmental policy makers and analysts working to understand GHG inventories and sources. We believe the model will facilitate international discussions about GHG emissions from marine transportation fleets. Ultimately, TEAMS will help these decision makers understand the full GHG impacts from marine transport.

6

Page 21: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6. INSTALLING AND NAVIGATING THE TEAMS MODEL

6.1 INSTALLATION The TEAMS model is a multidimensional spreadsheet model developed in Microsoft Excel 2002. TEAMS is designed for users to run the model directly in Excel – although a Visual Basic user interface (or GUI) may be added with future versions. In order to run the model, Excel 97 (or later versions such as the Excel version in MS Office XP, 2002, or 2003) must be installed on a user’s computer. TEAMS requires about 1 MB of memory. If a user receives the model in a zipped format, it must be unzipped by means of zip/unzip software (such as Winzip or the built-in Windows Zip program). The model can then be stored on a computer and opened and run in Excel.

6.2 SPREADSHEET PROTECTION Upon opening the TEAMS spreadsheet, the user can modify or enter information or data only in certain cells. This is because the TEAMS spreadsheet is “protected”. All green-colored (user-input cells) are able to be modified; but if the user attempts to modify any other cell, TEAMS will return a user error. TEAMS has been protected so that the user does not accidentally alter a cell which contains a formula that, if modified, will the result in computational errors.

6.3 DATA VERIFICATION In addition to being protected, TEAMS input cells are “data verified”. This means that the input cells will only accept certain values. For example, if a user enters “0” for “Total Trip Distance” in Inputs Section 5.2, TEAMS will return an error stating that the “Value can not be equal to zero.” The user is then given the option to re-enter a new value greater than zero or to cancel the input (in which case the cell will return to its original value). The user will find all input cells are protected in a similar manner with maximum and minimum ranges, against prohibited values, and against non-numeric or negative values when appropriate. Please note that the verification process is not 100 percent infallible. In very rare circumstances it may be possible to assign a cell an invalid value (e.g., a symbol is assigned to a cell that requires a number). If the model is “run” under these circumstances, it may generate non-repairable error messages in many cells. Because of this, we recommend that users maintain the original TEAMS copy as a backup and use an operational copy for their own calculations.

6.4 MANUAL CALCULATIONS The user should note that automatic calculations are not enabled in the TEAMS model. Because of this, users must manually calculate new results by pressing F9 after new values are input in the model. Automatic calculations are deactivated for data validation purposes.

7

Page 22: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6.5 CIRCULAR CALCULATIONS TEAMS employs the circular calculation feature in Excel to account for the energy use and emissions associated with producing the process fuels that are used to make transportation fuels. To ensure that the circular feature in Excel is turned on, the user should always close all other Excel projects before opening TEAMS. (If a user currently has a different Excel file open which does not utilize circular calculations, the option will not be activated upon opening TEAMS.) Sometimes, the circular calculation feature is not turned on automatically by opening the TEAMS model. In this case, the user can open Excel first and turn this feature on. In addition, we recommend that users conduct TEAMS simulations manually after all inputs are made. To do this, users should turn on the manual calculation feature in Excel. Users can follow the steps below to turn both the manual calculation and the circular calculation features on.

1. Go to Tools button on the task bar. 2. Select Options. 3. Select Calculations. 4. Check Iteration. 5. Enter 100 in the box for Maximum Iterations. 6. Check Manual. 7. Click OK.

After following these steps, users can open the TEAMS model.

6.6 ENABLE MACROS When opening the model, Excel will ask users whether they want to enable the macro functions built into TEAMS. Users should click the Enable button so that TEAMS macro functions will be in operation.

8

Page 23: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

7. TEAMS MODEL STRUCTURE: SECTION BREAKDOWN The TEAMS model is composed of 14 “sheets”. These sheets are accessible at the

bottom of the Excel window by clicking on each sheet “tab”. These are shown in Figure 2. Figure 2: The 14 “Tabs” of the TEAMS Model

The following sections of the Users Guide contain (1) an overview of each TEAMS sheet; (2) a detailed description of each section contained on each sheet; and, (3) figures (screenshots) representing each section as described. Please note that the terms “sheet” and “tab” are analogous.

9

Page 24: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 1: “TEAMS” (Introduction Sheet) This sheet serves as a brief introduction to the TEAMS model. It contains the TEAMS logo, the names of the development team, the current TEAMS version number, the date on which the version was updated, and TEAMS license information. Figure 3: TEAMS Introduction Panel

10

Page 25: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 2: “Inputs” Overview

This sheet presents: (1) key control variables for various scenarios to be simulated by TEAMS; (2) key parametric assumptions for TEAMS simulations; and (3) key input parameters for the specific marine vessel simulated by TEAMS. In this sheet a user can input all the key assumptions for his/her own simulations. In most cases, users do not need to go to any other TEAMS sheets to input data. Section Breakdown

1) Key Input Parameters for Simulating Petroleum-Based Fuels

1.1) Efficiency for Petroleum Recovery • Entries determine energy use during crude oil recovery on the Petroleum tab.

Figure 4: Inputs Section 1.1

1) Key Input Parameters for Simulating Petroleum-Based Fuels1.1) Efficiency for Petroleum Recovery

97.7%

1.2) Petroleum Based Efficiency Options • Sulfur Level entries are sent to the Fuel Specs tab and the EF tab to determine

emission factors during fuel combustion for feedstock and fuel transportation. • Refining Efficiency entries are used on the Petroleum tab to calculate energy use

during Diesel and Residual Oil refining. Figure 5: Inputs Section 1.2

1.2) Petroleum-Based Efficiency Options

Sulfur LevelRefining Efficiency

Conventional Diesel 350 87.5%Low-Sulfur Diesel 15 87.5%Crude Oil 16,000Residual Oil 27,000 95.5%

11

Page 26: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Key Input Parameters for Simulating Natural Gas-Based Fuels

2.1) Simulation Scenarios: Key Assumptions for Simulations for NG Based Fuel Pathways

• The selection of Feedstock Source determines how NG is transported by mode (tanker, barge, pipeline, rail, or truck). Non-North American Natural Gas will be transported by different modes and over greater distances than North American Natural Gas.

• The selection of Plant Design determines whether TEAMS considers co-production factors and/or energy/emissions output/credit due to flared gas.

• If the user selects “1” for “Steam co-production,” they should also alter the production credit level in Btu of steam per mmBtu of FTD produced.

Figure 6: Inputs Section 2.1

2) Key Input Parameters for Simulating Natural Gas-Based Fuels2.1) Simulation Scenarios: Key Assumptions for Simulations for NG Based Fuel Pathways

Feedstock Source

Plant Design Type When NG is

Feedstock

Plant Design Type When FG is

FeedstockCompressed Natural Gas 1

Liquified Natural Gas 1Fistcher-Tropsch Diesel 1 0 0

Feedstocks1 → North American Natural Gas2 → Non-North American Natural Gas

Plant Designs0 → No co-products1 → Steam co-production2 → Electricity co-production

202,000 North American Natural Gas; Steam production credit: Btu of steam per mmBtu of FT diesel produced 202,000 Non-North American Natural Gas; Steam production credit: Btu of steam per mmBtu of FT diesel produced 202,000 Non-North American Flared Gas; Steam production credit: Btu of steam per mmBtu of FT diesel produced

12

Page 27: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.2) Selection of LNG & FTD Production Pathways: Share of NG or FG as Energy Feedstock

• Entries determine the percentage of NG or FG energy and emissions used by TEAMS when calculating the total (the sum of the two) energy and emissions of LNG or FTD production.

Figure 7: Inputs Section 2.1

2.2) Selection of LNG & FTD Production Pathways: Share of NG or FG as Energy Feedstock

2

F

Natural Gas Flared GasLiquefied Natural Gas 100.00% 0.00%

Fischer-Tropsch Diesel 100.00% 0.00%

.3) Assumptions Regarding Boiling-Off Effects of Liquefied Natural Gas • For each stage of storage, transportation and distribution, the user may enter the

boiling-off rate per day, the total days in each stage, and the rate of recovery of any gas that may have boiled-off. Entries under Storage at Production Plant will ultimately determine the CH4 “leakage”, or loss, at the production plant during liquefaction.

• Entries under Transportation/Storage/Distribution/Refueling will determine actual feedstock loss during processes of each stage (by factoring boiling off rate, days in storage, and recovery rate).

igure 8: Inputs Section 2.3

2.3) Assumptions Regarding Boiling-Off Effects of Liquefied Natural Gas

Transportation Distribution from Refueling Station

Storage at Production Plant

from Plant to Bulk Terminal

Bulk Terminal Storage

Bulk Terminal to Refueling Station

Storage for Central Plant

Boiling-Off Rate: % per Day 0.1% 0.1% 0.1% 0.1% 0.10%Duration of Storage or Transit: Days 5 1 5 0.1 3Rate of the Boiling-Off Gas Recovered 80% 80% 80% 80% 80%

13

Page 28: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.4) Transportation Distances of Moving Feedstock or Fuel • All entries are in miles (not nautical miles)1. • Entries are used on the T&D tab to determine energy consumption and emissions

of transporting feedstock and fuel. Default values are based on industry averages. Figure 9: Inputs Section 2.4

2.4) Transportation Distances of Moving Feedstock or Fuel: Miles (One-W ay Distance)

Petroleum Based: Crude Oil Residual Oil US Diesel US LS DieselOcean Tanker 5080 3000 1,450 1,450

Barge 500 340 520 520Pipeline 750 400 400 400

Rail 800 800 800 800Truck for Distribution 30 30 30

Natural Gas: LNG: NA NG LNG: NNA NGOcean Tanker 0 5000

Barge 520 520Pipeline

Rail 800 800Truck for Distribution 30 30

Fischer-Tropsch Diesel: FTD: NA NG FTD: NNA NG FTD: NNA FGOcean Tanker 0 5000 5900

Barge 520 520 520Pipeline 400 400 400

Rail 800 800 800Truck for Distribution 30 30 30

Biodiesel: Ag Chemicals Soybeans BiodieselBarge 400 350 520

Pipeline 400Rail 750 400 800

Truck for Transportation 50 10Truck for Distribution 30 40 30

Electricity: Coal Uranium Ore Enriched UrainiumOcean Tanker

Barge 330Pipeline

Rail 440 100 100Truck for Distribution 50 20 200

1 One nautical mile of 1852 meters converts to 1.15 statute (land) miles. Due to the nautical mile’s relative equality to the statute mile, the statute mile has been used in TEAMS for purposes of simplification and consistency with landside analyses against which marine emissions may be compared.

14

Page 29: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.5) Distance from Gas Fields to Production Plants • Entries are to be made in miles. • Entries are used to determine the energy used and emissions emitted during

transmission and distribution of NG at various stages of the NG fuel-cycle. Figure 10: Inputs Section 2.5

2.5) Distance from Gas Fields to Production Plants: Miles (to use for NG pipeline calculations)

Useage of NG or Production of Transportation Fuels Distance (miles)

NG Stationary Combustion 500Liquefied Natural Gas Plant 0

FT Diesel Plant 0NG Electric Power Plant 375

Refueling Station Use of NA NG for CNG 750

Refueling Station Use of NNA NG for CNG 500

3) Simulation of Biodiesel: Allocation of Upstream Energy Use and Emissions • Enter the allocation of soydiesel and co-product production as a percentage of

total energy consumed and emissions produced during the production of soy and soy products. Three stages are considered: soybean farming, soybean oil (soyoil) extraction, and soybean oil (soyoil) transesterification. Co-products would include soy used for food, among other purposes.

Figure 11: Inputs Section 3

3) Simulation of Biodiesel: Allocation of Upstream Energy Use and Emissions Between Biodiesel and Co-Products

Soydiesel Co-productsSoybean farming 33.6% 66.4%Soyoil extraction 33.6% 66.4%

Soyoil transesterification 70.1% 29.9%

15

Page 30: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4) Key Input Parameters for Simulation of Electric Generation

4.1) Selection of Model-Calculated or User-Input Emission Factors • An entry of “1” tells TEAMS to calculate total emissions from electricity

generation based on defaults located on the EF tab. • An entry of “2” tells TEAMS to calculate total emissions from electricity

generation based on values that the user must enter on the Electric tab. Figure 12: Inputs Section 4.1

4) Key Input Parameters for Simulation of Electric Generation

4

F

4.1) Selection of Model-Calculated or User-Input Emission Factors for Power Plants

1 1: Model-calculated emissions factors2: User-input emission factors

.2) Electricity Generation Mix • Entries determine the base fuel-source of the electricity used during a simulation. • The default values are based on average US values; these may be altered based on

local information or marginal production mixes.

igure 13: Inputs Section 4.2

4.2) Electricy Generation Mix

U.S. Average MixResidual oil 1.0%Natural gas 14.9%

Coal 53.8%Nuclear power 18.0%

Others 12.3%

16

Page 31: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

A Note on Sections 5 and 6: In “Inputs” Sections 5 and 6 the user will enter parameters for simulating main and auxiliary engine operations for their vessel. The simulation can be run with main and auxiliary engines using the same or different fuel types, depending on the options selected. For example, the main engines may use conventional diesel while the auxiliary engines use biodiesel. Additionally, for both main and auxiliary engines, the user has the option of allowing TEAMS to determine fuel consumption from engine specification data or from fuel consumption (gallons per hour) values.

5) Key Input Parameters for Simulating Main Engine Operations

5.1) Main Engine Variables • Enter the vessel type, name, and/or identification number. This is for display

purposes in the Results section and has no impact on any calculations. The space may be left blank.

• Enter the number of main engines on the vessel and the horsepower (HP) per each engine. TEAMS assumes that each engine is sized similarly. If the vessel has engines of different size, the user could indicate one (1) engine with a HP value equal to the total combined HP on the vessel.

• Press F9 to calculate total onboard HP.

Figure 14: Inputs Section 5.1

5) Key Input Parameters for Simulating Main Engine Operations5.1) Main Engine Variables

Vessel Type IDNumber of Engines

Single Engine HPTotal Onboard HP

1Container Ship - 6500 TEU

8227282272

17

Page 32: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5.2) Trip Distance and Time • Enter the total trip distance in statute-miles (not nautical miles) and the trip time

in hours and/or minutes. • Press F9 to calculate total trip time in hours.

Figure 15: Inputs Section 5.2

5.2) Trip Distance and Time

Total Trip Distance (miles) 4800.00

Trip TimeHours 308.00

Minutes 45.00

Total Trip Time (hours) 308.75

5.3) Engine Characterization per Mode • Enter the percent of the total trip spent in each engine mode (idle, maneuvering,

precautionary, slow cruise, and full cruise). This value is based on the total time that the user entered in Section 5.2. For example, if the user entered a total time of 100 hours and the vessel spent ten of those hours in Slow Cruise, the user would enter 10% under “Slow Cruise”. Press F9 to calculate the time spent in each engine mode.

• Enter the horsepower (HP) load factor per single engine for each engine mode; for example, at full cruise, the vessel may have a load factor of 95% of the installed HP capacity.

• Press F9 to calculate: 1) HP per engine per mode; 2) kWh energy produced per each engine mode for the vessel; and, 3) total kWh “energy out” for the entire trip using conventional diesel as the baseline fuel.

Figure 16: Inputs Section 5.3

5.3) Engine Characterization per Mode (Conventional Diesel as Baseline Fuel)

Idle Maneuvering Precautionary Slow Cruise Full Cruisepercent of trip in mode based on time 1.00% 4.00% 5.00% 10.00% 80.00%

time per mode (hours) 3.09 12.34 15.43 30.86 246.84

HP load factor (single engine) 12.50% 25.00% 50.00% 85.00% 95.00%HP per engine 10,284 20,568 41,136 69,931 78,158 Total

Energy Production (kWh) (all engines) 23662.02 189296.14 473240.34 1609017.16 14386506.33 16681721.98 kWh out

Engine Mode

18

Page 33: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5.4) Fuel and Energy Consumption of Fuel Types

5.4a) Selection of Model-Calculated or User Input Fuel Consumption Values • Enter a “1” for TEAMS to calculate energy and emissions based on gallons per

hour fuel consumed by the vessel as derived from the engine characteristics that entered in Sections 5.1, 5.2, and 5.3.

• Enter a “2” for TEAMS to calculate energy and emissions based on gallons per hour fuel consumed by the vessel using GPH data that the user enters in 5.4d.

• Thus, if the user enters “1”, the user should complete Sections 5.4b and 5.4c and skip Section 5.4d; if the user enters “2”, the user should skip Sections 5.4b and 5.4c and enter the gallons per hour fuel consumption values in Section 5.4d.

Figure 17: Inputs Section 5.4a

5.4) Fuel and Energy Consumption of Fuel Types5.4a) Selection of Model-Calculated or User Input Fuel Consumption Values (Conventional Diesel as Baseline Fuel)

1

If you have entered "1" please complete sections 5.4b and 5.4c and skip section 5.4d.If you have entered "2" please skip sections 5.4b and 5.4c and enter GPH values in section 5.4d.

1: Simulate using GPH derived from user-entered engine specifications 2: Simulate using user-entered GPH

19

Page 34: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5.4b) Calculation of Fuel Use using Convention Diesel as Baseline Fuel • This section should only be completed if the user entered a “1” in Section 5.4a. • Enter the rate of efficiency that the engine uses conventional diesel as a fuel. • Press F9 to calculate the kWh out per trip and mmBtu out per trip energy use and

to calculate the total gallons of conventional diesel used per each trip based on the trip characteristics the user entered in Section 5.2.

5.4c) Calculation of Fuel Use using Alternative Fuels • This section should only be completed if the user entered a “1” in Section 5.4a. • Enter the efficiency of the main engines when using each alternative fuel. • Press F9 to calculate the alternative fuel consumption in gallons or SCF2 per trip. • If the user selected “1” in Section 5.4a, and has completed 5.4b and 5.4c, skip

Section 5.4d and continue to Section 6. Figure 18: Inputs Sections 5.4b and 5.4c

5.4b) Calculation of Fuel Use using Conventional Diesel as Baseline Fuel

Engine Efficiency 35%kWh out/trip 16681721.98

mmBtu out/trip 56918.04mmBtu in/trip 162622.96

gallon/trip 1265548.31

5.4c) Calculation of Fuel Use using Alternative Fuels (Conventional Diesel as Baseline Fuel)

Engine Efficiency mmbtu in/tripResidual Oil 34% 167,405.99 1195757.05 gallon/trip

Low Sulfur Diesel 33% 172,478.90 1347491.37 gallon/tripNatural Gas 32% 177,868.86 191669030.79 SCF/trip

Biodiesel 33% 172,478.90 1473045.48 gallon/tripFischer-Tropsch Diesel 32% 177,868.86 1497212.63 gallon/trip

Alternative Fuel Consumption

Baseline Fuel Consumption

2 Here pertaining to natural gas, a standard cubic foot (SCF) is defined as a cubic foot of volume at 60 degrees Fahrenheit and 14.7 pounds per square inch (PSI) of pressure.

20

Page 35: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5.4d) Fuel Consumption • This section should only be completed if the user entered a “2” in Section 5.4a. • Enter the fuel consumption in gallons per hour for each fuel type in each engine

mode. If the user does not know this information, it is recommended that they calculate GPH based on user-entered engine specifications (see Inputs Section 5.4a).

• Press F9 to calculate total gallons or SCF consumed per trip. Figure 19: Inputs Section 5.4d

5.4d) Fuel Consumption (Only necessary if you are simulating using user-entered GPH)

6

6

F

Idle Maneuvering Precautionary Slow Cruise Full Cruise TotalConventional Diesel 30 40 60 90 100 28991.625 gallon/trip

Residual Oil 21 31 52 75 92 26290.0625 gallon/tripLow Sulfur Diesel 31 41 61 91 101 29300.375 gallon/trip

Natural Gas (SCF) 3200 4100 7800 10000 11000 3206677.5 SCF/tripBiodiesel 35 45 65 95 120 34240.375 gallon/trip

Fischer-Tropsch Diesel 34 44 63 92 111 31878.4375 gallon/trip

Fuel Consumption (GPH per engine per mode)

) Key Input Parameters for Simulating Auxiliary Engine Operations

.1) Auxiliary Engine Fuel Type to Present on Results Sheet • Given the six fuel options, enter the type of fuel that the auxiliary engines will

use. The fuel type selected here is independent of the fuel type used in the main engines and energy and emissions will be calculated along its own fuel-cycle. 1 Conventional Diesel 2 Residual Oil 3 Low Sulfur Diesel 4 Natural Gas 5 Biodiesel 6 Fischer-Tropsch Diesel

• The selection of auxiliary engine fuel type will be factored into the calculation of total vessel energy and emissions per trip on the Results tab. Please see the Results tab documentation for more information.

• Press F9 to calculate results based on the selection of a new auxiliary fuel type.

igure 20: Inputs Section 6.1

6) Key Input Parameters for Simulating Auxiliary Engine Operations6.1) Auxiliary Engine Fuel Type to Present on Results Sheet

1 1: Conventional Diesel 4: Natural Gas2: Residual Oil 5: Biodiesel3: Low Sulfur Diesel 6: Fischer-Tropsch Diesel

21

Page 36: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6.2) Auxiliary Engine Variables • Enter the total number of onboard auxiliary engines. (This value is for reference

only and will not be used in calculations.) • Enter the number of auxiliary engines in use during the trip. (This value will be

used in calculations.) • Enter the rated horsepower (HP) per each auxiliary engine. • Press F9 to calculate total onboard auxiliary horsepower.

6.3) Auxiliary Engine Characterization • Enter the percent of the trip that the auxiliary engine is active (based on time); for

example, the auxiliary engines may be deactivated when the vessel is in idle. Press F9 to calculate the total time that the auxiliary engine(s) are active.

• Enter the HP load factor per auxiliary engine; for example, the auxiliary engine may run at only 50 percent of the installed HP capacity. Press F9 to calculate the total HP per each auxiliary engine and the total energy production in kWh of all onboard auxiliary engines.

Figure 21: Inputs Sections 6.2 and 6.3

22

Page 37: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6.4) Auxiliary: Fuel and Energy Consumption of Fuel Types

6.4a) Auxiliary: Selection of Model-Calculated or User-Input Fuel Consumption Values

• Enter a “1” and TEAMS will calculate energy and emissions based on gallons per hour fuel consumed by the vessel derived from the engine characteristics that the user entered in Sections 6.1, 6.2, and 6.3.

• Enter a “2” and TEAMS will calculate energy and emissions based on gallons per hour fuel consumed by the vessel using GPH data from Section 6.4d.

• Thus, if the user enters “1”, the user should complete Sections 6.4b and 6.4c and skip Section 6.4d; if the user enters “2”, the user should skip Sections 6.4b and 6.4c and enter the GPH fuel consumption values in Section 6.4d.

Figure 22: Inputs Section 6.4a

6.4) Auxiliary: Fuel and Energy Consumption of Fuel Types6.4a) Auxiliary: Selection of Model-Calculated or User-Input Fuel Consumption Values (Conventional Diesel as Baseline Fuel)

1

If you have entered "1" please complete sections 6.4b and 6.4c and skip section 6.4d.If you have entered "2" please skip sections 6.4b and 6.4c and enter GPH values in section 6.4d.

1: Simulate using GPH derived from user-entered Auxiliary engine specifications 2: Simulate using user-entered GPH

23

Page 38: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6.4b) Calculation of Auxiliary Engine Fuel Use Using Convention Diesel as Baseline Fuel

• This section should only be completed if the user entered a “1” in Section 6.4a. • Enter the engine efficiency using conventional diesel as a fuel. • Press F9 to calculate the kWh and mmBtu consumed per trip and the total gallons

of conventional diesel used per trip based on the trip characteristics in Section 6.2.

6.4c) Calculation of Auxiliary Engine Fuel Use Using Alternative Fuels • This section should only be completed if the user entered a “1” in Section 6.4a. • The efficiencies of the auxiliary engine(s) when using each alternative fuel are

derived from the efficiencies entered for the main engines in Section 5.4c. However, the user may override those values here if the main and auxiliary engines run at different efficiency levels.

• Press F9 to calculate the alternative fuel consumption in gallons or SCF per trip. • If the user has selected “1” in Section 6.4a, and has completed 6.4b and 6.4c, skip

Section 6.4d and continue to Section 7. Figure 23: Inputs Sections 6.4b and 6.4c

6.4b) Calculation of Auxiliary Engine Fuel Use using Conventional Diesel as Baseline Fuel

Auxiliary Engine Efficiency 35%kWh out/trip 13661.34

mmBtu out/trip 46.61mmBtu in/trip 133.18

gallon/trip 1036.41

6.4c) Calculation of Auxiliary Engine Fuel Use using Alternative Fuels (Conventional Diesel as Baseline Fuel)

Engine Efficiency (from 5.4c)

Auxiliary mmbtu in/trip

Residual Oil 34% 137.10 979.25 gallon/tripLow Sulfur Diesel 33% 141.25 1103.52 gallon/trip

Natural Gas 32% 145.66 156965.56 SCF/tripBiodiesel 33% 141.25 1206.34 gallon/trip

Fischer-Tropsch Diesel 32% 145.66 1226.13 gallon/trip

Auxiliary Engine Alternative Fuel Consumption

Baseline Fuel Consumption

24

Page 39: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6.4d) Fuel Consumption • This section should only be completed if the user entered a “2” in Section 6.4a. • Enter the fuel consumption in gallons per hour for each fuel type for the auxiliary

engines. Unlike the main engines, which are simulated using all six fuel types, TEAMS will only simulate the auxiliary engines using the one fuel type selected in Inputs Section 6.1. Thus, in this section, the user may enter all values for all fuel types, but it is only necessary to enter values for the fuel being used by the auxiliary engines. In other words, if the user is simulating a vessel using biodiesel for auxiliary engine fuel, the user does not necessarily need to enter fuel consumption values for FTD (but the user may leave the default values in place – they will not be considered).

• Press F9 to calculate total gallons or SCF consumed per trip. Figure 24: Inputs Section 6.4d

6.4d) Auxiliary Engine Fuel Consumption (Only necessary if you are simulating using user-entered GPH)

Fuel Consumption (GPH per

Auxiliary engine) TotalConventional Diesel 9 2639.8125 gallon/trip

Residual Oil 10 2933.125 gallon/tripLow Sulfur Diesel 11 3226.4375 gallon/trip

Natural Gas (SCF) 800 234650 SCF/tripBiodiesel 9 2639.8125 gallon/trip

Fischer-Tropsch Diesel 10 2933.125 gallon/trip

25

Page 40: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

7) Fuel Blend Inputs

7.1) Share of an Alternative Fuel in an Alternative Fuel Blend • FTD and BD may be a blend of alternative and conventional diesel. • Entries are used to determine total energy and emissions of the vessel using

blended fuels.

7.2) Type of Diesel for Alternative Fuel Blends • FTD may be a blend of FTD and Conventional Diesel or FTD and LS Diesel. • BD may be a blend of BD and Conventional Diesel or BD and LS Diesel.

Figure 25: Inputs Sections 7.1 and 7.2

7) Fuel Blend Inputs (applies to fuel for main and Auxiliary engines)7.1) Share of an Alternative Fuel in an Alternative Fuel Blend: Volumetric Percentage

Volumetric content of FT diesel in FTD blend 100%Volumetric content of biodiesel in biodiesel blend 20%

7.2) Type of Diesel for Alternative Fuel Blends

Diesel for Fischer-Tropsch diesel blend 1 1: Conventional Diesel Diesel for biodiesel blend 1 2: Low-Sulfur Diesel

26

Page 41: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 3: “EF” Overview This sheet contains emission factors (EFs) for individual combustion technologies that burn various fuels. Table 1 lists EFs for combustion technologies applied to stationary sources3. Table 2.1 lists emission ratios for alternative fuels relative to baseline fuel for power units applied to transportation modes (ocean tankers, barges, locomotives, trucks, pipelines, etc.). Table 2.2 lists the emission rates for different transportation modes fueled by different fuels for trips from product origin to destination. Table 2.3 lists the emission rates for different transportation modes fueled by different fuels for trips from product destinations back to origins (back-haul trips). Table 2.4 lists the emission rates for the simulation vessel (as identified in Inputs) fueled by the six alternative fuel types. These emission factors are used in other TEAMS sheets to calculate emissions associated with fuel combustion in various upstream stages. Section Breakdown

1) Emission Factors of Fuel Combustion for Stationary Applications • This section lists the emission factors (EFs) for combustion technologies applied

to stationary sources. The following eight emission types are considered: VOC, CO, NOx, PM10, SOx, CH4, N2O, and CO2.

• EFs for stationary application are based on GREET data. GREET’s original source was EPA’s AP-42 compilation of stationary application emission factors.

• EFs for stationary applications cannot be altered without special permission. Figure 26: EF Section 1 located on next page.

3 Emission factors for stationary applications are based on the Environmental Protection Agency’s AP-42 compilation.

27

Page 42: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 26: EF Section 1

28

1) Em

ission

Facto

rs of

Fuel

Comb

ustio

n for

Stat

ionar

y App

licati

ons (

gram

s per

mmB

tu of

fuel

burn

ed)

Crud

e:

Utilit

y/Ind

ustri

al Bo

iler

Small

Ind

ustri

al Bo

iler

Larg

e Gas

Tu

rbine

CC G

as

Turb

ineSm

all

Turb

ine

Stati

onary

Re

cipro

cati

ng E

ngine

NG

Fla

ring i

n Oi

l Fiel

dUtili

ty Bo

iler

Indus

trial

Boile

rCo

mmerc

ial

Boile

rInd

ustri

al Bo

iler

Comm

ercial

Bo

iler

Stati

onary

Re

cipro

cati

ng E

ngine

Turb

ineFa

rming

Tr

actor

Utilit

y Boil

erGa

sifica

tion

Turb

ineInd

ustri

al Bo

iler

Indus

trial

Boile

rVO

C2.7

002.7

001.0

501.0

500.9

0837

.280

2.500

2.460

0.910

1.103

0.710

1.200

39.86

01.3

3590

.000

1.140

1.477

0.960

0.820

CO41

.100

41.10

07.5

007.5

0077

.180

1006

.365

26.00

016

.200

16.20

016

.214

17.70

017

.700

413.6

408.7

1433

4.000

9.610

12.30

996

.100

23.74

0NO

x48

.900

48.90

049

.400

49.40

015

4.360

1567

.500

48.90

010

3.700

178.2

0019

.457

84.70

070

.430

1557

.200

131.6

6093

9.000

211.4

0044

.068

211.4

0018

1.600

PM10

3.700

3.700

3.290

3.290

11.60

77.3

303.7

006.1

506.1

5014

.083

3.530

6.150

48.66

016

.989

43.52

012

.661

6.524

12.66

129

.712

SOx

0.309

0.309

0.309

0.309

0.309

0.309

0.309

700.0

7170

0.071

700.0

7117

.650

17.65

017

.650

17.65

017

.650

600.2

3044

.068

600.2

3039

3.846

154

CH4

1.100

1.100

4.260

4.260

23.15

436

8.940

49.00

00.9

103.2

400.7

000.1

800.7

603.9

400.8

444.4

100.7

505.0

981.1

200.3

60N2

O1.1

001.1

001.5

001.5

002.0

001.5

001.1

000.3

600.3

600.3

570.3

900.3

902.0

002.0

002.0

001.0

605.0

980.7

602.0

00CO

259

,863

59,86

3

59

,912

59,91

2

59

,751

57,22

7

59

,756

82,67

7

82

,675

82,68

1

80

,402

80,39

9

79

,648

80,41

3

79

,615

107,9

87

10

7,970

10

7,850

76

,677

Coal:

Natur

al Ga

s:Re

sidua

l Oil:

Dies

el:

Page 43: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Emission Factors of Fuel Combustion: Feedstock and Fuel Transportation

2.1) Emission Ratios by Fuel Type Relative to Baseline Fuel • Emission factors of fuel combustion for feedstock and fuel transportation are

affected by load factors. Thus, emission factors are determined for the destination trip and the back-haul trip, separately.

• Section 2.1 lists emission ratios for alternative fuels relative to baseline fuel for power units applied to transportation modes (ocean tankers, barges, locomotives, trucks, pipelines, etc.); these values may be altered.

Figure 27: EF Section 2.1 located on next page.

29

Page 44: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) E

mis

sion

Fac

tors

of F

uel C

ombu

stio

n: F

eeds

tock

and

Fue

l Tra

nspo

rtat

ion

From

Pro

duct

Orig

in to

Pro

duct

Des

tinat

ion

(gra

ms

per m

mB

tu o

f fue

l bur

ned)

2.1)

Em

issi

on R

atio

s by

Fue

l Typ

e R

elat

ive

to B

asel

ine

Fuel

Diesel

Natural Gas

FTD

Diesel

Natural Gas

FTD

Biodiesel

Natural Gas

FTD

Biodiesel

Electricity

LNG

FTD

Biodiesel

Residual Oil

FTD

Biodiesel

VOC

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

0.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

0C

O1.

000

0.50

01.

000

1.00

00.

500

666.

000

1.00

00.

500

1.00

01.

000

0.00

00.

500

1.00

01.

000

1.00

01.

000

1.00

0N

Ox

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

0.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

0PM

101.

000

0.01

01.

000

1.00

00.

010

1.00

01.

000

0.01

01.

000

1.00

00.

000

0.01

01.

000

1.00

01.

000

1.00

01.

000

CH

41.

000

20.0

001.

000

1.00

020

.000

1.00

01.

000

20.0

001.

000

1.00

00.

000

20.0

001.

000

1.00

01.

000

1.00

01.

000

N2O

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

0.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

0

Hea

vy-D

uty

Truc

k: D

iese

l as

Bas

elin

e Fu

elPi

pelin

e: D

iese

l as

Bas

elin

e Fu

elO

cean

Tan

ker:

Res

idua

l Oil

as

Bas

elin

e Fu

elB

arge

: Res

idua

l Oil

as B

asel

ine

Fuel

Loco

mot

ive:

Die

sel a

s B

asel

ine

Fuel

Figure 27: EF Section 2.1

30

Page 45: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.2) Emission Factors of Fuel Combustion: Origin to Destination • Lists the emission rates for different transportation modes fueled by different

fuels for trips from product origin to destination. • Enter Residual Oil EFs for each transportation mode. • Press F9 to calculate values for the other applicable fuels based on the user-

entered values for residual oil and fuel specifications from the Fuel Specs tab. Figure 28: EF Section 2.2 located on next page.

31

Page 46: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 28: EF Section 2.2

2.2)

Em

issi

on F

acto

rs o

f Fue

l Com

bust

ion:

Fee

dsto

ck a

nd F

uel T

rans

port

atio

n fr

om P

rodu

ct O

rigin

to P

rodu

ct D

estin

atio

n (g

ram

s pe

r mm

Btu

of f

uel b

urne

d)

Residual Oil

Diesel

Natural Gas

FTD

Residual Oil

Diesel

Natural Gas

FTD

Biodiesel

Diesel

Natural Gas

FTD

Biodiesel

ElectricityHHD Diesel Truck Emission Factors (g/mi.)

Diesel

LNG

FTD

BiodieselMHD Diesel Truck Emission Factors (g/mi.)

Diesel

LNG

FTD

Biodiesel

NG

Diesel

Electricity

Residual Oil

FTD

Biodiesel

NG

Diesel

Electricity

Residual Oil

FTD

Biodiesel

VOC

82.5

5682

.556

82.5

5682

.556

37.6

9237

.692

37.6

9237

.692

37.6

9277

.821

77.8

2177

.821

77.8

210.

000

0.67

831

.658

31.6

5831

.658

31.6

580.

694

39.4

2639

.426

39.4

2639

.426

0.90

81.

335

0.00

01.

335

1.33

51.

335

230.

400

40.8

600.

000

40.8

6040

.860

40.8

60C

O21

9.87

121

9.87

110

9.93

521

9.87

110

0.38

410

0.38

450

.192

100.

384

100.

384

207.

004

103.

502

207.

004

207.

004

0.00

03.

274

152.

872

76.4

3615

2.87

215

2.87

22.

025

115.

039

57.5

1911

5.03

911

5.03

977

.180

8.71

40.

000

8.71

48.

714

8.71

437

9.84

745

9.60

00.

000

459.

600

459.

6045

9.60

0N

Ox

2229

.844

2229

.844

2229

.844

2229

.844

1018

.055

1018

.055

1018

.055

1018

.055

1018

.055

2101

.167

2101

.167

2101

.167

2101

.167

0.00

013

.726

640.

903

640.

903

640.

903

640.

903

10.0

4657

0.70

757

0.70

757

0.70

757

0.70

715

4.36

013

1.66

00.

000

131.

660

131.

660

131.

660

1074

.467

2133

.600

0.00

021

33.6

0021

33.6

0021

33.6

00PM

1055

.290

55.2

900.

553

55.2

9025

.243

25.2

430.

252

25.2

4325

.243

52.1

400.

521

52.1

4052

.140

0.00

00.

237

11.0

660.

111

11.0

6611

.066

0.19

411

.021

0.11

011

.021

11.0

2111

.607

16.9

890.

000

16.9

8916

.989

16.9

8911

.607

16.9

890.

000

16.9

8916

.989

16.9

89SO

x14

00.1

4317

.650

0.30

90.

000

1400

.143

17.6

500.

309

0.00

00.

000

17.6

500.

309

0.00

00.

000

0.00

00.

378

17.6

500.

000

0.00

00.

000

0.31

117

.650

0.00

00.

000

0.00

00.

309

17.6

500.

000

1400

.143

0.00

00.

000

0.30

917

.650

0.00

014

00.1

430.

000

0.00

0C

H4

4.04

54.

045

80.9

054.

045

1.84

71.

847

36.9

381.

847

1.84

73.

813

76.2

653.

813

3.81

30.

000

0.03

31.

551

31.0

241.

551

1.55

10.

034

1.93

238

.637

1.93

21.

932

23.1

540.

844

0.00

00.

844

0.84

40.

844

328.

393

4.54

00.

000

4.54

04.

540

4.54

0N

2O2.

000

0.00

00.

000

0.00

02.

000

0.00

00.

000

0.00

00.

000

2.00

02.

000

2.00

02.

000

0.00

00.

051

2.40

02.

400

2.40

02.

400

0.05

12.

897

2.89

72.

897

2.89

72.

000

2.00

00.

000

2.00

02.

000

2.00

02.

000

2.00

00.

000

0.00

00.

000

0.00

0C

O2

82,0

9879

,819

59,2

8676

,760

82,4

3280

,152

59,6

4177

,093

81,4

4879

,854

59,3

2476

,795

81,1

500

1,71

580

,090

58,8

3877

,030

81,3

851,

410

80,1

2458

,823

77,0

6481

,419

59,7

5180

,413

082

,692

77,3

5381

,708

57,7

2179

,571

081

,850

76,5

1180

,866

Loco

mot

ive

Hea

vy-H

eavy

-Dut

y Tr

uck:

gra

ms

per M

MB

tuB

arge

Pipe

line

Rec

ipro

catin

g En

gine

Med

ium

-Hea

vy-D

uty

Truc

k: g

ram

s pe

r mm

Btu

Pipe

line

Turb

ine

Oce

an T

anke

r

0

32

Page 47: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.3) Emission Factors of Fuel Combustion: Destination to Origin • Lists the emission rates for different transportation modes fueled by different

fuels for trips from product destinations back to origins (back-haul trips). • Enter Residual Oil EFs for each transportation mode. • Press F9 to calculate values for the other applicable fuels based on the user-

entered values for residual oil and fuel specifications from the Fuel Specs tab. Figure 29: EF Section 2.3 located on next page.

33

Page 48: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 29: EF Section 2.3

2.3)

Em

issi

on F

acto

rs o

f Fue

l Com

bust

ion

for F

eeds

tock

and

Fue

l Tra

nspo

rtat

ion:

Trip

from

Pro

duct

Des

tinat

ion

Bac

k to

Pro

duct

Orig

in (g

ram

s pe

r mm

Btu

of f

uel b

urne

d)

Residual Oil

Diesel

Natural Gas

FTD

Residual Oil

Diesel

Natural Gas

FTD

Biodiesel

Diesel

Natural Gas

FTD

Biodiesel

ElectricityHHD Diesel Truck Emission Factors (g/mi.)

Diesel

LNG

FTD

BiodieselMHD Diesel Truck Emission Factors (g/mi.)

Diesel

LNG

FTD

Biodiesel

VOC

85.5

8585

.585

85.5

8585

.585

41.8

3041

.830

41.8

3041

.830

41.8

3077

.821

77.8

2177

.821

77.8

210.

000

0.67

826

.381

26.3

8126

.381

26.3

810.

694

39.4

2639

.426

39.4

2639

.426

CO

247.

488

247.

488

123.

744

247.

488

131.

695

131.

695

65.8

4813

1.69

513

1.69

520

7.00

410

3.50

220

7.00

420

7.00

40.

000

3.27

412

7.39

363

.696

127.

393

127.

393

2.02

511

5.03

957

.519

115.

039

115.

039

NO

x22

04.0

3822

04.0

3822

04.0

3822

04.0

3810

10.4

1410

10.4

1410

10.4

1410

10.4

1410

10.4

1421

01.1

6721

01.1

6721

01.1

6721

01.1

670.

000

13.7

2653

4.08

653

4.08

653

4.08

653

4.08

610

.046

570.

707

570.

707

570.

707

570.

707

PM10

54.8

3354

.833

0.54

854

.833

25.2

5725

.257

0.25

325

.257

25.2

5752

.140

0.52

152

.140

52.1

400.

000

0.23

79.

222

0.09

29.

222

9.22

20.

194

11.0

210.

110

11.0

2111

.021

SOx

1400

.143

17.6

500.

309

0.00

014

00.1

4317

.650

0.30

90.

000

0.00

017

.650

0.30

90.

000

0.00

00.

000

0.45

417

.650

0.00

00.

000

0.00

00.

311

17.6

500.

000

0.00

00.

000

CH

44.

194

4.19

483

.873

4.19

42.

050

2.05

040

.994

2.05

02.

050

3.81

376

.265

3.81

33.

813

0.00

00.

033

1.29

325

.854

1.29

31.

293

0.03

41.

932

38.6

371.

932

1.93

2N

2O2.

000

0.00

00.

000

0.00

02.

000

2.00

02.

000

2.00

02.

000

2.00

02.

000

2.00

02.

000

0.00

00.

051

2.00

02.

000

2.00

02.

000

0.05

12.

897

2.89

72.

897

2.89

7C

O2

82,0

4579

,766

59,2

4776

,706

82,3

6980

,090

59,5

9277

,030

81,3

8579

,854

59,3

2476

,795

81,1

500

1,71

580

,147

58,8

8977

,087

81,4

421,

410

80,1

2458

,823

77,0

6481

,419

Oce

an T

anke

rB

arge

Loco

mot

ive

Hea

vy-H

eavy

-Dut

y Tr

uck:

gra

ms

per M

MB

tuM

ediu

m-H

eavy

-Dut

y Tr

uck:

gra

ms

per m

mB

tu

34

Page 49: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.4) Emission Factors of Fuel Combustion: Vessel Operation • Lists the emission rates for the simulation vessel identified on the Inputs sheet

fueled by the six alternative fuel types. Although this data is based on best available estimates, it may be beneficial for the user to alter these inputs to reflect the most recent available data pertaining to their vessel.

Figure 30: EF Section 2.4

2.4) Emission Factors of Fuel Combustion: Vessel Operation (grams per mmBtu of fuel burned)

Res

idua

l Oil

Die

sel

Nat

ural

Gas

FTD

Bio

dies

el

Ultr

a-lo

w S

ulfu

r D

iese

l

VOC 82.556 82.556 82.556 82.556 82.556 82.556CO 247.480 247.480 123.744 247.480 247.480 219.223NOx 2229.884 2229.884 2229.884 2229.884 2229.884 2229.884PM10 55.290 55.290 0.540 55.290 55.290 55.290SOx 259.280 17.600 0.309 0.001 0.001 0.001CH4 4.040 4.040 83.870 4.040 4.040 4.040N2O 2.000 2.000 2.000 2.000 4.000 2.000CO2 82,098 79,766 59,247 76,707 82,098 82,098

Simulation Vessel

35

Page 50: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 4: “Fuel_Specs” Overview This sheet contains specifications for individual fuels. Table 1 specifies the energy content, fuel density, carbon weight ratio, and sulfur weight ratio for each fuel. The parametric values for these fuel specifications are needed to estimate energy consumption and emissions, as well as to make conversions for mass, volume, and energy contents. Table 2 lists the GWPs for individual GHGs, which are used in TEAMS to convert emissions of GHGs into CO2-equivalent emissions. Table 3 lists carbon content in VOCs, CO, CO2, and CH4 and the sulfur content in sulfur dioxide (SO2). These conversion factors are used for carbon emission and SOx emission calculations throughout the TEAMS model. Section Breakdown

1) Specifications of Fuels • Lists the energy content (in Btu/gal or Btu/SCF or Btu/ton), density (in grams/gal

or grams/SCF), carbon weight ratio (in percent by weight), and sulfur weight ratio (in parts per million by weight and in the actual ratio by weight). The sulfur weight ratio of key fuel types (crude oil, conventional diesel, low-sulfur diesel, and residual oil) is entered by the user on the Inputs sheet. This sheet takes the sulfur weight ratio in parts per million and converts to actual ratio by weight. It is the value in the actual ratio by weight column that is used to calculate results during a TEAMS simulation.

• All values on this sheet may be directly altered but it is highly recommended that users do not alter these values. Default values are based on best available data. In the case that the user does make changes, press F9 to simulate using the updated values.

Figure 31: Fuel Specs Section 1

1) Specifications of Fuels

Fuel Energy Content Density C ratio S ratio S ratioLiquid Fuels: Btu/gal grams/gal (% by wt) (ppm by wt) Actual ratio by wtCrude oil 130,000 3,200 85.0% 16,000 0.016000Conventional diesel 128,500 3,240 87.0% 350 0.000350Low-sulfur diesel 128,000 3,240 87.0% 15 0.000015Liquefied petroleum gas (LPG) 84,000 2,000 82.0% 0 0.000000Residual oil 140,000 3,630 87.0% 27,000 0.027000Liquefied natural gas (LNG) 72,900 1,589 74.0% 0 0.000000Methyl ester (biodiesel, BD) 117,090 3,346 78.0% 0 0.000000Fischer-Tropsch diesel (FTD) 118,800 2,915 86.0% 0 0.000000

Gaseous Fuels: Btu/SCF gms/SCFNatural gas 928 20.5 74.0% 7 0.000007

Solid Fuels: Btu/tonCoal 18,495,000 60.0% 11,100 0.011100

36

Page 51: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Global Warming Potentials of Greenhouse Gasses: relative to CO2

• Lists the global warming potentials (GWPs) for individual GHGs.4 These values are used directly within the Results sheet to convert emissions of GHGs into CO2-equivalent emissions.

• All values on this sheet may be directly altered but it is highly recommended that users do not alter these values. Default values are based on best available data. In the case that the user does make changes, press F9 to simulate using the updated values.

Figure 32: Fuel Specs Section 2

2) Global Warming Potentials of Greenhouse Gases: relative to CO2

CO2 1CH4 21N2O 310VOC 0

CO 0NO2 0

3) Carbon and Sulfur Ratios of Pollutants • Lists the carbon content in VOCs, CO, CO2, and CH4 and the sulfur content in

SO2. These conversion factors are used for carbon emission and SOx emission calculations on the EF sheet, which are then used throughout the TEAMS model.

• All values on this sheet may be directly altered but it is highly recommended that users do not alter these values. Default values are based on best available data. In the case that the user does make changes, press F9 to simulate using the updated values.

Figure 33: Fuel Specs Section 3

3) Carbon and Sulfur Ratios of Pollutants

4

IC

Carbon ratio of VOC 0.85Carbon ratio of CO 0.43

Carbon ratio of CH4 0.75Carbon ratio of CO2 0.27

Sulfur ratio of SO2 0.50

Global warming potentials are based on default values for a 100 year timeframe from the ntergovernmental Panel on Climate Change’s (IPCC’s) Climate Change 1994, Radiative Forcing of limate Change (1995) and Climate Change 1995, The Science of Climate Change (1996).

37

Page 52: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 5: “T&D” Overview This sheet is for calculations of energy use and emissions for transportation and distribution (T&D) of energy feedstocks and fuels. The results of this sheet – energy use (in Btu) and emissions (in grams per million Btu or g/mmBtu) of energy feedstocks and fuels transported and distributed – are used in other sheets for calculations associated with particular fuels. Section Breakdown

1) Cargo Payload by Transportation Mode and by Product Fuel Type: Tons • Enter the cargo payload for each transportation mode and fuel type. These values

are used to determine: a) ocean tanker and barge horsepower requirements, b) energy intensity in Btu per ton-mile during origin to destination trips for feedstock and fuel transportation, and c) energy intensity in Btu per ton-mile during back-haul trips for feedstock and fuel transportation.

• Placeholder values are based on industry averages. For example, on average, an ocean tanker carrying a shipment of crude oil will have a cargo payload of 140,000 tons.

Figure 34: T&D Section 1

1) Cargo Payload By Transportation Mode and by Product Fuel Type: Tons

Fuel Transported Crude Oil Diesel Residual Oil LNG FT Diesel Biodiesel SoybeanAgri. Chemicals Coal Uranium

Ocean Tanker 140,000 120,000 100,000 58,333 150,000Barge 22,500 22,500 22,500 15,000 20,000 22,500 20,000 22,500 30,000 30,000Medium-Heavy-Duty Truck 23Heavy-Heavy-Duty Truck 25 25 25 15 25 25 15 8 25 25

2) Horsepower Requirements for Ocean Tanker and Barges: Calculated with Cargo Capacity: HP

• Calculates the horsepower requirements for ocean tankers and barges based on the cargo payload value entered in Section 1. These values will be used to determine: a) energy intensity in Btu per ton-mile during origin to destination trips for feedstock and fuel transportation; and, b) energy intensity in Btu per ton-mile during back-haul trips for feedstock and fuel transportation.

Figure 35: T&D Section 2

2) Horsepower Requirements for Ocean Tanker and Barges: Calculated with Cargo Capacity: HP

Crude Oil Diesel Residual Oil LNG FT Diesel Biodiesel SoybeanAgri. Chemicals Coal Uranium

Ocean Tanker 23,210 21,190 19,170 14,962 24,220Barge 5,600 5,600 5,600 3,733 4,978 5,600 4,978 5,600 7,467 7,467

38

Page 53: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Fuel Economy and Resultant Energy Consumption of Heavy-Duty Trucks • Enter the fuel economy in miles per diesel gallon for heavy-heavy duty trucks and

for medium heavy-duty trucks. • Enter values for both product origin to destination and for product destination

back to origin. • Press F9 to calculate the energy consumption in Btu per mile of heavy-heavy duty

trucks and medium-heavy duty trucks. • These values will be used along with fuel specification data to determine EFs of

heavy-heavy duty and medium-heavy duty trucks on the EF sheet. Figure 36: T&D Section 3

3) Fuel Economy and Resultant Energy Consumption of Heavy-Duty Trucks

Heavy-Heavy-Duty Truck

Medium-Heavy-Duty Truck

Heavy-Heavy-Duty Truck

Medium-Heavy-Duty Truck

Trip from Product Origin to Destination 6 7.3 21,417 17,603 Trip from Product Destination Back to Origin 5 7.3 25,700 17,603

Fuel Economy: miles/diesel gallon

Energy Consumption: Btu/mile

4) Calculation of Energy Consumption for Ocean Tanker and Barge • Enter the overall average speed in miles per hour of ocean tankers and barges, not

considering cargo payload, fuel type, or other factors. • Enter the load factor (% of installed HP) used for the trip. Enter the load factor for

ocean tankers and barges for origin to destination trips. Enter the load factor for ocean tankers and barges for destination back to origin.

• Press F9 to calculate energy consumption in Btu per HP-hr for ocean tankers and barges during origin to destination and destination to origin trips.

Figure 37: T&D Section 4

4) Calculation of Energy Consumption for Ocean Tanker and Barge

Ocean Tanker BargeAverage Speed (Miles/Hour) 19 5Trip from Product Origin to Destination:Load Factor 80% 80%Energy Consumption: Btu/hphr 4,763 10,432Trip from Product Destination Back to OriginLoad Factor 70% 60%Energy Consumption: Btu/hphr 4,836 10,603

39

Page 54: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5) Energy Intensity of Rail Transportation: Btu/ton-mile • Enter the energy intensity in Btu per ton-mile for rail transportation during origin

to destination and destination to origin trips. • These values are transferred directly to the “energy intensity” row of Section 9 of

this sheet. They are then multiplied by the distances (in miles) entered on the Inputs sheet to calculate energy consumption and total emissions from fuel transportation.

Figure 38: T&D Section 5

5) Energy Intensity of Rail Transportation: Btu/ton-mile

Trip from Product Origin to Destination 370Trip from Product Destination Back to Origin 370

6) Share of Power Generation Technologies for Pipeline Compression Stations • Emission factors differ depending on whether specific pipelines use turbine or

engine technologies for compression. Energy and emissions of pipeline transportation are calculated by factoring the percent share of these technologies.

• Enter the percentage of pipelines utilizing turbine technologies, then press F9 to have TEAMS determine the remaining percentage utilizing NG engine technology.

Figure 39: T&D Section 5

6) Share of Power Generation Technologies for Pipeline Compression Stations

Turbine NG EngineCrude Pipelines 55.0% 45.0%Residual Oil Pipelines 55.0% 45.0%Diesel Pipelines 55.0% 45.0%Fischer-Tropsch Diesel Pipelines 55.0% 45.0%Biodiesel Pipelines 55.0% 45.0%NG Pipelines 55.0% 45.0%

40

Page 55: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

7) Energy Intensity of Pipeline Transportation: Btu/ton mile • Enter the energy intensity in Btu per ton-mile for pipeline transportation during

origin to destination trips. • These values are transferred directly to the “energy intensity” row of Section 9 of

this sheet. They are then multiplied by the distances (in miles) entered on the Inputs sheet, and the technology shares entered in Section 6 of this sheet, to calculate energy consumption and total emissions from fuel transportation.

Figure 40: T&D Section 7

7) Energy Intensity of Pipeline Transportation: Btu/ton-mile

Crude Pipelines 240Residual Oil Pipelines 240Diesel Pipelines 240Fischer-Tropsch Diesel Pipelines 240Biodiesel Pipelines 240NG Pipelines 336

8) Energy Intensity Ratios of Different Process Fuels Used in a Given Transportation Mode: Relative to Baseline Fuel for the Given Mode

• For each transportation mode, enter the intensity ratio for each alternative process fuel. In this case, energy intensity is measured in Btu/ton-mile. For example, an ocean tanker being used to transport fuels may run on residual oil, natural gas, Fischer-Tropsch diesel, or conventional diesel. Relative to residual oil, enter the energy intensity ratios for each of the other three alternatives. Note that this section is independent from the overall simulation in which an ocean tanker may be simulated to run on any alternative (such as biodiesel or low-sulfur diesel).

• These values should be close to, if not always “1.0”. Figure 41: T&D Section 8

8) Energy Intensity Ratios of Different Process Fuels Used in a Given Transportation Mode: Relative to Baseline Fuel for the Given Mode

Res

idua

l Oil

Nat

ural

Gas

fo

r LN

G

FTD

Bio

dies

el

Elec

tric

ity

Die

sel

Ocean Tanker: Residual Oil as Baseline Fuel 1.0 1.0 1.0Barge: Residual Oil as Baseline Fuel 1.0 1.0 1.0 1.0Locomotive: Diesel as Baseline Fuel 1.0 1.0 1.0 1.0Truck: Diesel as Baseline Fuel 1.0 1.0 1.0Pipeline: NG as Baseline Fuel 1.0 1.0 1.0 1.0 1.0

41

Page 56: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

9) Energy Consumption and Emissions of Feedstock and Fuel Transportation • In the subsection entitled “Share of Fuel Type Used” (rows 78 through 84), enter

the shares of fuel types used for each transportation mode transporting each feedstock and fuel type. For example, an ocean tanker transporting crude oil may run on either diesel or residual oil. Enter the share of diesel in cell C79 and TEAMS will calculate the related share of residual oil in cell C80. Note that this section pertains only to the fuel transportation vessels, and not to the simulation vessel (which may run on more diverse alternative fuel options.)

• Press F9 to calculate values in the remaining cells of this section. • Based on inputs entered and calculations conducted in Sections 1 through 8 of this

sheet, along with values entered on the inputs and T&D sheet, Section 9 will summarize and/or calculate the following:

o The one-way distance in miles for each transportation mode and fuel type for feedstock and fuel transportation;

o The share of fuel type used for each transportation mode and fuel type transported;

o The energy intensity in Btu per ton-mile for both the origin to destination and the destination to origin (back-haul) trips;

o The energy consumption in Btu per mmBtu of fuel transported displayed in total energy, fossil energy, and petroleum energy consumed; and,

o The total emissions in grams per mmBtu of fuel transported for the following emission types: VOC, CO, NOx, PM10, SOx, CH4, N2O, and CO2.

Figure 42: T&D Section 9 located on the next page.

42

Page 57: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

9) E

nerg

y C

onsu

mpt

ion

and

Emis

sion

s of

Fee

dsto

ck a

nd F

uel T

rans

port

atio

n

Feed

stoc

k/Fu

el

NG

to

Ref

uelin

g St

atio

ns v

ia

Pipe

line

Tran

spor

tatio

n M

ode

Oce

an T

anke

rB

arge

Pipe

line

Rai

lTr

uck

Oce

an T

anke

rB

arge

Pipe

line

Rai

lTr

uck

Oce

an

Tank

erB

arge

Pipe

line

Rai

lTr

uck

Oce

an

Tank

erB

arge

Pipe

line

Rai

lTr

uck

Oce

an

Tank

erB

arge

Rai

lTr

uck

Oce

an

Tank

erB

arge

Pipe

line

Rai

lTr

uck

Dis

tanc

e (M

iles,

one

-way

)5,

080

500

750

800

01,

450

520

400

800

301,

450

520

400

800

303,

000

340

400

800

3075

00

520

800

300

520

400

800

30Sh

are

of F

uel T

ype

Use

d:D

iese

l0%

0%20

%10

0%10

0%0%

0%20

%10

0%10

0%0%

0%20

%10

0%10

0%0%

0%20

%10

0%10

0%0%

0%0%

80%

100%

0%0%

20%

50%

50%

Res

idua

l Oil

100%

100%

50%

100%

100%

50%

100%

100%

50%

100%

100%

50%

0%10

0%50

%10

0%10

0%50

%N

atur

al G

as24

%24

%24

%24

%94

%0%

50%

20%

0%24

%FT

D50

%50

%Bi

odie

sel

Ele

ctric

it y6%

0%6%

0%6%

0%6%

0%6%

0%6%

Ener

gy In

tens

ity: B

tu/to

n-m

ileO

rigin

to D

estin

atio

n34

415

240

370

857

3641

524

037

085

736

415

240

370

857

3941

524

037

085

733

653

415

370

1,42

833

415

240

370

857

Back

-Hau

l30

317

1,02

832

317

1,02

832

317

1,02

835

317

1,02

831

731

71,

713

3031

71,

028

Ener

gy C

onsu

mpt

ion:

Btu

/mm

Btu

of fu

el tr

ansp

orte

dTo

tal E

nerg

y9,

795

10,9

585,

895

9,70

80

3,05

011

,673

3,22

19,

944

1,90

03,

062

11,7

193,

233

9,98

31,

907

7,04

67,

849

3,31

210

,226

1,95

37,

070

010

,479

8,56

72,

737

011

,360

3,13

411

,577

2,21

1Fo

ssil

Ene

rgy

9,77

410

,934

5,78

79,

678

03,

044

11,6

483,

162

9,91

31,

894

3,05

611

,694

3,17

49,

952

1,90

17,

031

7,83

23,

251

10,1

941,

947

6,94

40

10,4

638,

544

2,72

80

11,3

363,

077

11,5

602,

208

Petro

leum

9,28

110

,382

3,64

18,

804

02,

890

11,0

601,

989

9,01

81,

723

2,90

111

,103

1,99

79,

053

1,72

96,

676

7,43

72,

046

9,27

41,

771

220

4,78

16,

237

2,48

20

10,7

631,

936

15,5

4483

8To

tal E

mis

sion

s: g

ram

s/m

mBt

u fu

el tr

ansp

orte

dVO

C0.

783

0.87

40.

195

0.69

20.

000

0.24

40.

932

0.10

70.

708

0.05

80.

245

0.93

50.

107

0.71

10.

059

0.56

30.

626

0.11

00.

729

0.06

00.

601

0.00

00.

385

0.60

20.

084

0.00

00.

450

0.00

00.

678

0.05

5C

O2.

160

2.40

60.

932

1.76

90.

000

0.67

32.

563

0.50

91.

812

0.23

90.

675

2.57

30.

511

1.81

90.

240

1.55

41.

723

0.52

41.

863

0.24

61.

008

0.00

00.

873

1.41

40.

345

0.00

01.

281

0.00

01.

855

0.25

0N

Ox

20.0

7722

.470

3.98

317

.270

0.00

06.

252

23.9

372.

176

17.6

900.

995

6.27

724

.031

2.18

517

.760

0.99

914

.441

16.0

952.

238

18.1

921.

023

2.89

10.

000

9.63

515

.268

1.43

40.

000

10.9

090.

002

17.1

530.

956

PM

100.

584

0.65

30.

054

0.51

40.

000

0.18

20.

696

0.03

00.

527

0.03

50.

182

0.69

80.

030

0.52

90.

035

0.42

00.

468

0.03

10.

542

0.03

50.

037

0.00

00.

171

0.36

60.

050

0.00

00.

370

0.00

00.

467

0.02

5SO

x12

.690

14.1

961.

744

0.48

50.

000

3.95

215

.123

0.95

20.

497

0.09

53.

967

15.1

820.

956

0.49

90.

095

9.12

710

.168

0.97

90.

511

0.09

80.

192

0.00

06.

586

0.35

90.

137

0.00

014

.717

0.00

40.

277

0.05

3C

H4

0.87

50.

978

0.42

50.

838

0.00

00.

272

1.04

20.

232

0.85

80.

160

0.27

31.

046

0.23

30.

862

0.16

10.

629

0.70

10.

239

0.88

30.

165

1.18

70.

000

1.42

00.

951

0.23

10.

000

0.99

20.

001

0.87

70.

164

N2O

0.01

90.

021

0.00

30.

018

0.00

00.

006

0.02

30.

001

0.01

90.

004

0.00

60.

023

0.00

10.

019

0.00

40.

014

0.01

50.

001

0.01

90.

004

0.00

60.

000

0.01

50.

016

0.00

60.

000

0.02

20.

000

0.01

70.

004

CO

280

3.69

989

9.10

920

4.57

077

0.69

00.

000

250.

286

957.

814

111.

758

789.

432

151.

210

251.

263

961.

555

112.

195

792.

516

151.

801

578.

094

644.

011

114.

925

811.

805

155.

496

199.

635

0.00

074

6.35

864

8.43

421

7.86

40.

000

935.

488

0.82

778

7.34

515

0.80

1

FT D

iese

lC

rude

Oil

Con

vent

iona

l Die

sel

Low

-Sul

fur D

iese

lR

esid

ual O

ilLN

G

Figure 42: T&D Section 9

(This section has been divided into two screenshots for easier user viewing.)

Bar

geR

ail

Truc

kTr

uck

Truc

kB

arge

Rai

lTr

uck

Bar

geP

ipel

ine

Rai

lTr

uck

Bar

geR

ail

Truc

kR

ail

Truc

kR

ail

Truc

k40

075

050

3010

350

400

4052

040

080

030

330

440

5010

020

100

200

0%10

0%10

0%10

0%10

0%0%

100%

100%

0%20

%10

0%70

%0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

50%

100%

24%

0%0%

0%0%

0%30

%0%

0%6%

0%0%

0%0%

415

370

931

2,20

01,

174

415

370

1,42

841

524

037

085

741

537

085

737

085

737

085

793

12,

200

1,17

431

71,

713

317

1,02

8P

er T

onP

er T

on18

3,49

833

5,73

411

2,65

715

9,72

528

,396

282,

948

179,

058

152,

011

13,2

303,

650

11,2

713,

470

151,

386

196,

964

51,8

2244

,765

20,7

2944

,765

207,

288

183,

104

334,

689

112,

306

159,

228

28,3

0728

2,34

017

8,50

115

1,53

813

,202

3,58

311

,235

3,28

615

1,06

119

6,35

151

,661

44,6

2520

,664

44,6

2520

6,64

317

3,85

830

4,46

010

2,16

314

4,84

725

,751

268,

083

162,

379

137,

851

12,5

352,

884

10,2

211,

367

143,

433

178,

617

46,9

9540

,595

18,7

9840

,595

187,

979

6.97

123

.919

3.48

26.

310

1.12

211

.207

12.7

574.

668

0.52

40.

000

0.80

30.

068

5.75

114

.032

1.71

53.

189

0.68

63.

189

6.85

818

.447

61.1

6314

.297

16.9

573.

015

31.9

1632

.621

19.1

461.

492

0.00

02.

053

0.30

415

.219

35.8

837.

122

8.15

52.

849

8.15

528

.489

176.

757

597.

246

59.4

6182

.087

14.5

9327

1.70

631

8.53

179

.622

12.7

040.

002

20.0

491.

188

145.

825

350.

384

29.6

4079

.633

11.8

5679

.633

118.

558

5.97

617

.778

2.05

53.

029

0.53

99.

216

9.48

22.

762

0.43

10.

000

0.59

70.

038

4.93

010

.430

0.98

52.

370

0.39

42.

370

3.93

923

7.71

616

.770

5.62

77.

978

1.41

836

6.55

08.

944

7.59

317

.139

0.00

50.

563

0.10

019

6.11

69.

838

2.58

82.

236

1.03

52.

236

10.3

5416

.008

28.9

789.

501

13.5

382.

407

24.7

0715

.455

12.8

191.

155

0.00

10.

973

0.16

013

.207

17.0

004.

376

3.86

41.

750

3.86

417

.504

0.35

60.

627

0.22

90.

417

0.07

40.

549

0.33

50.

307

0.02

60.

000

0.02

10.

006

0.29

40.

368

0.11

40.

084

0.04

60.

084

0.45

615

115.

473

2665

2.02

289

67.7

2512

715.

253

2260

.489

2330

0.56

914

214.

412

1210

0.77

610

89.4

870.

963

894.

704

178.

497

1247

0.26

515

635.

853

4123

.928

3553

.603

1649

.571

3553

.603

1649

5.71

4

Ura

nium

Soy

bean

sB

iodi

esel

Coa

lA

gric

ultu

ral C

hem

ical

s

43

Page 58: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

10) Summary of Energy Consumption and Emissions for Each Fuel • Enter the percentage of fuel transported by a given mode. For example, during all

crude oil transportation, 40 percent of the fuel may be transported by ocean tanker, 40 percent by pipeline, and the remaining 20 percent by barge. These are averages and users may want to model cases particular to their situation.

• In each case, the total percentage of all modes may exceed 100% for some feedstocks or fuels because more than one transportation legs may be involved for transporting the feedstocks or fuels.

• Press F9 to calculate total energy and emissions for each fuel type transported. TEAMS will multiple the user-entered percentages by the energy and emissions calculated in Section 9 for all transportation modes to determine total energy and emissions for each fuel type based on mode usage.

Figure 43: T&D Section 10 located on next page.

44

Page 59: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 43: T&D Section 10

10) S

umm

ary

of E

nerg

y C

onsu

mpt

ion

and

Emis

sion

s fo

r Eac

h Fu

el

Cru

de O

ilR

esid

ual O

ilN

atur

al G

asC

oal

Stag

e

Crude Transportation

Diesel Transportation

Diesel Distribution

Diesel Transportation

Diesel Distribution

Residual Oil Transportation

Natural Gas Transportation

LNG Transportation

LNG Distribution

LNG Transportation

LNG Distribution

FT Diesel Transportation

FT Diesel Distribution

Plant to bulk center

Bulk Center to Mixer

Mixer to Farm

Farm to Collection Stack

Stack to Biodiesel Plant

Biodiesel Transportation

Biodiesel Distribution

Mines to power plants

Uranium Ore transportation

Enriched uranium transportation

Perc

enta

ge o

f Fue

l Tra

nspo

rted

by a

Giv

en M

ode

O

cean

Tan

ker

57.0

%16

.0%

16.0

%24

.0%

100.

0%0.

0%0.

0%

Bar

ge1.

0%6.

0%6.

0%40

.0%

0.0%

50.0

%33

.0%

50.0

%0.

0%8.

0%10

.0%

0.0%

P

ipel

ine

100.

0%75

.0%

75.0

%60

.0%

100.

0%60

.0%

63.0

%

Rai

l0.

0%7.

0%7.

0%5.

0%0.

0%50

.0%

7.0%

50.0

%0.

0%29

.0%

90.0

%10

0.0%

0.0%

T

ruck

0.0%

100.

0%10

0.0%

0.0%

0.0%

100.

0%10

0.0%

0.0%

100.

0%10

0.0%

100.

0%10

0.0%

100.

0%0.

0%20

.0%

100.

0%En

ergy

Con

sum

ptio

n: B

tu/m

mB

tu o

f fue

l tra

nspo

rted

Btu

per

ton

Btu

per

ton

Btu

per

ton

T

otal

Ene

rgy

11,5

884,

300

1,90

04,

317

1,90

77,

329

7,07

00

09,

523

2,73

76,

440

2,21

139

311

2,65

715

9,72

528

,396

152,

011

6,62

63,

470

192,

406

48,9

1020

7,28

8

F

ossi

l Ene

rgy

11,4

684,

251

1,89

44,

268

1,90

17,

281

6,94

40

09,

504

2,72

86,

396

2,20

825

8,89

711

2,30

615

9,22

828

,307

151,

538

6,57

23,

286

191,

822

48,7

5820

6,64

3

Pet

role

um9,

035

3,24

91,

723

3,26

21,

729

6,26

822

00

5,50

92,

482

5,80

183

823

9,15

910

2,16

314

4,84

725

,751

137,

851

5,78

41,

367

175,

098

44,3

5418

7,97

9To

tal E

mis

sion

s: g

ram

s/m

mB

tu o

f fue

l tra

nspo

rted

VO

C0.

650

0.22

40.

058

0.22

50.

059

0.48

80.

601

0.00

00.

000

0.49

40.

084

0.19

60.

055

15.4

453.

482

6.31

01.

122

4.66

80.

275

0.06

813

.204

3.32

66.

858

CO

2.18

80.

770

0.23

90.

773

0.24

01.

470

1.00

80.

000

0.00

01.

143

0.34

50.

553

0.25

039

.805

14.2

9716

.957

3.01

519

.146

0.71

50.

304

33.8

168.

725

28.4

89

N

Ox

15.6

525.

307

0.99

55.

328

0.99

912

.156

2.89

10.

000

0.00

012

.452

1.43

44.

802

0.95

638

7.00

159

.461

82.0

8714

.593

79.6

226.

832

1.18

832

9.92

882

.004

118.

558

PM

109.

119

0.13

00.

035

0.13

10.

035

0.33

30.

037

0.00

00.

000

0.26

90.

050

0.15

50.

025

11.8

772.

055

3.02

90.

539

2.76

20.

208

0.03

89.

880

2.44

93.

939

SO

x9.

119

2.28

90.

095

2.29

80.

095

6.87

10.

192

0.00

00.

000

3.47

20.

137

4.87

80.

053

127.

243

5.62

77.

978

1.41

87.

593

1.53

70.

100

28.4

662.

443

10.3

54

C

H4

0.93

40.

340

0.16

00.

342

0.16

10.

619

1.18

70.

000

0.00

01.

186

0.23

10.

389

0.16

422

.493

9.50

113

.538

2.40

712

.819

0.37

50.

160

16.6

214.

214

17.5

04

N

2O0.

014

0.00

50.

004

0.00

50.

004

0.01

10.

006

0.00

00.

000

0.01

60.

006

0.00

80.

004

0.49

20.

229

0.41

70.

074

0.30

70.

008

0.00

60.

361

0.09

30.

456

CO

267

223

715

123

815

250

620

00

069

721

836

415

120

883.

748

8967

.725

1271

5.25

322

6012

101

347

178

1531

938

83.5

1649

6

Con

vent

iona

l Die

sel

Low

-Sul

fur D

iese

lLN

G (f

or m

ovin

g N

NA

NG

fe

edst

ock

to N

A lo

catio

ns)

LNG

(as

a tr

ansp

orta

tion

fuel

)FT

Die

sel

Soyb

eans

Bio

dies

elU

rani

umAg

ricul

raul

Che

mic

als

45

Page 60: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

11) Energy Consumption and Emissions from Transportation Related Fuel Production

• TEAMS uses data from Section 9 of this sheet to calculate energy consumption and emissions from the process of producing the fuel used to transport feedstock and vessel fuel. Those data are summarized in this section for easier comparison. (The data from this section are then re-input into Section 9 and are ultimately used to determine the final energy and emissions presented in Section 10.)

Figure 44: T&D Section 11

11) Energy Consumption and Emissions from Transportation Related Fuel Production

Diesel Residual Oil Natural Gas LNG FTD Biodiesel Electricity

Energy Consumption (Btu per Btu or Grams Per mmBtu) Total Energy 0.210 0.103 0.056 0.187 0.683 0.415 2.676 Fossil Energy 0.206 0.101 0.056 0.186 0.683 0.404 2.341 Petroleum 0.097 0.045 0.004 0.011 0.011 0.087 0.060 VOC 8.346 4.157 0.338 1.033 5.425 11.190 17.399 CO 13.333 10.355 6.395 9.363 36.355 74.175 36.197 NOx 50.400 43.074 12.013 31.736 34.038 162.940 444.130 PM 11.843 10.582 0.323 1.080 0.457 8.898 38.552 SOx 42.350 28.749 3.927 9.170 7.039 45.529 1093.248 CH4 100.583 94.376 110.567 175.290 111.017 59.304 296.607 N2O 0.260 0.141 0.067 0.259 0.077 4.107 2.912 CO2 16161.406 8425.578 4479.855 12643.340 23909.279 28187.769 231478.817

46

Page 61: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 6: “Petroleum” Overview This sheet is used to calculate the WTH (well-to-hull) energy use and emissions of petroleum-based fuels. Three petroleum-based fuels are included in TEAMS: conventional diesel, residual oil, and low-sulfur diesel. Section Breakdown

1) Shares of Combustion Processes for Each Stage • Enter the share of combustion process technologies during petroleum-based fuel

recovery and refining. Each subsection should equal 100 percent. • These values are used in Section 2 of this sheet to determine total emissions of

petroleum-based fuel throughput. Figure 45: Petroleum Section 1

1) Shares of Combustion Processes for Each StageC

rude

R

ecov

ery

Res

i. O

il R

efin

ing

Die

sel F

uel

Ref

inin

g

Residual oil industrial or commercial boiler 100.0% 100.0% 100.0%Diesel commercial boiler 33.0% 33.0% 33.0%Diesel stationary engine 33.0% 33.0% 33.0%Diesel turbine 34.0% 34.0% 34.0%NG engine 25.0%NG large turbine 25.0% 25.0% 25.0%NG large industrial boiler 25.0% 60.0% 60.0%NG small industrial boiler 25.0% 15.0% 15.0%Coal industrial boiler 100.0% 100.0%

47

Page 62: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Calculations of Energy Consumption and Emissions for Petroleum Fuels by Stage • Certain values in this section may be altered (green input cells), but it is

recommended that only advanced users alter these values. • The shares of process fuels are estimated on the basis of historical statistical data

on fuel use by fuel type. This data relies primarily on results from Delucchi (1997).

• Based on the technologies established in Section 1 of this sheet, information from the Inputs sheet, and information from the T&D sheet, this section will summarize and/or calculate the following:

o The energy efficiency of recovering and refining crude oil into residual oil, conventional diesel, and/or low-sulfur diesel;

o The loss factor during recovery and refining of petroleum fuels. The loss factor calculates the fuel loss in each stage due to evaporation or leakage. The loss factor is determined by the following formula:

⎥⎦

⎤⎢⎣

⎡×⎟⎠⎞

⎜⎝⎛

−+ B

A 111

where, A is the efficiency of recovery or refining, and B is the feed loss. Feed loss is the percentage of process fuels “unaccounted for”. In this case the feed loss is 0.1% and is typically very low;

o The shares of process fuels. This is the share of each fuel type used during the recovery or refining processes. These values are based on industry averages;

o The energy use in Btu per mmBtu of fuel throughput for each process and each process fuel. These values are directly dependent on share or process fuels percentages;

o The total energy, fossil fuel based energy, and petroleum based energy for each process. This includes a sum of all process fuel types; and,

o The total emissions in grams per mmBtu of fuel throughput. This is determined by the technology percentages entered in Section 1 of this sheet, and the energy use per process fuel.

Figure 46: Petroleum Section 2 is located on the next page.

48

Page 63: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 46: Petroleum Section 2

2) C

alcu

latio

ns o

f Ene

rgy

Con

sum

ptio

n an

d Em

issi

ons

for P

etro

leum

Fue

ls B

y St

age

Recovery

Transportation to U.S. Refineries

Storage

Residual Oil Refining

Resi. Oil Refining: Non-Combustion Emissions

Resi. Oil Transportation and Distribution

Resi. Oil Storage

Conv. Diesel Refining

Conv. Diesel Refining: Non-Combustion Emissions

Conv. Diesel Transportation and Distribution

Conv. Diesel Storage

LS Diesel Refining

LS Diesel Refining: Non-Combustion Emissions

LS Diesel Transportation Distribution

LS Diesel Storage

Ener

gy e

ffici

ency

97.7

%95

.5%

87.5

%87

.5%

Loss

fact

or1.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

0Sh

ares

of p

roce

ss fu

els

C

rude

oil

1.0%

0.0%

0.0%

0.0%

R

esid

ual o

il1.

0%3.

0%3.

0%3.

0%

Die

sel f

uel

17.0

%0.

0%0.

0%0.

0%

Nat

ural

gas

61.9

%30

.0%

30.0

%30

.0%

C

oal

0.0%

13.0

%13

.0%

13.0

%

Ele

ctric

ity19

.0%

4.0%

4.0%

4.0%

R

efin

ery

still

gas

0.0%

50.0

%50

.0%

50.0

%

Fee

d lo

ss0.

1%0.

0%0.

0%0.

0%

Ener

gy u

se: B

tu/m

mB

tu o

f fue

l thr

ough

put

C

rude

oil

235

00

0

Res

idua

l oil

235

1,41

44,

286

4,28

6

Die

sel f

uel

4,00

20

00

N

atur

al g

as14

,578

14,1

3642

,857

42,8

57

Coa

l0

6,12

618

,571

18,5

71

Ele

ctric

ity4,

467

1,88

55,

714

5,71

4

Fee

d lo

ss29

620

00

00

138

00

138

0

Ref

iner

y st

ill g

as23

,560

71,4

2971

,429

N

atur

al g

as fl

ared

16,8

00

Tot

al e

nerg

y32

,791

11,6

500

52,4

597,

329

015

9,04

46,

338

015

9,04

46,

362

0

Fos

sil f

uels

31,2

7211

,530

051

,776

7,28

10

156,

972

6,28

30

156,

972

6,30

70

P

etro

leum

5,22

79,

097

025

,631

6,26

80

77,7

075,

110

077

,707

5,12

90

Tota

l em

issi

ons:

gra

ms/

mm

Btu

of f

uel t

hrou

ghpu

t

VO

C0.

380.

650.

190.

310.

490.

580.

760.

280.

580.

900.

28

CO

5.34

2.19

1.51

0.11

1.47

4.59

0.27

1.01

4.59

0.32

1.01

N

Ox

11.8

515

.65

4.63

1.32

12.1

614

.02

3.23

6.30

14.0

23.

826.

33

PM

100.

469.

120.

360.

440.

331.

091.

080.

161.

091.

280.

17

SO

x5.

469.

126.

892.

016.

8720

.89

4.92

2.38

20.8

95.

812.

39

CH

4: c

ombu

stio

n5.

560.

933.

070.

629.

300.

509.

300.

50

N2O

0.06

0.01

0.06

0.01

0.18

0.01

0.18

0.01

C

O2

3395

.60

671.

6735

60.7

736

4.00

505.

8910

795.

3488

9.00

387.

8010

795.

3410

51.0

038

9.32

V

OC

loss

: eva

pora

tion

0.70

1.53

V

OC

loss

: spi

llage

3.49

3.50

C

H4:

non

-com

bust

ion

14.7

769

.54

Res

idua

l Oil

Con

vent

iona

l Die

sel

Low

-Sul

fur D

iese

lC

rude

Oil

49

Page 64: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage

• Provides a summary of total energy consumed and total emissions emitted from petroleum-based fuel sources. This includes energy consumed and emissions emitted during crude oil recovery, and the refining processes of residual oil, conventional diesel, and low sulfur diesel. Furthermore, this includes energy consumed and emissions emitted during relevant transportation, distribution, and storage.

• These data are carried to the Results tab for final summarization. Figure 47: Petroleum Section 3

3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage

FeedstockCrude Oil Resi. Oil Diesel LS Diesel

Loss factor 1.000 1.000 1.000Total energy 44,444 59,788 165,403 165,428Fossil fuels 42,804 59,057 163,277 163,301Petroleum 14,324 31,899 82,828 82,847VOC 3.267 0.989 5.104 5.258CO 7.533 3.094 5.871 5.924NOx 27.508 18.103 23.559 24.171PM10 9.580 1.137 2.343 2.541SOx 14.583 15.773 28.196 29.100CH4 90.801 3.685 9.799 9.801N2O 0.073 0.070 0.188 0.188CO2 4,089 4,439 12,099 12,263

Energy Use and Total Emissions

Fuels

50

Page 65: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 7: “NG” Overview This sheet presents calculations of energy use and emissions for NG-based fuels: CNG, LNG, and FTD. TEAMS can simulate production of these fuels from NA and NNA gas and from NNA flared gas (FG). For production of CNG in North America, TEAMS assumes that NNA NG and NNA FG are converted into LNG for transportation to North America where CNG is produced. Section Breakdown

1) Scenario Control and Key Input Parameters • In Inputs Section 2.2, you may enter (1) the percentage of NG or FG used for

LNG production; and (2) the percentage of NG or FG used for FTD production. Those inputs are copied here but cannot be altered directly on this sheet. (See Inputs Section 2.2.)

Figure 48: NG Section 1

1) Scenario Control and Key Input Parameters (from the Inputs sheet)

LNG Production Natural Gas Flared Gas100.0% 0.0%

FT Diesel Production Natural Gas Flared Gas100.0% 0.0%

51

Page 66: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Shares of Combustion Processes for Each Stage • Enter the share of combustion process technologies during natural gas recovery,

processing, compression, liquefaction, and production stages. Each section should total 100 percent.

• These values will be used in Section 3 of this sheet to determine total emissions of natural gas-based fuel throughput during various stages.

Figure 49: NG Section 2

2) Shares of Combustion Processes for Each Stage

NG

Rec

over

y

NG

Pro

cess

ing

NG

C

ompr

essi

on

NG

Liq

uefa

ctio

n

FT D

iese

l Pr

oduc

tion

Elec

tric

ity C

o-G

ener

atio

n in

C

hem

ical

Pla

nts

Resi. oil industrial or commercial boiler 100.0% 100.0% 100.0% 100.0% 100.0%Diesel comm. Boiler 33.0% 33.0% 33.0% 33.0%Diesel stationary engine 33.0% 33.0% 50.0% 33.0% 33.0%Diesel turbine 34.0% 34.0% 50.0% 34.0% 34.0%NG engine 25.0% 0.0% 100.0% 0.0%NG large turbine 50.0% 50.0% 100.0% 0.0%NG industrial boiler 0.0% 50.0% 100.0%NG small industrial boiler 25.0% 0.0% 0.0%NG CC Turbine 100%Coal Gasification/turbine 100%

52

Page 67: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Calculations of Energy Consumption and Emissions for Each Stage • Enter the energy efficiency of natural gas recovery, compression, liquefaction,

and various stages of natural gas to FTD conversion. • The shares of process fuels are estimated on the basis of historical statistical data

on fuel use by fuel type. This data relies primarily on results from Delucchi (1997).

• Certain additional values in this section may be altered (such as CH4 Leakage), but it is recommended that only advanced users alter these values.

• Based on the technologies established in Section 2 of this sheet, information from the Inputs sheet, and information from the T&D sheet, this section will summarize and/or calculate the following:

o The loss factor during various stages of natural gas processing. The loss factor ultimately calculates the fuel loss in each stage due to evaporation or leakage. The loss factor is determined by the following formula:

⎥⎦

⎤⎢⎣

⎡×⎟⎠⎞

⎜⎝⎛

−+ B

A 111

where, A is the efficiency of the process, and B is the feed loss. Feed loss is the percentage of process fuels “unaccounted for”. Feed loss for natural gas (or other gaseous fuels) is typically considerably higher than that of petroleum (or other liquid fuels);

o The shares of process fuels. This is the share of each fuel type used during the various recovery, compression, liquefaction or other processes. These values are based on industry averages;

o The energy use in Btu per mmBtu of fuel throughput for each process and each process fuel. These values are directly dependent on share or process fuels percentages;

o The total energy, fossil fuel based energy, and petroleum based energy for each process. This includes a sum of all process fuel types; and,

o The total emissions in grams per mmBtu of fuel throughput. This is determined by the technology percentages entered in Section 2 of this sheet, and the energy use per process fuel.

Figure 50: NG Section 3 table is located on the next page.

53

Page 68: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 50: NG Section 3

3) C

alcu

latio

ns o

f Ene

rgy

Con

sum

ptio

n an

d Em

issi

ons

for E

ach

Stag

e

NG Recovery

NG Processing

NG Processing: Non-Combustion Emissions

NG Transmission and Distribution

NG Recovery

NG Processing

NG Processing: Non-Combustion Emissions

NG Transmission to LNG Plant

NG Transmission to FT Plant

NG Transmission to NG Electric Power Plant

NG Transmission to Refueling Stations for CNG Production

Gas Compression

Flared Gas Energy and Emission Credits

NG LiquefactionLNG Transportation and Distribution: Non-North American NG Sources

LNG Storage: Non-North American NG SourcesLNG Transportation and Distribution: As a Transportation Fuel

LNG Storage: As a Transportation Fuel

Gas Liquefaction

Flared Gas Energy and Emission CreditsLNG Transportation and Distribution: Non-North American FG Sources for

LNG Storage: Non-North American FG Sources for CNG

Gas Liquefaction

Flared Gas Energy and Emission CreditsLNG Transportation and Distribution: As a Transportation Fuel

LNG Storage: As a Transportation Fuel

FT Diesel Production

FT Diesel Production: Non-Combustion Emissions

Production of Displaced Steam

Electricity Co-Generation in Fischer-Tropsch Plant

Generation of Displaced Electricity

FT Diesel Transportation and Distribution

FT Diesel Storage

FT Diesel Production

FT Diesel Production: Non-Combustion Emissions

Production of Displaced Steam

Electricity Co-Generation in Fischer-Tropsch Plant

Generation of Displaced Electricity

Flared Gas Energy and Emission Credits

FT Diesel Transportation and Distribution

FT Diesel Storage

Ener

gy e

ffici

ency

97.5

%97

.5%

97.5

%97

.5%

95.0

%90

.3%

90.3

%90

.3%

63.0

%80

.0%

30.0

%55

.0%

63.0

%80

.0%

30.0

%55

.0%

Loss

fact

or1.

003

1.00

11.

000

1.00

31.

001

1.00

01.

000

1.00

31.

006

1.00

01.

005

1.00

11.

005

1.00

11.

008

1.00

51.

001

1.00

51.

005

1.00

11.

008

1.00

01.

000

1.00

01.

000

1.00

01.

000

Shar

e of

nat

ural

gas

inpu

t as

feed

(for

fuel

pla

nt, t

he re

mai

ning

nat

ural

gas

inpu

t as

proc

ess

fuel

)10

0.0%

100.

0%St

eam

or e

lect

ricity

exp

ort (

for f

uel p

lant

s): B

tu (f

or s

team

) or K

Wh

(for e

lect

ricity

) per

mm

Btu

of f

uel p

rodu

ced

00.

000

0.00

Shar

es o

f pro

cess

fuel

s

Res

idua

l oil

1.7%

0.0%

1.7%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

D

iese

l fue

l9.

5%0.

9%9.

5%0.

9%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%

Nat

ural

gas

74.6

%90

.4%

74.6

%90

.4%

50.0

%98

.0%

98.0

%98

.0%

99.7

%10

0.0%

100.

0%99

.7%

100.

0%10

0.0%

C

oal

0.0%

0.0%

N

-but

ane

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.3%

0.0%

0.3%

0.0%

E

lect

ricity

0.9%

2.8%

0.9%

2.8%

50.0

%2.

0%2.

0%2.

0%0.

0%0.

0%0.

0%0.

0%

Fee

d lo

ss13

.3%

5.8%

13.3

%5.

8%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%

Ener

gy u

se: B

tu/m

mB

tu o

f fue

l thr

ough

put (

exce

pt a

s no

ted)

Per k

Wh

Per k

Wh

R

esid

ual o

il44

50

445

00

00

00

00

00

0.0

D

iese

l fue

l2,

447

242

2,44

724

20

00

00

00

00

0.0

N

atur

al g

as: p

roce

ss fu

el19

,128

23,1

9119

,128

23,1

9126

,316

105,

271

105,

271

105,

271

01,

250,

000

6204

01,

250,

000

6203

.6

Coa

l0

0.0

N

atur

al g

as: f

eed

loss

585,

540

585,

540

N

atur

al g

as fl

ared

-1,0

26,3

16-1

,105

,271

-1,1

05,2

71-1

,585

,540

N

-but

ane

1,76

2

0

1,76

2

0

E

lect

ricity

222

725

222

725

26,3

162,

148

2,14

82,

148

00

00

F

eeds

tock

loss

3,40

01,

484

-36

3,40

01,

484

00

2,78

65,

571

01,

005

200

1,00

522

01,

005

1,00

51,

001

5,02

51,

005

1101

5025

00

013

80

00

013

80

T

otal

ene

rgy

27,6

4228

,202

4,67

727

,642

28,2

020

0.00

063

20.4

4512

,641

98,2

22-1

,026

,316

117,

905

200

1,00

512

,480

1,00

511

6,96

9-1

,105

,271

1,00

15,

025

116,

969

-1,1

05,2

7113

,361

5,02

562

0,09

91,

319,

805

6,58

98,

789

0.00

062

0,09

91,

319,

805

6,58

9-1

,585

,540

8,78

90.

000

F

ossi

l fue

ls27

,551

27,9

504,

594

27,5

5127

,950

00.

000

2785

.622

12,5

1689

,395

-1,0

26,3

1611

7,14

920

01,

005

12,4

521,

005

116,

212

-1,1

05,2

711,

001

5,02

511

6,21

2-1

,105

,271

13,3

335,

025

619,

897

1,31

9,37

66,

565

8,74

20.

000

619,

897

1,31

9,37

66,

565

-1,5

85,5

408,

742

0.00

0

Pet

role

um3,

233

393

14.9

123,

233

393

0.00

00.

000

0.00

022

1,69

60

512

00

7,99

10

517

00

051

70

7,99

10

2,12

94,

532

226,

640

0.00

02,

129

4,53

222

06,

640

0.00

0To

tal e

mis

sion

s: g

ram

s/m

mB

tu o

f fue

l thr

ough

put

V

OC

0.26

90.

069

0.40

10.

269

0.06

90.

000

0.00

00.

301

0.60

11.

448

-2.5

660.

184

0.00

00.

578

0.18

4-2

.763

0.00

00.

184

-2.7

630.

578

0.00

11.

53.

798

0.01

0475

970.

251

0.00

11.

53.

798

0.01

0475

97-3

.964

0.25

1

CO

5.61

10.

776

0.67

25.

611

0.77

60.

000

0.00

00.

504

1.00

827

.606

-26.

684

1.54

00.

000

1.48

81.

540

-28.

737

-0.0

041.

540

-28.

737

1.48

80.

011

29.3

59.3

590.

0892

7789

0.80

30.

011

29.3

59.3

590.

0892

7789

-41.

224

0.80

3

NO

x10

.108

1.89

31.

928

10.1

081.

893

0.00

00.

000

1.44

62.

891

53.2

70-5

0.18

77.

419

0.00

013

.885

7.41

9-5

4.04

8-0

.007

7.41

9-5

4.04

813

.885

0.02

117

.676

.127

0.38

9879

645.

758

0.02

117

.676

.127

0.38

9879

64-7

7.53

35.

758

P

M10

0.19

80.

125

0.02

50.

198

0.12

50.

000

0.00

00.

019

0.03

71.

217

-3.7

970.

463

0.00

00.

318

0.46

3-4

.090

-0.0

010.

463

-4.0

900.

318

0.00

15.

028

0.02

2527

580.

180

0.00

15.

028

0.02

2527

58-5

.866

0.18

0

SO

x0.

797

0.90

62.

226

0.12

80.

797

0.90

62.

226

0.00

00.

000

0.09

60.

192

28.9

02-0

.317

2.79

70.

000

3.60

92.

797

-0.3

420.

001

2.79

7-0

.342

3.60

90.

007

5.29

80.

0268

8775

4.93

10.

007

5.29

80.

0268

8775

-0.4

904.

931

C

H4:

com

bust

ion

2.21

90.

362

0.79

22.

219

0.36

20.

000

0.00

00.

594

1.18

717

.584

-50.

289

12.7

130.

000

1.41

61.

357

-54.

158

0.02

11.

357

-54.

158

1.41

60.

005

139.

441

0.04

6118

140.

553

0.00

513

9.44

10.

0461

1814

-77.

691

0.55

3

N2O

0.03

30.

034

0.00

40.

033

0.03

40.

000

0.00

00.

003

0.00

60.

118

-1.1

290.

171

0.00

00.

021

0.17

1-1

.216

0.00

00.

171

-1.2

160.

021

0.00

01.

459

0.00

9741

770.

012

0.00

01.

459

0.00

9741

77-1

.744

0.01

2

CO

215

46.1

1916

83.5

131,

237

199.

635

1546

.119

1683

.513

1,23

70.

000

0.00

099

.818

199.

635

7716

.386

-613

28.0

5272

74.6

570.

000

915.

260

7274

.657

-660

46.0

82-1

0.94

372

74.6

57-6

6046

.082

915.

260

7.87

018

956.

3947

8041

1.92

940

0.00

1871

515.

122

7.87

019

007.

1126

8041

1.92

940

0.00

1871

-947

44.7

7751

5.12

2

CH

4: le

akag

e75

.098

32.7

74-0

.792

75.0

9832

.774

0.00

00.

000

61.5

3612

3.07

210

9.5

21.8

109.

524

.017

5.1

109.

521

.810

9.5

109.

524

.017

5.1

V

OC

: spi

llage

FT P

lant

Car

bon

effic

ienc

y3.

391

0.00

0FT

Pla

nt C

arbo

n ef

ficie

ncy

3.39

10.

000

M

isc.

Item

s21

.94.

421

.94.

835

.021

.94.

421

.921

.94.

835

.080

.0%

80.0

%

Nat

ural

Gas

to F

isch

er-T

rops

ch D

iese

lFl

ared

Gas

to F

isch

er-T

rops

ch D

iese

lN

G o

r FG

to C

ompr

esse

d N

atur

al G

asN

atur

al G

as to

Liq

uefie

d N

atur

al G

asFl

are

Gas

to L

ique

fied

Nat

ural

Gas

(for

CN

G a

nd

G.H

2, a

nd S

tatio

n L.

H2

Prod

uctio

n)Fl

are

Gas

to L

ique

fied

Nat

ural

Gas

N

atur

al G

as a

s a

Feed

stoc

k to

Pro

duce

Tra

nspo

rtat

ion

Fuel

sN

atur

al G

as a

s a

Proc

essi

ng F

uel

(If you are viewing this document electronically, you can “zoom in” for a more detailed view.)

54

Page 69: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage

• Provides a summary of total energy consumed and total emissions emitted from natural gas-based fuel sources. This includes energy consumed and emissions during natural gas recovery, liquefaction, compression, and/or processing into FTD. Furthermore, this includes energy consumed and emissions during relevant transportation, distribution, and storage.

• These data are carried to the Results tab for final summarization. Figure 51: NG Section 4 is located on the next page.

55

Page 70: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4) S

umm

ary

of E

nerg

y C

onsu

mpt

ion

and

Emis

sion

s: B

tu o

r Gra

ms

per m

Btu

of F

uel T

hrou

ghpu

t at E

ach

Stag

e

Feed

stoc

kFu

elFe

edst

ock

Fuel

Feed

stoc

kFu

elFe

edst

ock

Fuel

Feed

stoc

kFu

elFe

edst

ock

Fuel

Feed

stoc

kFu

elFe

edst

ock

Fuel

Feed

stoc

kFu

elLo

ss fa

ctor

1.01

1.01

1.00

1.01

1.01

1.01

1.00

1.00

1.00

Tota

l ene

rgy

6055

9.99

6236

0.85

5588

4.73

1198

21.7

855

884.

73-9

8823

6.76

6883

6.97

9822

1.83

5588

4.73

1324

69.0

255

884.

73-9

7895

2.98

5588

4.73

1324

69.0

255

884.

7362

8973

.67

5588

4.73

-956

785.

1655

884.

7362

8973

.67

Foss

il fu

els

6013

3.34

5848

1.90

5554

1.56

1190

61.2

755

541.

56-9

8899

8.39

6836

6.65

8939

5.49

5554

1.56

1316

78.1

055

541.

56-9

7974

5.02

5554

1.56

1316

78.1

055

541.

5662

8725

.13

5554

1.56

-957

033.

7055

541.

5662

8725

.13

Pet

role

um36

45.2

936

40.6

336

30.5

151

5.41

3630

.51

519.

6536

73.1

116

95.6

236

30.5

185

07.6

036

30.5

185

11.8

536

30.5

185

07.6

036

30.5

187

69.2

336

30.5

187

69.2

336

30.5

187

69.2

3V

OC

0.74

0.64

0.34

0.18

0.34

-2.6

00.

941.

450.

340.

760.

34-2

.03

0.34

0.76

0.34

5.14

0.34

1.18

0.34

5.14

CO

7.07

6.92

6.40

1.55

6.40

-27.

377.

4427

.61

6.40

3.04

6.40

-25.

966.

403.

046.

4030

.12

6.40

-11.

116.

4030

.12

NO

x13

.94

13.5

012

.02

7.46

12.0

2-4

6.92

14.9

753

.27

12.0

221

.37

12.0

2-3

3.17

12.0

221

.37

12.0

223

.38

12.0

2-5

4.16

12.0

223

.38

PM

100.

350.

340.

320.

000.

32-3

.65

0.36

1.22

0.32

0.79

0.32

-3.3

40.

320.

790.

320.

180.

32-5

.69

0.32

0.18

SO

x4.

064.

043.

930.

003.

932.

474.

1428

.90

3.93

6.43

3.93

6.09

3.93

6.43

3.93

4.94

3.93

4.45

3.93

4.94

CH

411

0.56

173.

0011

0.57

61.4

511

0.57

-4.4

423

5.44

17.5

811

0.57

63.4

211

0.57

-2.6

911

0.57

63.4

211

0.57

0.56

110.

57-7

7.14

110.

570.

56N

2O0.

070.

070.

070.

170.

07-1

.05

0.07

0.12

0.07

0.19

0.07

-1.0

30.

070.

190.

070.

010.

07-1

.73

0.07

0.01

CO

246

81.8

145

94.0

644

80.0

373

21.5

444

80.0

3-5

9187

.92

4701

.09

7764

.28

4480

.03

8240

.95

4480

.03

-583

93.5

744

80.0

382

40.9

544

80.0

319

545.

3744

80.0

3-7

5238

.93

4480

.03

1954

5.37

Nat

ural

Gas

to F

isch

er-

Trop

sch

Die

sel

Flar

ed G

as to

Fis

cher

-Tr

opsc

h D

iese

lFi

stch

er-T

rops

ch D

iese

l: C

ombi

ned

Nat

ural

Gas

as

St

atio

nary

Fu

els

Nat

ural

Gas

fo

r El

ectr

icity

ge

nera

tion

Nat

ural

Gas

to L

ique

fied

Nat

ural

Gas

(for

CN

G

Prod

uctio

n)

Flar

e ga

s to

Liq

uefie

d N

atur

al G

as (f

or C

NG

Pr

oduc

tion)

NG

or F

G to

Com

pres

sed

Nat

ural

Gas

Nat

ural

Gas

to L

ique

fied

Nat

ural

Gas

(as

a tr

ansp

orta

tion

fuel

)

Flar

e ga

s to

Liq

uefie

d N

atur

al G

as (a

s a

tran

spor

tatio

n fu

el)

Liqu

efie

d N

atur

al G

as:

Com

bine

d

Figure 51: NG Section 4

56

Page 71: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 8: “AG_Inputs” Overview This sheet presents calculations for agricultural chemicals (or agricultural inputs, Ag_Inputs), including synthetic fertilizers and pesticides, which are used for growing soybeans. Soybeans are feedstock for Biodiesel. Three fertilizers are included: nitrogen, phosphate, and potash. Pesticides include herbicides and insecticides. This sheet includes the following two stages: (1) manufacture of chemicals; and, (2) transportation of chemicals from the manufacturing plants to farms. Section Breakdown

1) Shares of Combustion Processes for Each Stage • Enter the share of combustion process technologies during the production of

fertilizers, herbicides, and insecticides for soybeans. Each subsection should total 100 percent.

• These values will be used in Section 2 of this sheet to determine total energy consumption and emissions during each stage of fertilizer, herbicide, and insecticide production.

Figure 52: AG Inputs Section 1

1) Shares of Combustion Processes for Each Stage

Nitr

ogen

Pr

oduc

tion

P2O

5 Pr

oduc

tion

K2O

Pro

duct

ion

Her

bici

de

Prod

uctio

n

Inse

ctic

ide

Prod

uctio

nResidual oil industrial boiler 100.0% 100.0% 100.0% 100.0% 100.0%Diesel commercial boiler 80.0% 80.0% 80.0% 80.0% 80.0%Diesel stationary engine 15.0% 15.0% 15.0% 15.0% 15.0%Diesel turbine 5.0% 5.0% 5.0% 5.0% 5.0%NG engine 0.0% 0.0% 0.0% 0.0% 0.0%NG large turbine 0.0% 0.0% 0.0% 0.0% 0.0%NG large industrial boiler 30.0% 30.0% 30.0% 30.0% 30.0%NG small industrial boiler 70.0% 70.0% 70.0% 70.0% 70.0%Coal industrial boiler 100.0% 100.0% 100.0% 100.0% 100.0%

57

Page 72: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Calculations of Energy Consumption and Emissions for Each Stage • Enter the energy use in Btu per gram of nutrient during the production of each

fertilizer, herbicide and insecticide. The default values are based on industry averages.

• Enter the loss factor. Unlike other sheets, the loss factor for fertilizer, herbicide, and insecticide production and transportation is not TEAMS-calculated and must be entered by the user. This value should always be either 1 or very close to that number (1.01 would be an acceptable value.) (See the documentation on Petroleum Section 2 or NG Section 3 for more information on how TEAMS calculates the loss factor for other feedstocks.)

• Enter the shares of the process fuels used during fertilizer, herbicide, and insecticide production. Placeholder percentages are based on industry averages – the user may wish to alter these to reflect a specific scenario.

• Press F9 to calculate changes due to newly input data. • Based on the technologies in Section 1 of this sheet, information from the Inputs

sheet, and information from the T&D sheet, the remainder of this section will summarize and/or calculate the following:

o The energy use in Btu per mmBtu of each chemical for each process fuel type. These values are directly dependent on share of process fuel percentages.

o The total energy, fossil fuel based energy, and petroleum based energy consumed during the production of each fertilizer, herbicide, and insecticide type. This includes a sum of all process fuel types.

o The total emissions in grams per mmBtu of each chemical during the production and transportation of each fertilizer, herbicide, and insecticide type. This is determined by the technology shares entered in Section 1 of this sheet and the energy use per process fuel.

Figure 53: AG Inputs Section 2 is located on the next page.

58

Page 73: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 53: AG Inputs Section 2

2) C

alcu

latio

ns o

f Ene

rgy

Con

sum

ptio

n an

d Em

issi

ons

for E

ach

Stag

e

Her

bici

de

Prod

uctio

n Av

erag

e

Inse

ctic

ide

Prod

uctio

n Av

erag

e

Nitrogen

P2O5

K2O

Atrazine

Metolachlor

Acetochlor

Cyanazine

Soybeans

Soybeans

Plant to Bulk Distribution Center

Bulk Distribution Center to Mixer

Mixer to Farm

Ener

gy u

se: B

tu/g

ram

of n

utrie

nt46

.510

.85.

018

0.6

262.

126

4.3

191.

325

7.7

Loss

fact

or1.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

01.

000

1.00

0

Shar

es o

f Her

bici

de T

ypes

for S

oybe

ans

36.2

%63

.8%

0.0%

0.0%

Shar

es o

f pro

cess

fuel

s

Res

idua

l oil

0.0%

0.0%

0.0%

30.0

%30

.0%

30.0

%30

.0%

0.0%

D

iese

l fue

l0.

0%27

.0%

31.0

%30

.0%

30.0

%30

.0%

30.0

%60

.0%

N

atur

al g

as90

.0%

26.0

%27

.0%

23.0

%23

.0%

23.0

%23

.0%

23.0

%

Coa

l0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%0.

0%

Ele

ctric

ity10

.0%

47.0

%42

.0%

17.0

%17

.0%

17.0

%17

.0%

17.0

%

Ener

gy u

se: B

tu/g

ram

of c

hem

ical

R

esid

ual o

il0.

000.

000.

0054

.18

78.6

379

.29

57.3

969

.78

0.00

D

iese

l fue

l0.

002.

921.

5554

.18

78.6

379

.29

57.3

969

.78

154.

62

Nat

ural

gas

: pro

cess

fuel

41.8

52.

811.

3541

.54

60.2

860

.79

44.0

053

.50

59.2

7

Coa

l0.

000.

000.

000.

000.

000.

000.

000.

000.

00

Ele

ctric

ity4.

655.

082.

1030

.70

44.5

644

.93

32.5

239

.54

43.8

1

Tot

al e

nerg

y56

.83

20.0

98.

9325

1.61

365.

1514

50.5

726

6.51

324.

0536

7.19

F

ossi

l fue

ls55

.25

18.3

88.

2224

0.97

349.

7135

2.65

255.

2531

0.35

351.

90

Pet

role

um0.

443.

521.

8311

8.15

171.

4617

2.90

125.

1515

2.16

172.

52

Tota

l em

issi

ons:

gra

ms/

gram

of c

hem

ical

V

OC

0.00

00.

000

0.00

00.

002

0.00

30.

003

0.00

20.

002

0.00

30.

000

0.00

00.

000

C

O0.

002

0.00

10.

000

0.00

90.

014

0.01

40.

010

0.01

20.

018

0.00

00.

000

0.00

0

NO

x0.

005

0.00

30.

002

0.03

90.

056

0.05

70.

041

0.05

00.

077

0.00

00.

001

0.00

0

PM

100.

000

0.00

00.

000

0.00

40.

006

0.00

60.

004

0.00

50.

006

0.00

00.

000

0.00

0

SO

x0.

005

0.00

60.

002

0.07

70.

111

0.11

20.

081

0.09

90.

058

0.00

00.

000

0.00

0

CH

40.

006

0.00

20.

001

0.02

40.

035

0.03

60.

026

0.03

10.

035

0.00

00.

000

0.00

0

N2O

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

C

O2

3.78

21.

639

0.72

419

.979

28.9

9529

.238

21.1

6225

.731

28.8

860.

017

0.03

00.

010

Che

mic

als

Tran

spor

tatio

n fo

r So

ybea

nsFe

rtili

zer P

rodu

ctio

nH

erbi

cide

Pro

duct

ion

59

Page 74: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 9: “BD” Overview This sheet calculates energy use and emissions associated with producing Biodiesel (BD) from soybeans5. The sheet includes soybean farming and transportation, soyoil extraction, and soyoil transesterification to Biodiesel. Energy use and emissions are allocated between BD and co-products according to the market value method6. Section Breakdown

1) Scenario Control and Key Input Parameters • These values can be altered in Section 3 on the Inputs sheet. • Enter the allocation of soydiesel and co-product production as a percentage of

total energy consumed and emissions produced during the production of soy and soy products. Three stages are considered: soybean farming, soybean oil (soyoil) extraction, and soybean oil (soyoil) transesterification. Co-products would include soy used for food, among other purposes.

Figure 54: BD Section 1

1) Scenario Control and Key Input Parameters (from the Inputs sheet)

Soydiesel Co-products Soybean farming 33.6% 66.4% Soyoil extraction 33.6% 66.4%

Soyoil transesterification 70.1% 29.9%

Allocation shares

5 Default assumptions located within the Biodiesel (BD) sheet are based on values provided in Wang (2000). 6 The market value approach uses a price of $220.36 per metric ton for soy meal and $498.56 per metric ton for soy oil. These prices are the average of the prices predicted by the Food and Agricultural Policy Research Institute in 1997 for the period of 1996-2006 (Wang 1999).

60

Page 75: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Soybean Use Key Variables • Enter the attributes for soybean farming, soybean oil (soyoil) extraction, and

biodiesel production: soybean density in pounds per bushel, pounds of soybeans required to produce one pound of soyoil, and pounds of soyoil required to produce one pound of biodiesel.

• Placeholder values are based on industry averages. Figure 55: BD Section 2

2) Soybean use Key Variables

Soybean density: lbs./bushel 60Soybean use:: lbs. soybean/lb. soy oil 5.7Soyoil use: lbs. soy oil/lb. biodiesel 1.04

61

Page 76: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Shares of Combustion Processes for Each Stage • Enter the share of combustion process technologies used during soybean farming

and biodiesel production. Each subsection should total 100 percent. • These values are used in Section 4 of this sheet to determine total emissions

during various stages of soybean farming, soyoil extraction, and BD production. Figure 56: BD Section 3

3) Shares of Combustion Processes for Each Stage

Soyb

ean

Farm

ing

Bio

dies

el

Prod

uctio

n

Residual oil industrial or commercial boiler 100.0% 100.0%Diesel commercial boiler 10.0% 33.0%Diesel stationary engine 10.0% 33.0%Diesel turbine 10.0% 34.0%Diesel farming tractor 70.0%NG engine 25.0% 25.0%NG large turbine 25.0% 25.0%NG large industrial boiler 25.0% 25.0%NG small industrial boiler 25.0% 25.0%Coal industrial boiler 100.0%

62

Page 77: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4) Calculations of Energy Consumption and Emissions for Each Stage • Enter the material inputs: Btu required to farm 1 bushel of soybeans; grams of

nitrogen, P2O5, and K2O required to farm 1 bushel of soybeans; and, Btu required to extract 1 pound of soyoil.

• The shares of process fuels are estimated on the basis of historical statistical data on fuel use by fuel type. This data relies primarily on results from Delucchi (1997).

• Enter the energy consumed during soyoil transesterification per pound of soydiesel in cells K52 through K60. The default values represent industry averages but may be altered to pertain more specifically to the simulation.

• Certain additional values in this section may be altered (such as VOC loss due to evaporation and spillage), but it is recommended that only advanced users alter these values.

• Press F9 to reflect any changes due to newly inputted data. • Based on the technology shares in Section 3 of this sheet, information from the

Inputs sheet, and information from the T&D sheet, this section will summarize and/or calculate the following:

o The loss factor during biodiesel transportation, distribution, and storage. The loss factor calculates the fuel loss in each stage due to evaporation or leakage. The biodiesel loss factor is directly dependent to the user-entered VOC loss due to spillage;

o The shares of process fuels. This is the share of each fuel type used during soybean farming and soyoil extraction. These values are based on industry averages;

o The energy use in Btu per mmBtu of fuel throughput for each process and each process fuel. Energy use during soybean farming, soyoil extraction, and biodiesel production are directly dependent on the share of process fuels percentages. Energy due to fertilizer, herbicide, and pesticide use is calculated based on results from the Ag_Inputs sheet;

o The total energy, fossil fuel based energy, and petroleum based energy for each process. This includes a sum of all process fuel types; and,

o The total emissions in grams per mmBtu of fuel throughput. This is determined by the technology shares entered in Section 3 of this sheet, and the energy use per process fuel. Data are organized in emissions per bushel of soybeans, per pound of soyoil, per pound of soydiesel, and per mmBtu of biodiesel.

Figure 57: BD Section 4 is located on the next page.

63

Page 78: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 57: BD Section 4

64

4) C

alcu

latio

ns o

f Ene

rgy

Con

sum

ptio

n an

d Em

issi

ons

for e

ach

stag

e

Soybean Farming

Soybean Transportation

Soyoil Extraction

Soyoil Transesterification

Biodiesel Transportation and Distribution

Biodiesel Storage

Btu

/bus

hel

Nitr

ogen

P2O

5K

2OH

erbi

cide

Pes

ticid

eP

er b

ushe

lP

er lb

. of

soyo

ilP

er lb

. of

biod

iese

lM

ater

ial I

nput

s32

,140

11

9.0

373.

063

5.0

47.8

00.

486,

519

Loss

fact

or1.

000

1.00

0Sh

ares

of p

roce

ss fu

els

R

esid

ual o

il0.

0%0.

0%

Die

sel f

uel

98.4

%0.

0%

Nat

ural

gas

0.0%

87.5

%

Coa

l0.

0%0.

0%

Ele

ctric

ity1.

6%9.

4%

N-h

exan

e (a

sol

vent

from

cru

de)

3.1%

F

eed

loss

0.0%

0.0%

Ener

gy c

onsu

med

: Btu

/mm

Btu

of f

uel

thro

ughp

ut, e

xcep

t as

note

dPe

r lb.

of

soyo

ilPe

r lb.

of

soyd

iese

l

Res

idua

l oil

00

0

Die

sel f

uel

31,6

260

0

Nat

ural

gas

05,

704

2,66

4

Coa

l0

00

E

lect

ricity

514

613

341

N

-hex

ane

(a s

olve

nt fr

om c

rude

)20

20

S

odiu

m h

ydro

xide

263

S

odiu

m m

etho

xide

10

Hyd

roch

loric

aci

d32

138

0.00

T

otal

ene

rgy

3963

8.93

7667

6374

9456

6915

489

176

5051

.395

77,

690

4,04

310

,234

0.00

F

ossi

l fue

ls39

,348

6575

6856

5218

1483

516

950

35.6

7058

7,48

23,

928

9,85

80.

00

Pet

role

um34

,730

5213

1211

6472

7383

4580

.852

1258

173

7,15

10.

00

Tota

l em

issi

ons:

gra

ms/

mm

Btu

of f

uel

thro

ughp

ut, e

xcep

t as

note

dPe

r lb.

of

soyo

ilPe

r lb.

of

soyd

iese

l

VO

C2.

400

0.03

10.

067

0.06

50.

113

0.00

20.

1621

1231

0.07

90.

037

0.34

2446

2

CO

9.22

80.

272

0.25

60.

244

0.58

70.

009

0.62

0486

141.

627

0.76

11.

0185

4279

N

Ox

28.1

950.

668

1.62

81.

572

2.42

20.

037

2.63

8029

382.

799

1.33

18.

0195

1567

P

M10

1.58

70.

045

0.11

50.

098

0.25

10.

003

0.09

2420

820.

053

0.02

60.

2451

6287

S

Ox

2.47

40.

661

2.24

91.

704

4.73

10.

028

0.25

2312

10.

697

0.38

51.

6372

3324

C

H4

3.45

00.

727

0.81

20.

630

1.50

60.

017

0.42

6307

51.

349

0.64

60.

5348

1983

N

2O0.

068

0.00

80.

008

0.00

70.

013

0.00

00.

0106

6745

0.01

10.

005

0.01

4568

23

CO

231

54.0

4445

6.73

463

2.35

649

5.10

012

32.6

1913

.892

402.

1154

3750

6.36

224

9.17

652

5.72

6445

V

OC

loss

: eva

pora

tion

1.65

8N

O fr

om n

itrog

en fe

rtiliz

er

VO

C lo

ss: s

pilla

ge2.

431

N2O

from

nitr

ogen

ferti

lizer

3.95

0

(per

mm

Btu

)

Per b

ushe

l of s

oybe

ans

Per m

mB

tu o

f bio

dies

el

Per b

ushe

l of s

oybe

ans

Per m

mB

tu o

f bio

dies

el

Soyb

eans

Bio

dies

el

Soyb

ean

Farm

ing

Fert

ilize

r Use

(g

ram

s/bu

shel

)

Soyb

ean

Farm

ing

Her

bici

de a

nd P

estic

ide

Use

(gra

ms/

bush

el)

Page 79: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage

• Provides a summary of total energy consumed and total emissions during the various stages of biodiesel production. The results are summed from Section 4 of this sheet and converted to energy consumed per gallon of biodiesel. Output includes energy and emissions during the farming of soybeans (including the use of fertilizers, herbicides and pesticides), the extraction of soyoil, the conversion to soydiesel, and the transportation of soydiesel.

• The relevant data are multiplied by the proper fuel specification criteria and then summed into the Feedstock and Fuel columns to accurately reflect fuel-cycle results.

• This data is carried to the Results tab for final summarization. Figure 58: BD Section 5

5) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each StageSo

ybea

ns

Soyo

il

Soyd

iese

l

Soyd

iese

l Tr

ansp

orta

tion,

St

orag

e, a

nd

Dis

trib

utio

n

Feed

stoc

k

Fuel

Unit Per bushel per lb. per lb. per mmBtu per mmBtu per mmBtu

Conversion factor to gallons of biodiesel 1.37 0.141 0.136 1.000 1.000

gallon gallon gallon mmBtu Loss factorTotal energy 80,261 7,689 4,043 9,834 117,578 297,870 Fossil fuels 78,014 7,482 3,927 9,458 114,287 289,441 Petroleum 49,174 58 173 6,771 72,038 15,230 VOC 2.836 0.079 0.037 4.277 4.154 7.035CO 11.203 1.627 0.761 0.973 16.412 57.761NOx 38.692 2.799 1.331 7.634 56.682 106.251PM10 4.615 0.053 0.026 0.232 6.761 2.136SOx 11.954 0.696 0.384 1.120 17.512 28.014CH4 7.558 1.349 0.646 0.500 11.073 48.230N2O 2.546 0.011 0.005 0.014 3.729 0.377CO2 6,404 509 250 493 9381.746 18804.726

Energy Use and Total Emissions

65

Page 80: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 10: “Coal” Overview The purpose of this sheet is to calculate energy use and emissions for coal mining, cleaning, and transportation. The results are used for other fuel cycles in which coal is used as a process fuel. For example, in calculating energy use and emissions associated with refining crude oil to low-sulfur diesel, TEAMS will consider the energy use and emissions associated with electricity generation in coal-fired power plants – including coal mining, cleaning, and transportation to the plant. Section Breakdown

1) Shares of Combustion Processes for Each Stage • Enter the share of combustion process technologies used for coal mining and

cleaning. Each subsection should equal 100 percent. • These values will be used in Section 2 of this sheet to determine total emissions

during coal mining and cleaning per fuel throughput. Figure 59: Coal Section 1

1) Shares of Combustion Processes for Each Stage

Coa

l Min

ing

and

Cle

anin

g

Residual oil industrial boiler 100.0%Diesel commercial boiler 33.0%Diesel stationary engine 33.0%Diesel turbine 34.0%NG engine 25.0%NG large turbine 25.0%NG large industrial boiler 25.0%NG small industrial boiler 25.0%Coal industrial boiler 100.0%

66

Page 81: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Calculations of Energy Consumption and Emissions for Each Stage • Enter the energy efficiency for coal mining and cleaning. • The shares of process fuels are estimated on the basis of historical statistical data

on fuel use by fuel type. This data relies primarily on results from Delucchi (1997).

• The user may manually enter the VOC, PM10, and SOx emissions associated with coal cleaning, and the CH4 emissions associated with coal mining. However, the default values are based on industry averages and should only be altered by advanced users.

• Based on the technologies established in Section 1 of this sheet, information from the Inputs sheet, and information from the T&D and other sheets, this section will summarize and/or calculate the following:

o The loss factor during coal mining and cleaning, and coal transportation. The loss factor ultimately calculates the fuel loss in each stage due to evaporation or leakage. The loss factor is determined by the following formula:

⎥⎦

⎤⎢⎣

⎡×⎟⎠⎞

⎜⎝⎛

−+ B

A 111

where, A is the efficiency of the process, and B is the feed loss. Feed loss is the percentage of process fuels “unaccounted for”. Feed loss for coal (and other solid fuels) is typically zero or very close to zero;

o The shares of process fuels. This is the share of each fuel type used during the mining and cleaning of coal. These values are based on industry averages;

o The energy use in Btu per mmBtu of fuel throughput for cleaning and mining and each fuel type used during that process. The energy consumption associated with coal mining and cleaning is directly dependent on share of process fuels percentages;

o The total energy, fossil fuel based energy, and petroleum based energy for mining and cleaning, and transportation of coal. The energy consumption associated with coal mining and cleaning includes a sum of all process fuel types. The energy consumption associated with coal transportation is derived from distances on the T&D sheet and relevant fuel specifications from the Fuel Specs sheet; and,

o The total emissions in grams per mmBtu of fuel throughput. This is determined by the technology shares entered in Section 1 of this sheet, and the energy use per process fuel.

Figure 60: Coal Section 2 is located on the next page.

67

Page 82: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 60: Coal Section 2

2) Calculations of Energy Consumption and Emissions for Each Stage

Coa

l Min

ing

and

Cle

anin

g

Coa

l Min

ing:

Non

-C

ombu

stio

n Em

issi

ons

Coa

l Cle

anin

g: N

on-

Com

bust

ion

Emis

sion

s

Coa

l Tra

nspo

rtat

ion

Energy efficiency 99.3%

Loss factor 1.000 1.000

Shares of process fuels Residual oil 7.0% Diesel fuel 56.0% Natural gas 1.0% Coal 9.0% Electricity 24.0% Feed loss 0.0%

Energy consumed: Btu/mmBtu of fuel throughput Residual oil 493 Diesel fuel 3,948 Natural gas 70 Coal 634 Electricity 1,692 Feed loss 0 Total energy 10,565 10,403 Fossil fuel 9,982 10,372 Petroleum 4,954 9,467

Total Emissions: grams/mmBtu of fuel throughput VOC 0.126 6.890 0.714 CO 0.782 1.828 NOx 3.451 17.839 PM10 0.232 6.784 0.534 SOx 2.835 3.906 1.539 CH4 1.044 117.286 0.899 N2O 0.013 0.019 CO2 890.546 828.294

68

Page 83: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput

• Provides a summary of total energy consumed and total emissions during the mining, cleaning, and transportation of coal.

• These data are carried to other sheets to be used in fuel cycles in which coal is used as a process fuel.

• Press F9 to reflect any changes due to new data input. Figure 61: Coal Section 3

3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput

TotalTotal energy 20,968Fossil fuels 20,353Petroleum 14,421VOC 7.730CO 2.611NOx 21.290PM10 7.550SOx 8.280CH4 119.229N2O 0.032CO2 1747.0344

69

Page 84: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 11: “Uranium” Overview This sheet is used to calculate energy use and emissions associated with uranium mining, transportation, and enrichment. The results are used in the Electric sheet for calculating energy use and emissions associated with nuclear electric power plants. That is, even though nuclear power plants have zero operational energy use and emissions, the upstream processing and transportation of uranium consumes energy and generate emissions. Section Breakdown

1) Shares of Combustion Processes for Each Stage • Enter the share of combustion process technologies used during uranium mining

and enrichment. Each subsection should equal 100 percent. • These values will be used in Section 2 of this sheet to determine total emissions of

fuels throughput during uranium mining and enrichment. Figure 62: Uranium Section 1

1) Shares of Combustion Processes for Each Stage

Ura

nium

Min

ing

Ura

nium

En

richm

ent

Residual oil commercial/industrial boiler 100.0% 100.0%Diesel commercial boiler 33.0% 33.0%Diesel stationary engine 33.0% 33.0%Diesel turbine 34.0% 34.0%NG engine 25.0% 25.0%NG large turbine 25.0% 25.0%NG large industrial boiler 25.0% 25.0%NG small industrial boiler 25.0% 25.0%Coal industrial boiler 100.0% 100.0%

70

Page 85: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Calculations of Energy Consumption and Emissions for Each Stage • Enter the energy efficiency of uranium mining and uranium enrichment. • The shares of process fuels are estimated on the basis of historical statistical data

on fuel use by fuel type. This data relies primarily on results from Delucchi (1997).

• Based on the technologies established in Section 1 of this sheet, information from the Inputs sheet, and information from the T&D and other sheets, this section will summarize and/or calculate the following:

o The loss factor during uranium mining, transportation and enrichment. The loss factor calculates the fuel loss in each stage due to evaporation or leakage. The loss factor is determined by the following formula:

⎥⎦

⎤⎢⎣

⎡×⎟⎠⎞

⎜⎝⎛

−+ B

A 111

where, A is the efficiency of the process, and B is the feed loss. Feed loss is the percentage of process fuels “unaccounted for”. Feed loss for uranium (and other solid fuels) is typically zero or very close to zero;

o The shares of process fuels. This is the share of each fuel type used during the mining and enrichment of uranium. These values are based on industry averages;

o The energy use in Btu per mmBtu of fuel throughput for mining and enrichment and each fuel type used during that process. The energy consumption associated with uranium mining and enrichment is directly dependent on share of process fuels percentages;

o The total energy, fossil fuel based energy, and petroleum based energy consumption for mining, transporting and enriching uranium. The energy consumption associated with uranium mining and enriching includes a sum of all process fuel types. The energy consumption associated with uranium transportation is derived from distances on the T&D sheet and relevant fuel specifications from the Fuel Specs sheet; and,

o The total emissions in grams per mmBtu of fuel throughput. This is determined by the technology percentages entered in Section 1 of this sheet, and the energy use per process fuel.

Figure 63: Uranium Section 2 is located on the next page.

71

Page 86: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 63: Uranium Section 2

2) Calculations of Energy Consumption and Emissions for Each Stage

Ura

nium

Min

ing

Ura

nium

Tr

ansp

orta

tion

Ura

nium

En

richm

ent

Energy efficiency 99.5% 95.8%

Loss factor 1.000 1.000 1.000Shares of process fuels Residual oil 1.0% 0.0% Diesel fuel 22.0% 0.0% Natural gas 43.0% 3.0% Coal 0.0% 0.0% Electricity 29.0% 97.0% Feed loss 0.0% 0.0%Energy Use: Btu/mmBtu of fuel throughput Residual oil 50 0 Diesel fuel 1,106 0 Natural gas 2,161 1,315 Coal 0 0 Electricity 1,457 42526.096 Feed loss 0 0 Total energy 7,585 177.319943 115,220 Fossil fuels 7,092 177 100,970 Petroleum 1,362 161 2,591

Total Emissions: grams/mmBtu of fuel throughput VOC 0.08 0.01 0.76 CO 0.84 0.03 1.91 NOx 2.31 0.30 19.50 PM10 0.11 0.01 1.65 SOx 1.71 0.01 46.53 CH4 0.99 0.02 12.88 N2O 0.01 0.00 0.13 CO2 586.57 14.08 9930.08

72

Page 87: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage

• Provides a summary of total energy consumed and total emissions during the mining, transportation, and enrichment of uranium. The results are in Btu or grams per mmBtu of electricity generated from nuclear power plants.

• This data is carried to the Electric sheets to be used in Electric fuel cycles in which uranium is used as a process fuel.

• Press F9 to reflect any changes due to newly inputted data. Figure 64: Uranium Section 3

3) Summary of Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Throughput at Each Stage

TotalTotal energy 122,982Fossil fuels 108,239Petroleum 4,114VOC 0.844CO 2.780NOx 22.100PM10 1.763SOx 48.247CH4 13.892N2O 0.135CO2 10537.7287

73

Page 88: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 12: “Electric” Overview This sheet calculates energy use and emissions associated with the generation of electricity for transportation fuel production. In this sheet, TEAMS calculates emission factors for electric power plants according to combustion emission factors incorporated in the model, or it can take emission factors directly from the user. Energy use and emissions during processing and transportation of power plant fuels, as well as during power plant electricity generation, are taken into account. The results in this sheet are provided in Btu or grams per mmBtu of electricity available at user sites. That is, electricity loss during transmission and distribution of electricity from power plants to user sites is taken into account in TEAMS. Section Breakdown

1) Scenario Control and Key Input Parameters • This field may be altered in Section 4.1 of the Inputs sheet. It is copied as Section

1 of the Electric sheet for reference purposes. • Enter “1” to calculate total emissions from electricity generation based on defaults

located on the EF sheet. • Enter “2” to calculate total emissions from electricity generation based on values

that the user must enter in Section 4 of this sheet. Figure 65: Electric Section 1

1) Scenario Control and Key Input Parameters (entered on the Inputs sheet)

1 1 → Model-calculated emissions factors2 → User-input emission factors

74

Page 89: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Electricity Generation Mixes, Combustion Technology Shares, and Power Plant Energy Conversion Efficiencies

• “Generation Mix for Stationary Applications”: These data are taken from the user-entered “Electricity Generation Mix” values in Section 4.2 of the Inputs sheet. Refer to that section to make changes. Default values are based on national averages but may be altered on the Inputs sheet to reflect a specific scenario or regional conditions.

• “Combustion Technology Shares for a Given Fuel”: Enter the share of combustion process technologies used during electricity generation. Each subsection should equal 100 percent.

• “Power Plant Energy Conversion Efficiency”: Enter the energy conversion efficiency of each power plant type. Default values are based on best available data. For more details on these inputs, please see the appropriate cell-comments in the TEAMS Model.

• Press F9 to reflect any changes due to newly inputted data and to calculate the overall average energy conversion efficiency for each power plant type (in cells E16, E18, and E22).

Figure 66: Electric Section 2

2) Electricity Generation Mixes, Combustion Technology Shares, and Power Plant Energy Conversion Efficiencies

Gen

erat

ion

Mix

for

Stat

iona

ry A

pplic

atio

ns

Com

bust

ion

Tech

nolo

gy S

hare

s fo

r A

Giv

en F

uel

Pow

er P

lant

Ene

rgy

Con

vers

ion

Effic

ienc

y

Residual Oil-Fired Power Plants 1.0% 35.0% Utility boiler 100.0% 35.0%Natural Gas-Fired Power Plants 14.9% 38.2% Utility boiler 40.0% 34.0% Simple-cycle gas turbine 40.0% 34.0% Combined-cycle gas turbine 20.0% 55.0%Coal-Fired Power Plants 53.8% 32.5% Utility boiler 95.0% 32.0% Advanced tech. with combined cycle 5.0% 41.5%Nuclear Power Plants 18.0% 100.0%Other Power Plants (hydro, wind, etc.) 12.3% 100.0%

3) Electric Transmission and Distribution Loss • Enter the transmission and distribution loss in percentage.

Figure 67: Electric Section 3

3) Electric Transmission and Distribution Loss

8.0%

75

Page 90: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4) Power Plant Emissions: in Grams per kWh of Electricity available at Power Plant Gate

• This section represents the first of four stages of results for the Electric sheet. • Power plant emissions are presented based on electricity available at power plant

gates prior to accounting for transmission and distribution losses (Wang 2001; GREET 1.6).

• If the user entered “1” in Section 1 of this sheet, there are no required inputs in this section. TEAMS will use the emission factors (EFs) listed under “TEAMS-Calculated Emission Factors; By Fuel-Type Plants” to calculate emissions during electricity generation. These values are derived from values located in Section 1 of the EF Sheet, along with the technology percentages that the user entered in Section 2 of this sheet, and represent industry averages. The values will be multiplied by the user-entered percentages for generation mix in Section 2 of this sheet and summed into the column titled “TEAMS-Calculated Emission Factors: Stationary Use; Total”.

• If the user entered “2” in Section 1 of this sheet, the user is required to input the emission factors under “User-Input Emission Factors: Stationary Electricity Use”. The values will be multiplied by the user-entered percentages for generation mix in Section 2 of this sheet and summed into the column titled “User-Input Emission Factors: Stationary Use; Total”.

Figure 68: Electric Section 4

4) Power Plant Emissions: in Grams per kWh of Electricity Available at Power Plant Gate

TEA

MS-

Cal

cula

ted

Emis

sion

Fac

tors

Use

r-In

put

Emis

sion

Fac

tors

Stationary Use

Stationary Use

Oil-Fired NG-Fired Coal-Fired Oil-Fired NG-Fired Coal-Fired Total TotalVOC 0.0240 0.0164 0.0122 0.0041 0.0041 0.0041 0.0092 0.0029CO 0.1579 0.2044 0.1024 0.0288 0.0288 0.0288 0.0871 0.0201NOx 1.0109 0.4559 2.1595 0.4838 0.4838 0.4838 1.2398 0.3372PM10 0.0600 0.0321 0.1309 0.0463 0.0463 0.0463 0.0758 0.0323SOx 6.8247 0.0029 6.0981 0.8796 0.8796 0.8796 3.3494 0.6131CH4 0.0089 0.0268 0.0097 0.0089 0.0268 0.0097 0.0093 0.0093N2O 0.0035 0.0123 0.0128 0.0035 0.0123 0.0128 0.0088 0.0088CO2 805.9779 555.1259 1138.2239 806.2428 535.2391 1134.7015 703.1380 698.2825

TEAMS-Calculated Emission FactorsUser-Input Emission Factors:

Stationary Electricity Use

By Fuel-Type Plants By Fuel-Type Plants

76

Page 91: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

5) Power Plant Emissions: Grams per kWh of Electricity Available at User Sites (wall outlets)

• This section represents the second of four stages of results for the Electric sheet. • Power plant emissions are presented in grams per kWh of electricity available at

user sites. Electricity loss during transmission and distribution of electricity from power plants to user sites is taken into account when calculating and presenting these results.

Figure 69: Electric Section 5

5) Power Plant Emissions: Grams per kWh of Electricity Available at User Sites (wall outlets)

Stationary Use

Oil-Fired Power Plants

NG-Fired Power Plant

Coal-Fired Power Plant

Nuclear Power Plant

Other Power Plants

NGCC Power Plants

VOC 0.0089 0.0261 0.0104 0.0132 0.0000 0.0000 0.0071CO 0.0751 0.1717 0.0909 0.1113 0.0000 0.0000 0.0506NOx 1.3378 1.0988 0.4294 2.3472 0.0000 0.0000 0.3331PM10 0.0815 0.0652 0.0289 0.1423 0.0000 0.0000 0.0222SOx 3.6406 7.4181 0.0027 6.6283 0.0000 0.0000 0.0021CH4 0.0109 0.0096 0.0347 0.0105 0.0000 0.0000 0.0287N2O 0.0094 0.0038 0.0127 0.0139 0.0000 0.0000 0.0101CO2 752.0377 876.0630 521.2318 1237.1999 0 0 403.9927

77

Page 92: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

6) Power Plant Energy Use and Emissions: per mmBtu of Electricity Available at User Sites (wall outlets)

• This section represents the third of four stages of results for the Electric sheet. • Power plant energy use and emissions are presented in Btu per mmBtu or grams

per mmBtu of electricity available at user sites. Electricity loss during transmission and distribution of electricity from power plants to user sites is taken into account when calculating and presenting these results.

• The emissions presented here are simply a kWh to Btu conversion of the emissions presented in Section 5 of this sheet.

Figure 70: Electric Section 6

6) Power Plant Energy Use and Emissions: per mmBtu of Electricity Available at User Sites (wall outlets)

Energy Use: BtuStationary

UseOil-Fired

Power PlantNG-Fired

Power PlantCoal-Fired

Power PlantNuclear

Power PlantOther Power

Plants

NGCC Power Plants

Residual oil 31,056 3,105,590 0 0 0 0 0 NG 358,867 0 2,408,501 0 0 0 1,976,285 Coal 1,800,716 0 0 3,347,056 0 0 0 Uranium 195,652 0 0 0 1,086,957 0 0 Other energy sources 133,696 0 0 0 0 1,086,957 0

Emissions: grams VOC 2.614 7.640 3.047 3.872 0.000 0.000 2.075 CO 22.024 50.311 26.644 32.622 0.000 0.000 14.822 NOx 392.084 322.050 125.858 687.938 0.000 0.000 97.628 PM10 23.895 19.099 8.481 41.710 0.000 0.000 6.502 SOx 1067.007 2174.135 0.789 1942.655 0.000 0.000 0.611 CH4 3.203 2.826 10.156 3.088 0.000 0.000 8.419 N2O 2.767 1.118 3.735 4.088 0.000 0.000 2.964 CO2 220,410 256,759 152,764 362,603 0 0 118,403

78

Page 93: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

7) Fuel-Cycle Energy Use and Emissions of Electric Generation: Btu or Grams per mmBtu of Electricity Available at User Sites (wall outlets)

• This section represents the fourth of four stages of results for the Electric sheet. • Power plant energy use and emissions are presented in Btu or grams per mmBtu

of electricity available at user sites. Output is presented in both fuel-cycle summaries – including the feedstock and fuel stages. Electricity loss during transmission and distribution of electricity from power plants to user sites is taken into account when calculating and presenting these results.

• The results under the columns titled “Fuel” are simply a summary of the results located in Section 6 of this sheet.

• The results under the columns titled “Feedstock” are calculated based on fuel-cycle data from the appropriate sheet (petroleum for oil-fired, NG for NG-fired, coal for coal-fired, and uranium for nuclear power).

Figure 71: Electric Section 7

7) Fuel-Cycle Energy Use and Emissions of Electric Generation: Btu or Grams per mmBtu of Electricity Available at User Sites (wall outlets)

Feedstock Fuel Feedstock Fuel Feedstock Fuel Feedstock Fuel Feedstock Fuel Feedstock FuelTotal Energy 86,556 2,519,987 322,163 3,105,590 149,991 2,408,501 69,752 3,347,056 130,326 1,086,957 123,075 1,976,285Fossil fuels 81,106 2,190,639 314,805 3,105,590 140,681 2,408,501 67,696 3,347,056 114,313 0 115,435 1,976,285Petroleum 29,512 31,056 143,545 3,105,590 8,768 0 48,267 0 4,460 0 7,194 0VOC 14.44 2.61 13.21 7.64 1.54 3.05 25.87 3.87 0.90 0.00 1.26 2.08CO 7.98 22.02 32.87 50.31 16.64 26.64 8.70 32.62 2.72 0.00 13.66 14.82NOx 48.87 392.08 141.57 322.05 32.49 125.86 71.23 687.94 23.84 0.00 26.66 97.63PM10 14.39 23.89 33.28 19.10 0.82 8.48 25.27 41.71 1.90 0.00 0.68 6.50SOx 26.74 1,067.01 94.27 2,174.13 9.72 0.79 27.71 1,942.65 52.43 0.00 7.98 0.61CH4 282.34 3.20 293.36 2.83 416.68 10.16 399.06 3.09 14.57 0.00 341.91 8.42N2O 0.11 2.77 0.44 1.12 0.17 3.74 0.11 4.09 0.15 0.00 0.14 2.96CO2 7,129.18 220,452.41 26,495.06 256,862.24 11,085.08 152,815.66 5,917.52 362,665.89 11,271.80 0.00 9,095.81 118,433.24

Nuclear Power Plant NGCC Power PlantsStationary Use Oil-Fired Power Plant NG-Fired Power Plant Coal-Fired Power Plant

User Next Steps: At this point of the TEAMS simulation, the user has entered all required information on all sheets. It is recommended that the user double-check the entered information to ensure accuracy. Finally, be sure to press F9 to reflect any changes in data inputs. Continue to the Results Sheet to view the results of the simulation.

79

Page 94: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

8. INTERPRETING THE ‘RESULTS’ AND ‘GRAPHS’ The following is a section by section breakdown and analysis of the “Results” and “Graphs” sheets of the TEAMS model. This section is aimed at assisting the user in interpreting the results of their simulation. Please continue to Section 10 to see preliminary results.

Sheet 13: “Results” Overview This sheet presents results for the simulation vessel as entered on the Inputs sheet using each of the six alternative fuel options and based on user-inputs from the other 10 sheets of the TEAMS model. The sheet is constructed in four main sections. Table 1 (Well-to-Pump Energy Consumption and Emissions) presents energy and emission results from wells to refueling station pumps (in mmBtu/trip or g/mmBtu of fuel available at pumps). Table 2.1 (Auxiliary Engine Energy Consumption and Emissions) presents the fuel-cycle (well-to-hull) energy consumption and emissions for the auxiliary engines of the simulation vessel (in mmBtu/trip or g/trip). For each fuel alternative, energy use and emissions are presented separately for three stages: feedstock (including recovery, transportation, and storage), fuel (including production, transportation, storage, and distribution), and vessel operation. Section 2.2 identifies the auxiliary engine fuel type (as selected on the Inputs sheet) to use in Table 3 to calculate total well-to-hull energy consumption and emissions (auxiliary and main engines). Table 3 (Main and Auxiliary Engine Well-to-Hull Energy Consumption and Emissions) presents the fuel-cycle energy consumption and emissions for the main and auxiliary engines of the simulation vessel (in mmBtu/trip or g/trip). For each fuel alternative, energy use and emissions are presented separately for the feedstock, fuel, and operation stages. The type of auxiliary engine fuel used in the sum of total energy and emissions is determined in Inputs Section 6.1. Any main engine fuel and auxiliary engine fuel combination may be used. For example, if the user selects Biodiesel as the auxiliary engine fuel, Section 3 will show energy and emissions output for the vessel running on each of the six alternative main engine fuels and Biodiesel as the auxiliary fuel. If the user changed the type of auxiliary engine fuel, the user must remember to press F9 to view results based on the change in fuel type. The “Auxiliary Engine Fuel” is listed at the top of each result subsection in Section 3 so the user will know what type of fuel is being simulated. Percentage shares of energy use and emissions for each of the three stages (considering both main and auxiliary engines) are also presented in this section. Table 4 (Well-to-Hull Energy and Emission Changes) presents the percent change in fuel-cycle energy use and emissions for the simulation vessel running on each of the six alternative fuel types. The changes per fuel type are calculated against the simulation vessel fueled with conventional diesel.

80

Page 95: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Section Breakdown

1) Well-to-Pump Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Available at Fuel Station Pumps

• This section presents energy and emission results from wells to refueling station pumps (in mmBtu/trip or grams/mmBtu of fuel available at pumps). These results include the feedstock (i.e. mining) and fuel (i.e. distribution) stages, but not the vessel operation (burning of the fuel) stage.

• This section presents a summary of the energy and emissions calculated on each of the previous sheets. For example, cell C15 summarizes the CO2 emissions released by the use of residual oil during all vessel pre-operation fuel-cycle stages.

• The “Biodiesel CO2 Credit” (cell H24) presents the “negative CO2 emissions” allocated to the growing of soybeans. This cell represents the amount of CO2 that the growing of soybeans consumes or removes from the atmosphere.

Figure 72: Results Section 1

1) Well-to-Pump Energy Consumption and Emissions: Btu or grams per mmBtu of Fuel Available at Fuel Station Pumps

Residual OilConventional Diesel

Low-Sulfur Diesel

Compressed Natural Gas

Liquid Natural Gas Biodiesel FT Diesel

Total Energy 102987.72 209513.30 209536.50 167040.34 186996.98 247724.71 209513.30WTP Efficiency 90.66% 82.68% 82.68% 85.69% 84.25% 80.15% 82.68%Fossil Fuels 100619.40 205747.73 205770.72 157743.72 185862.11 242483.08 205747.73Petroleum 45044.15 96831.88 96850.34 5351.25 11275.16 95059.18 96831.88CO2 8425.58 16161.41 16325.42 12464.03 12629.33 3229.19 16161.41CH4 94.38 100.58 100.58 253.02 174.94 92.92 100.58N2O 0.14 0.26 0.26 0.19 0.26 0.97 0.26GHGs 10451.06 18354.20 18518.26 17836.93 16383.53 5482.40 18354.20VOC 4.16 8.35 8.50 2.39 1.03 8.87 8.35CO 10.36 13.33 13.39 35.04 9.34 24.62 13.33Nox 43.07 50.40 51.01 68.22 31.70 71.28 50.40PM10 10.58 11.84 12.04 1.58 1.08 11.30 11.84Sox 28.75 42.35 43.25 33.02 9.16 42.94 42.35

BD CO2 Credit -15163.54

81

Page 96: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Auxiliary Engine Well-to-Hull Energy Consumption and Emissions: Per Trip

2.1) Auxiliary Engine Energy Consumption and Emissions: Feedstock, Fuel & Operation

• This section presents the total fuel-cycle (well-to-hull) energy consumption and emissions for the auxiliary engines of the simulation vessel (in mmBtu/trip or g/trip). For each fuel alternative, energy use and emissions are presented separately for three stages: feedstock (including recovery, transportation, and storage), fuel (including production, transportation, storage, and distribution), and vessel operation.

• This section is not meant to be interpreted as major results of the simulation. It is simply a grid from which data will be drawn to add to the final results in Section 3 of this sheet.

• The “Biodiesel CO2 Credit” (cell O43) presents the “negative CO2 emissions” released during the growing of soybeans. This cell represents the amount of CO2 that the growing of soybeans removes from the atmosphere.

Figure 73: Results Section 2.1 is located on the next page.

82

Page 97: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 73: Results Section 2.1

(This section is broken

83

into two screenshots for user viewing.)

Feed

stoc

kFu

elO

pera

tion

Feed

stoc

kFu

elO

pera

tion

Feed

stoc

kFu

elO

pera

tion

10.0

314

.31

145.

668.

2026

.85

141.

258.

1491

.62

145.

669.

9613

.02

145.

667.

9226

.38

115.

048.

0991

.58

145.

660.

540.

250.

003.

549.

9411

5.04

0.53

1.28

0.00

6847

79.1

411

3097

6.56

8630

157.

57-1

4250

61.6

918

8560

2.59

1139

3498

.61

6526

69.6

728

4705

6.92

1126

8912

.23

3429

5.50

2561

.31

1221

6.84

1073

8.05

2392

.15

570.

6516

107.

9181

.26

588.

4810

.73

17.1

729

1.33

106.

1131

.51

565.

009.

831.

7829

1.33

1408

311.

6411

9008

8.13

8977

022.

99-1

1666

66.9

219

4560

4.72

1158

0632

.24

9939

82.2

728

4931

4.71

1137

1582

.07

137.

1621

0.99

1202

5.44

484.

9977

2.02

1166

1.03

49.3

174

9.12

1202

5.44

1083

.60

4021

.16

1802

5.05

1297

.37

2190

.43

3495

6.55

931.

7543

87.2

036

048.

9421

81.2

577

59.5

632

4813

.92

4655

.53

5505

.31

3149

71.0

717

50.5

934

05.8

232

4813

.92

52.7

517

7.20

78.6

612

79.7

332

5.88

7809

.71

47.0

526

.26

8053

.76

603.

6442

09.9

545

.01

2142

.41

3992

.02

2030

.49

572.

5571

9.30

0.00

BD

CO

2 C

redi

t-2

1418

50.0

9

Nat

ural

Gas

Bio

dies

elFT

Die

sel

2) A

uxili

ary

Engi

ne W

ell-t

o-H

ull E

nerg

y C

onsu

mpt

ion

and

Emis

sion

s: p

er T

rip2.

1) A

uxili

ary

Engi

ne E

nerg

y C

onsu

mpt

ion

and

Emis

sion

s: F

eeds

tock

, Fue

l & O

pera

tion

Feed

stoc

kFu

elO

pera

tion

Feed

stoc

kFu

elO

pera

tion

Feed

stoc

kFu

elO

pera

tion

Tota

l Ene

rgy

5.92

22.0

313

3.18

6.09

8.20

137.

106.

2823

.37

141.

25Fo

ssil

Fuel

s5.

7021

.74

133.

185.

878.

1013

7.10

6.05

23.0

714

1.25

Pet

role

um1.

9111

.03

133.

181.

964.

3713

7.10

2.02

11.7

014

1.25

CO

254

4708

.57

1611

313.

4410

6231

20.5

256

0651

.92

6085

13.0

011

2552

72.1

257

7721

.22

1732

147.

6311

4039

25.3

0C

H4

1209

4.41

1304

.96

538.

0412

448.

4150

5.23

553.

8712

827.

4013

84.3

257

0.65

N2O

9.68

25.0

126

6.36

9.96

9.64

274.

1910

.27

26.5

328

2.50

GH

Gs

8016

92.2

916

4647

1.99

1071

6990

.10

8251

57.4

362

2112

.69

1135

1902

.56

8502

79.7

217

6944

4.25

5034

83.9

4V

OC

435.

1767

9.81

1099

4.69

447.

9113

5.59

1131

8.06

461.

5474

2.63

1166

1.03

CO

1003

.33

781.

9332

959.

0310

32.6

942

4.22

3392

8.41

1064

.14

836.

8030

965.

24N

Ox

3663

.93

3137

.53

2969

72.7

337

71.1

724

81.8

830

5707

.22

3885

.99

3414

.09

3149

71.0

7P

M10

1276

.02

312.

0373

63.4

413

13.3

715

5.90

7580

.01

1353

.35

358.

8678

09.7

1S

Ox

1942

.38

3755

.15

2343

.94

1999

.23

2162

.43

3554

6.14

2060

.10

4110

.35

107.

26

Con

vent

iona

l Die

sel

Res

idua

l Oil

Low

-Sul

fur D

iese

l

11

Page 98: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2.2) Auxiliary Engine Fuel Type to Present in the Following Results Grids • This section identifies the auxiliary engine fuel type (as selected on the Inputs

sheet) to use in Section 3 of this sheet to calculate total well-to-hull energy consumption and emissions (auxiliary and main engines).

• This value can be altered in Section 6.1 of the Inputs sheet. • Any main engine fuel and auxiliary engine fuel combination may be used. For

example, if the user selects Biodiesel as the auxiliary engine fuel, Section 3 will show energy and emissions output for the vessel running on each of the six alternative, main engine fuels and Biodiesel as the auxiliary fuel. If the user changed the type of auxiliary engine fuel, press F9 to view results based on the change in fuel type.

Figure 74: Results Section 2.2

2.2) Auxiliary Engine Fuel Type to Present in the Following Results Grids (change on inputs sheet)

1: Conventional Diesel

84

Page 99: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

3) Main and Auxiliary Engine Well-to-Hull Energy Consumption and Emissions: per Trip

• This section represents the main results of the TEAMS simulation. This section presents the total fuel-cycle energy consumption and emissions for the main and auxiliary engines of the simulation vessel (in mmBtu/trip or g/trip). For each fuel alternative, energy use and emissions are presented separately for the feedstock, fuel, and operation stages.

• There are six subsections of this table. Each subsection represents the simulation vessel with one of the six main engine fuels (conventional diesel, residual oil, low-sulfur diesel, natural gas, biodiesel, and Fischer-Tropsch diesel).

• Each of the six subsections will incorporate the auxiliary engine(s) based on the user-choice of auxiliary engine fuel type. For example, if the user selects Biodiesel for the auxiliary engine fuel type, the first subsection will show results with the vessel using conventional diesel as the main fuel and BD as the auxiliary fuel, the second subsection will show results with the vessel using residual oil as the main fuel and biodiesel as the auxiliary fuel, etc.

• Total Energy and Emissions. Column I of each of the six subsections shows the total energy consumed in mmBtu/trip and emissions in grams/trip for the simulation vessel. This includes the total fuel cycle, from well to hull, including all intermediate stages. Additionally, this includes energy and emissions from all onboard engines; auxiliary and main. Column I of each of the subsections should be thought of as the final result of the TEAMS simulation.

• Percentage of Each Stage. Percentage shares of energy use and emissions for each of the three stages (considering both main and auxiliary engines) are also presented in this section. For example, based on preliminary results, a 6500 TEU Container Ship using conventional diesel as its main fuel and Fischer-Tropsch diesel as its auxiliary fuel will consume about 4 percent of total energy consumption during the feedstock stage, about 14 percent of total energy consumption during the fuel stage, and about 82 percent of total energy consumption during vessel operation stage. It is common and expected that a vessel consume the majority of the total fuel cycle energy consumption during the vessel operation stage.

• This information is presented graphically in Section 1 of the Graphs sheet. See Figure 75: Results Section 3 (part 1 of 2) and Figure 76: Results Section 3 (part 2 of 2) located on the next two pages.

85

Page 100: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 75: Results Section 3 (part 1 of 2)

3) Main and Auxiliary Engine Well-to-Hull Energy Consumption and Emissions: per Trip

Vessel: Cont. Ship 6000 Main Engine Fuel: Conventional DieselAuxiliary Engine Fuel: Conventional Diesel

Item Main Auxiliary Main Auxiliary Main Auxiliary Total Feedstock FuelTotal Energy 7219.55 5.91 26852.12 21.99 162622.96 133.18 196855.71 3.67% 13.65% 82.68%Fossil Fuels 6952.94 5.69 26506.36 21.71 162622.96 133.18 196242.84 3.55% 13.52% 82.94%Petroleum 2321.23 1.90 13425.86 10.99 162622.96 133.18 178516.12 1.30% 7.53% 91.17%CO2 664418888.71 544119.65 1963796810.10 1608233.07 12971782886.63 10623120.52 15612774058.67 4.26% 12.59% 83.15%CH4 14767646.41 12093.83 1589415.77 1301.64 656996.75 538.04 17027992.44 86.80% 9.34% 3.86%N2O 11804.61 9.67 30456.33 24.94 325245.92 266.36 367807.82 3.21% 8.29% 88.50%GHGs 978198891.50 801086.85 2006616003.08 1643299.45 13086406052.52 10716990.10 16084382323.49 6.09% 12.49% 81.43%VOC 530704.50 434.62 826535.13 676.88 13425500.94 10994.69 14794846.75 3.59% 5.59% 90.82%CO 1223297.43 1001.81 944996.84 773.90 40245929.70 32959.03 42448958.70 2.88% 2.23% 94.89%NOx 4456652.07 3649.73 3739517.62 3062.44 362630332.60 296972.73 371130187.20 1.20% 1.01% 97.79%PM10 1547728.27 1267.50 378261.28 309.77 8991423.36 7363.44 10926353.62 14.18% 3.46% 82.36%SOx 2360569.13 1933.17 4526458.83 3706.90 2862164.06 2343.94 9757176.03 24.21% 46.43% 29.36%

Vessel: Cont. Ship 6000 Main Engine Fuel: Residual OilAuxiliary Engine Fuel: Conventional Diesel

Item Main Auxiliary Main Auxiliary Main Auxiliary Total Feedstock FuelTotal Energy 7430.87 5.91 9809.89 21.99 167405.99 133.18 184807.83 4.02% 5.32% 90.66%Fossil Fuels 7156.45 5.69 9687.84 21.71 167405.99 133.18 184410.86 3.88% 5.27% 90.85%Petroleum 2389.17 1.90 5151.49 10.99 167405.99 133.18 175092.72 1.37% 2.95% 95.69%CO2 683866098.93 544119.65 726626112.67 1608233.07 13743696673.04 10623120.52 15166964357.88 4.51% 4.80% 90.69%CH4 15199888.08 12093.83 599192.73 1301.64 676320.19 538.04 16489334.49 92.25% 3.64% 4.10%N2O 12150.12 9.67 11391.34 24.94 334811.97 266.36 358654.40 3.39% 3.18% 93.43%GHGs 1006830286.25 801086.85 742740474.87 1643299.45 13861691108.51 10716990.10 15624423246.02 6.45% 4.76% 88.79%VOC 546237.96 434.62 149729.20 676.88 13820368.61 10994.69 14528441.96 3.76% 1.04% 95.20%CO 1259102.74 1001.81 474438.89 773.90 41429633.52 32959.03 43197909.88 2.92% 1.10% 95.98%NOx 4587096.06 3649.73 2623686.21 3062.44 373295930.62 296972.73 380810397.79 1.21% 0.69% 98.10%PM10 1593029.50 1267.50 178483.90 309.77 9255876.99 7363.44 11036331.10 14.45% 1.62% 83.93%SOx 2429661.81 1933.17 2383113.43 3706.90 43405024.16 2343.94 48225783.42 5.04% 4.95% 90.01%

Vessel: Cont. Ship 6000 Main Engine Fuel: Low-Sulfur DieselAuxiliary Engine Fuel: Conventional Diesel

Item Main Auxiliary Main Auxiliary Main Auxiliary Total Feedstock FuelTotal Energy 7657.10 5.91 28483.52 21.99 172478.90 133.18 208780.60 3.67% 13.65% 82.68%Fossil Fuels 7374.33 5.69 28116.77 21.71 172478.90 133.18 208130.58 3.55% 13.52% 82.93%Petroleum 2461.91 1.90 14242.73 10.99 172478.90 133.18 189329.61 1.30% 7.53% 91.17%CO2 704686710.91 544119.65 2111103458.66 1608233.07 13925215542.13 10623120.52 16753781184.94 4.21% 12.61% 83.18%CH4 15662655.53 12093.83 1686065.39 1301.64 696814.74 538.04 18059469.16 86.80% 9.34% 3.86%N2O 12520.04 9.67 32307.56 24.94 344957.79 266.36 390086.35 3.21% 8.29% 88.50%GHGs 1037483688.65 801086.85 2156526174.95 1643299.45 14046785566.55 10716990.10 17253956806.56 6.02% 12.51% 81.47%VOC 562868.42 434.62 903024.49 676.88 14239167.66 10994.69 15717166.76 3.58% 5.75% 90.67%CO 1297436.69 1001.81 1011362.94 773.90 37811340.82 32959.03 40154875.18 3.23% 2.52% 94.25%NOx 4726752.27 3649.73 4071293.96 3062.44 384607928.52 296972.73 393709659.65 1.20% 1.03% 97.76%PM10 1641530.01 1267.50 435269.31 309.77 9536358.11 7363.44 11622098.13 14.14% 3.75% 82.12%SOx 2503633.96 1933.17 4956381.81 3706.90 130976.16 2343.94 7598975.95 32.97% 65.27% 1.75%

EngineOperation

mmBtu/trip or grams/trip Percentage of each stage

Feedstock Fuel Operation EngineOperation

Feedstock Fuel Operation

mmBtu/trip or grams/trip

Percentage of each stagemmBtu/trip or grams/trip

Feedstock Fuel Operation

Percentage of each stage

EngineOperation

86

Page 101: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 76: Results Section 3 (part 2 of 2)

Vessel: Cont. Ship 6000 Main Engine Fuel: Natural GasAuxiliary Engine Fuel: Conventional Diesel

Item Main Auxiliary Main Auxiliary Main Auxiliary Total Feedstock FuelTotal Energy 12243.53 5.91 17467.75 21.99 177868.86 133.18 207741.22 5.90% 8.42% 85.68%Fossil Fuels 12159.88 5.69 15897.82 21.71 177868.86 133.18 206087.14 5.90% 7.72% 86.37%Petroleum 652.93 1.90 298.89 10.99 0.00 133.18 1097.89 59.64% 28.23% 12.13%CO2 836176744.55 544119.65 1380785778.59 1608233.07 10538196382.21 10623120.52 12767934378.59 6.55% 10.83% 82.62%CH4 41877880.75 12093.83 3127343.70 1301.64 14917861.34 538.04 59937019.29 69.89% 5.22% 24.89%N2O 13104.33 9.67 20965.79 24.94 355737.72 266.36 390108.81 3.36% 5.38% 91.26%GHGs 1719674582.88 801086.85 1452959391.23 1643299.45 10961750163.82 10716990.10 14147545514.32 12.16% 10.28% 77.56%VOC 167455.05 434.62 257521.81 676.88 14684141.65 10994.69 15121224.70 1.11% 1.71% 97.18%CO 1323094.99 1001.81 4909877.68 773.90 22010204.28 32959.03 28277911.68 4.68% 17.37% 77.95%NOx 2662818.98 3649.73 9472113.28 3062.44 396626926.28 296972.73 409065543.45 0.65% 2.32% 97.03%PM10 64350.28 1267.50 216269.86 309.77 96049.18 7363.44 385610.04 17.02% 56.17% 26.82%SOx 736584.12 1933.17 5137056.52 3706.90 54961.48 2343.94 5936586.14 12.44% 86.59% 0.97%

Vessel: Cont. Ship 6000 Main Engine Fuel: BiodieselAuxiliary Engine Fuel: Conventional Diesel

Item Main Auxiliary Main Auxiliary Main Auxiliary Total Feedstock FuelTotal Energy 9999.58 5.91 32727.70 21.99 172478.90 133.18 215367.26 4.65% 15.21% 80.15%Fossil Fuels 9663.94 5.69 32159.28 21.71 140477.83 133.18 182461.62 5.30% 17.64% 77.06%Petroleum 4310.74 1.90 12084.96 10.99 140477.83 133.18 157019.60 2.75% 7.70% 89.55%CO2 -1741181812.76 544119.65 2298148705.82 1608233.07 13912483620.19 10623120.52 14482225986.50 -12.02% 15.88% 96.14%CH4 13111057.66 12093.83 2916375.61 1301.64 696814.74 538.04 16738181.51 78.40% 17.43% 4.17%N2O 129551.18 9.67 38369.74 24.94 689915.58 266.36 858137.47 15.10% 4.47% 80.43%GHGs -1425688735.35 801086.85 2371287214.08 1643299.45 14140990559.57 10716990.10 15099750414.70 -9.44% 15.72% 93.72%VOC 591395.59 434.62 939099.79 676.88 14239167.66 10994.69 15781769.22 3.75% 5.95% 90.30%CO 1581976.85 1001.81 2664730.88 773.90 42685076.96 32959.03 46966519.42 3.37% 5.68% 90.95%NOx 5663899.77 3649.73 6630424.21 3062.44 384607928.52 296972.73 397205937.40 1.43% 1.67% 96.90%PM10 1553348.25 1267.50 395107.30 309.77 9536358.11 7363.44 11493754.37 13.53% 3.44% 83.03%SOx 2599615.32 1933.17 4806553.32 3706.90 2479406.32 2343.94 9893558.97 26.30% 48.62% 25.08%

BD CO2 Credit -2615391046.25 0.00

Vessel: Cont. Ship 6000 Main Engine Fuel: Fischer-Tropsch DieselAuxiliary Engine Fuel: Conventional Diesel

Item Main Auxiliary Main Auxiliary Main Auxiliary Total Feedstock FuelTotal Energy 9941.15 5.91 111623.56 21.99 177868.86 133.18 299594.65 3.32% 37.27% 59.41%Fossil Fuels 9880.10 5.69 111579.90 21.71 177868.86 133.18 299489.43 3.30% 37.26% 59.44%Petroleum 645.48 1.90 1321.92 10.99 0.00 133.18 2113.48 30.63% 63.07% 6.30%CO2 796936759.37 544119.65 3455779419.70 1608233.07 13760352474.61 10623120.52 18025844126.92 4.42% 19.18% 76.40%CH4 19669197.11 12093.83 77322.64 1301.64 718590.20 538.04 20479043.45 96.10% 0.38% 3.51%N2O 11999.74 9.67 1684.79 24.94 355737.72 266.36 369723.22 3.25% 0.46% 96.29%GHGs 1213709818.58 801086.85 3457925479.98 1643299.45 13885721562.29 10716990.10 18570518237.25 6.54% 18.63% 74.83%VOC 60181.79 434.62 904781.10 676.88 14684141.65 10994.69 15661210.74 0.39% 5.78% 93.83%CO 1137684.52 1001.81 5328809.25 773.90 44018985.61 32959.03 50520214.11 2.25% 10.55% 87.20%NOx 2136966.39 3649.73 3917364.24 3062.44 396626926.28 296972.73 402984941.81 0.53% 0.97% 98.50%PM10 57400.48 1267.50 23849.33 309.77 9834369.30 7363.44 9924559.82 0.59% 0.24% 99.17%SOx 698645.81 1933.17 553370.88 3706.90 0.00 2343.94 1260000.70 55.60% 44.21% 0.19%

Percentage of each stage

Feedstock Fuel Operation EngineOperation

Percentage of each stage

Feedstock Fuel Operation EngineOperation

Percentage of each stage

Feedstock Fuel Operation EngineOperation

mmBtu/trip or grams/trip

mmBtu/trip or grams/trip

mmBtu/trip or grams/trip

87

Page 102: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

4) Well-to-Hull Energy and Emission Changes • This section presents the percent change in total fuel-cycle energy use and

emissions for the simulation vessel running on each of the six alternative fuel types with respect to conventional diesel.

• This section includes energy and emissions from both main and auxiliary engines. However, energy and emissions from the auxiliary engines is constant regardless of main engine fuel type.

• This information is presented graphically in Section 2 of the Graphs sheet. Figure 77: Results Section 4

4) Well-to-Hull Energy and Emission Changes (%, relative to vessel with main engines using Conventional Diesel)

Residual OilLow-Sulfur

Diesel Natural Gas BiodieselFischer-Tropsch

DieselTotal Energy -6.04% 6.06% 5.50% 9.40% 52.25%Fossil Fuels -5.95% 6.06% 4.99% -7.01% 52.67%Petroleum -1.84% 6.06% -99.46% -12.04% -98.76%CO2 -2.77% 7.31% -18.24% -7.23% 15.55%CH4 -3.08% 6.06% 251.85% -1.69% 20.36%N2O -2.41% 6.06% 6.03% 133.29% 0.62%GHGs -2.78% 7.27% -12.06% -6.11% 15.55%VOC: Total -1.72% 6.23% 2.18% 6.67% 5.89%CO: Total 1.84% -5.40% -33.40% 10.64% 19.05%NOx: Total 2.69% 6.08% 10.19% 7.03% 8.62%PM10: Total 1.09% 6.37% -96.48% 5.18% -9.20%SOx: Total 393.74% -21.93% -39.58% 1.54% -83.92%

88

Page 103: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sheet 14: “Graphs” Overview This sheet graphically presents shares of energy use and emissions by feedstock, fuel, and vessel operation for the simulation vessel using each of the six alternative fuel types and a selected auxiliary engine fuel type. Furthermore, the sheet shows changes in energy use and emissions for the simulation vessel using each alternative fuel type relative to the vessel powered by conventional diesel. Section Breakdown

1) Contribution of Each Stage to Total Fuel-Cycle Energy Consumption and Emissions

• There are six graphs in this section. Each graph visually presents the results calculated in the sections entitled “Percentage of Each Stage” in each of the six subsections of Section 3 of the Results sheet.

• Figure 77 on the next page provides an example. This graph represents the simulation vessel “Container Ship – 6500 TEU” utilizing Fischer-Tropsch Diesel as a main engine fuel and Biodiesel as an auxiliary engine fuel. As explained in the previous section, the percentage of each stage is calculated considering the total energy consumed and emissions emitted (including the total fuel-cycle for both main and auxiliary engines).

• In the graph, each bar is broken into three sections: feedstock (yellow), fuel (green), and engine operation (tan) and represents the percent of energy consumed or emissions produced during each stage of the fuel cycle.

• In these preliminary results, we see that the majority of energy consumption and emissions are emitted during the vessel operation stage. However, this is not always the case. For example, as one can see in the graph, almost all CH4 emissions are produced during the feedstock phase of the fuel cycle. Additionally, the SOx emissions are divided almost evenly between the feedstock and fuel stages with essentially no SOx during the engine operation stage. Results are obviously a function of fuel type.

See Figure 78: Graphs Section 1 – Example Graphical Results located on the next page.

89

Page 104: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 78: Graphs Section 1 – Example Graphical Results

1) Contribution of Each Stage to Total Fuel-Cycle Energy Consumption and Emissions

Scroll horizontal for comparisons.

Vessel: Main Engine Fuel: Fischer-Tropsch DieselContainer Ship - 6500 TEU Auxiliary Engine Fuel: Biodiesel

Your Vessel using Fisher-Tropsch DieselContribution of Each Stage

0%10%20%30%40%50%60%70%80%90%

100%

Total E

nergy

Fossil

Fuels

Petrole

um CO2CH4

N2OGHGs

VOC CONOx

PM10 SOx

Feedstock Fuel Engine Operation

90

Page 105: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

2) Reductions in Energy Use and Emissions by Fuel Type • There are twelve graphs in this section. Each graph visually presents the results

calculated in Section 4 of the Results sheet. • Figure 78 below provides an example. In the graph, we see the percent change in

total fuel-cycle CO2 emissions for the simulation vessel running its main engines on five alternative fuels compared to running its main engines on conventional diesel (the baseline fuel). In these preliminary results, we see that when considering total fuel-cycles, running the vessel on Fischer-Tropsch diesel or low-sulfur diesel would produce considerably greater amounts of CO2 emissions in comparison to running on conventional diesel. This is partly due to the extensive refining processes undergone to produce FTD and low sulfur diesel which, in turn produce higher quantities of CO2. However, running the vessel on BD, NG, or residual oil would produce considerably smaller amounts of CO2 emissions in comparison to running on conventional diesel. This is partly due to the biodiesel CO2 credit, the cleanliness of burning natural gas, and the limited refining processes associated with residual oil.

Figure 79: Graphs Section 2 – Example Graphical Results

2) Reductions in Energy Use and Emissions by Fuel Type (% Relative to Vessel Fueled with Conventional Diesel)Scroll vertical for comparisons…

Percent Change in CO2 Emissions

-20.00% -15.00% -10.00% -5.00% 0.00% 5.00% 10.00% 15.00% 20.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

91

Page 106: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

9. EXAMPLE RESULTS The TEAMS development team is currently conducting research and undergoing case-study analysis using the TEAMS model to obtain technical information for further TEAMS model development. Please refer to Appendix A for a discussion relating to the results of the case-study analyses. The case-study analysis demonstrates more accurate default assumptions and results for particular cases. On the basis of default assumptions in TEAMS version 1.3, the development team has calculated energy use and emissions of a simulation vessel using six main engine fuel types: conventional diesel, residual oil, low-sulfur diesel, natural gas, biodiesel, and Fischer-Tropsch diesel. For the purpose of this simulation, we assume the vessel’s auxiliary engines use conventional diesel. The following is a summary of key assumptions for the example simulation vessel and the resulting charts and graphs from the Results and Graphs sheets of the TEAMS model: Vessel Type ID Cont. Ship 6000 Number of Engines 1 Single Engine HP 82272 HP Total Onboard HP 82272 HP Total Trip Distance 4000.00 miles Total Trip Time 308.55 hours Percent of Trip in Mode Idle 1.00% Maneuvering 4.00% Precautionary 5.00% Slow Cruise 10.00% Full Cruise 80.00% HP Load Factor Idle 12.50% Maneuvering 25.00% Precautionary 50.00% Slow Cruise 85.00% Full Cruise 95.00% Engine Efficiency Conventional Diesel 35% Residual Oil 34% Low-Sulfur Diesel 33% Natural Gas 32% Biodiesel 33% FT Diesel 32% No. of Onboard Auxiliary Engines 2 No. of Auxiliary Engines in Use 1 Auxiliary Engine HP 125 HP Total Onboard Aux. HP (Engines In Use) 125 HP Percent of trip Aux. Active 95.00% Aux. Load Factor 50.00% Aux. Engine Efficiency 35%

92

Page 107: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 80: Tabular Results (Main Engine Fuel: Conventional Diesel)

Ve

ssel

: C

ont.

Ship

600

0M

ain

Engi

ne F

uel:

C

onve

ntio

nal D

iese

lA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 72

19.5

55.

9126

852.

1221

.99

1626

22.9

613

3.18

1968

55.7

13.

67%

13.6

5%82

.68%

Foss

il Fu

els

6952

.94

5.69

2650

6.36

21.7

116

2622

.96

133.

1819

6242

.84

3.55

%13

.52%

82.9

4%P

etro

leum

2321

.23

1.90

1342

5.86

10.9

916

2622

.96

133.

1817

8516

.12

1.30

%7.

53%

91.1

7%C

O2

6644

1888

8.71

5441

19.6

519

6379

6810

.10

1608

233.

0712

9717

8288

6.63

1062

3120

.52

1561

2774

058.

674.

26%

12.5

9%83

.15%

CH

414

7676

46.4

112

093.

8315

8941

5.77

1301

.64

6569

96.7

553

8.04

1702

7992

.44

86.8

0%9.

34%

3.86

%N

2O11

804.

619.

6730

456.

3324

.94

3252

45.9

226

6.36

3678

07.8

23.

21%

8.29

%88

.50%

GH

Gs

9781

9889

1.50

8010

86.8

520

0661

6003

.08

1643

299.

4513

0864

0605

2.52

1071

6990

.10

1608

4382

323.

496.

09%

12.4

9%81

.43%

VO

C53

0704

.50

434.

6282

6535

.13

676.

8813

4255

00.9

410

994.

6914

7948

46.7

53.

59%

5.59

%90

.82%

CO

1223

297.

4310

01.8

194

4996

.84

773.

9040

2459

29.7

032

959.

0342

4489

58.7

02.

88%

2.23

%94

.89%

NO

x44

5665

2.07

3649

.73

3739

517.

6230

62.4

436

2630

332.

6029

6972

.73

3711

3018

7.20

1.20

%1.

01%

97.7

9%P

M10

1547

728.

2712

67.5

037

8261

.28

309.

7789

9142

3.36

7363

.44

1092

6353

.62

14.1

8%3.

46%

82.3

6%S

Ox

2360

569.

1319

33.1

745

2645

8.83

3706

.90

2862

164.

0623

43.9

497

5717

6.03

24.2

1%46

.43%

29.3

6%

mm

Btu

/trip

or g

ram

s/tr

ip

Feed

stoc

kFu

elO

pera

tion

Perc

enta

ge o

f eac

h st

age

Engi

neO

pera

tion

Figure 81: Graphical Results (Main Engine Fuel: Conventional Diesel)

Vess

el:

Mai

n En

gine

Fue

l:

Con

vent

iona

l Die

sel

Con

tain

er S

hip

- 650

0 TE

UA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Your

Ves

sel u

sing

Con

vent

iona

l Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

93

Page 108: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 82: Tabular Results (Main Engine Fuel: Residual Oil)

Figure 83: Graphical Results (Main Engine Fuel: Residual Oil)

Vess

el:

Con

t. Sh

ip 6

000

Mai

n En

gine

Fue

l:

Res

idua

l Oil

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 74

30.8

75.

9198

09.8

921

.99

1674

05.9

913

3.18

1848

07.8

34.

02%

5.32

%90

.66%

Foss

il Fu

els

7156

.45

5.69

9687

.84

21.7

116

7405

.99

133.

1818

4410

.86

3.88

%5.

27%

90.8

5%P

etro

leum

2389

.17

1.90

5151

.49

10.9

916

7405

.99

133.

1817

5092

.72

1.37

%2.

95%

95.6

9%C

O2

6838

6609

8.93

5441

19.6

572

6626

112.

6716

0823

3.07

1374

3696

673.

0410

6231

20.5

215

1669

6435

7.88

4.51

%4.

80%

90.6

9%C

H4

1519

9888

.08

1209

3.83

5991

92.7

313

01.6

467

6320

.19

538.

0416

4893

34.4

992

.25%

3.64

%4.

10%

N2O

1215

0.12

9.67

1139

1.34

24.9

433

4811

.97

266.

3635

8654

.40

3.39

%3.

18%

93.4

3%G

HG

s10

0683

0286

.25

8010

86.8

574

2740

474.

8716

4329

9.45

1386

1691

108.

5110

7169

90.1

015

6244

2324

6.02

6.45

%4.

76%

88.7

9%V

OC

5462

37.9

643

4.62

1497

29.2

067

6.88

1382

0368

.61

1099

4.69

1452

8441

.96

3.76

%1.

04%

95.2

0%C

O12

5910

2.74

1001

.81

4744

38.8

977

3.90

4142

9633

.52

3295

9.03

4319

7909

.88

2.92

%1.

10%

95.9

8%N

Ox

4587

096.

0636

49.7

326

2368

6.21

3062

.44

3732

9593

0.62

2969

72.7

338

0810

397.

791.

21%

0.69

%98

.10%

PM

1015

9302

9.50

1267

.50

1784

83.9

030

9.77

9255

876.

9973

63.4

411

0363

31.1

014

.45%

1.62

%83

.93%

SO

x24

2966

1.81

1933

.17

2383

113.

4337

06.9

043

4050

24.1

623

43.9

448

2257

83.4

25.

04%

4.95

%90

.01%

Engi

neO

pera

tion

Feed

stoc

kFu

elO

pera

tion

Perc

enta

ge o

f eac

h st

age

mm

Btu

/trip

or g

ram

s/tr

ip

Vess

el:

Mai

n En

gine

Fue

l:

Res

idua

l Oil

Con

tain

er S

hip

- 650

0 TE

UA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Your

Ves

sel u

sing

Res

idua

l Oil

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

94

Page 109: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 84: Tabular Results (Main Engine Fuel: Low-Sulfur Diesel)

Figure 85: Graphical Results (Main Engine Fuel: Low-Sulfur Diesel)

Vess

el:

Con

t. Sh

ip 6

000

Mai

n En

gine

Fue

l:

Low

-Sul

fur D

iese

lA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 76

57.1

05.

9128

483.

5221

.99

1724

78.9

013

3.18

2087

80.6

03.

67%

13.6

5%82

.68%

Foss

il Fu

els

7374

.33

5.69

2811

6.77

21.7

117

2478

.90

133.

1820

8130

.58

3.55

%13

.52%

82.9

3%P

etro

leum

2461

.91

1.90

1424

2.73

10.9

917

2478

.90

133.

1818

9329

.61

1.30

%7.

53%

91.1

7%C

O2

7046

8671

0.91

5441

19.6

521

1110

3458

.66

1608

233.

0713

9252

1554

2.13

1062

3120

.52

1675

3781

184.

944.

21%

12.6

1%83

.18%

CH

415

6626

55.5

312

093.

8316

8606

5.39

1301

.64

6968

14.7

453

8.04

1805

9469

.16

86.8

0%9.

34%

3.86

%N

2O12

520.

049.

6732

307.

5624

.94

3449

57.7

926

6.36

3900

86.3

53.

21%

8.29

%88

.50%

GH

Gs

1037

4836

88.6

580

1086

.85

2156

5261

74.9

516

4329

9.45

1404

6785

566.

5510

7169

90.1

017

2539

5680

6.56

6.02

%12

.51%

81.4

7%V

OC

5628

68.4

243

4.62

9030

24.4

967

6.88

1423

9167

.66

1099

4.69

1571

7166

.76

3.58

%5.

75%

90.6

7%C

O12

9743

6.69

1001

.81

1011

362.

9477

3.90

3781

1340

.82

3295

9.03

4015

4875

.18

3.23

%2.

52%

94.2

5%N

Ox

4726

752.

2736

49.7

340

7129

3.96

3062

.44

3846

0792

8.52

2969

72.7

339

3709

659.

651.

20%

1.03

%97

.76%

PM

1016

4153

0.01

1267

.50

4352

69.3

130

9.77

9536

358.

1173

63.4

411

6220

98.1

314

.14%

3.75

%82

.12%

SO

x25

0363

3.96

1933

.17

4956

381.

8137

06.9

013

0976

.16

2343

.94

7598

975.

9532

.97%

65.2

7%1.

75%

mm

Btu

/trip

or g

ram

s/tr

ipPe

rcen

tage

of e

ach

stag

e

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Low

-Sul

fur D

iese

lC

onta

iner

Shi

p - 6

500

TEU

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Your

Ves

sel u

sing

Low

-Sul

fur D

iese

lC

ontr

ibut

ion

of E

ach

Stag

e

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

95

Page 110: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 86: Tabular Results (Main Engine Fuel: Natural Gas)

Figure 87: Graphical Results (Main Engine Fuel: Natural Gas)

Vess

el:

Con

t. Sh

ip 6

000

Mai

n En

gine

Fue

l:

Nat

ural

Gas

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 12

243.

535.

9117

467.

7521

.99

1778

68.8

613

3.18

2077

41.2

25.

90%

8.42

%85

.68%

Foss

il Fu

els

1215

9.88

5.69

1589

7.82

21.7

117

7868

.86

133.

1820

6087

.14

5.90

%7.

72%

86.3

7%P

etro

leum

652.

931.

9029

8.89

10.9

90.

0013

3.18

1097

.89

59.6

4%28

.23%

12.1

3%C

O2

8361

7674

4.55

5441

19.6

513

8078

5778

.59

1608

233.

0710

5381

9638

2.21

1062

3120

.52

1276

7934

378.

596.

55%

10.8

3%82

.62%

CH

441

8778

80.7

512

093.

8331

2734

3.70

1301

.64

1491

7861

.34

538.

0459

9370

19.2

969

.89%

5.22

%24

.89%

N2O

1310

4.33

9.67

2096

5.79

24.9

435

5737

.72

266.

3639

0108

.81

3.36

%5.

38%

91.2

6%G

HG

s17

1967

4582

.88

8010

86.8

514

5295

9391

.23

1643

299.

4510

9617

5016

3.82

1071

6990

.10

1414

7545

514.

3212

.16%

10.2

8%77

.56%

VO

C16

7455

.05

434.

6225

7521

.81

676.

8814

6841

41.6

510

994.

6915

1212

24.7

01.

11%

1.71

%97

.18%

CO

1323

094.

9910

01.8

149

0987

7.68

773.

9022

0102

04.2

832

959.

0328

2779

11.6

84.

68%

17.3

7%77

.95%

NO

x26

6281

8.98

3649

.73

9472

113.

2830

62.4

439

6626

926.

2829

6972

.73

4090

6554

3.45

0.65

%2.

32%

97.0

3%P

M10

6435

0.28

1267

.50

2162

69.8

630

9.77

9604

9.18

7363

.44

3856

10.0

417

.02%

56.1

7%26

.82%

SO

x73

6584

.12

1933

.17

5137

056.

5237

06.9

054

961.

4823

43.9

459

3658

6.14

12.4

4%86

.59%

0.97

%

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

mm

Btu

/trip

or g

ram

s/tr

ip

Vess

el:

Mai

n En

gine

Fue

l:

Nat

ural

Gas

Con

tain

er S

hip

- 650

0 TE

UA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Your

Ves

sel u

sing

Nat

ural

Gas

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

96

Page 111: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 88: Tabular Results (Main Engine Fuel: Biodiesel)

Vess

el:

Con

t. Sh

ip 6

000

Mai

n En

gine

Fue

l:

Bio

dies

elA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 99

99.5

85.

9132

727.

7021

.99

1724

78.9

013

3.18

2153

67.2

64.

65%

15.2

1%80

.15%

Foss

il Fu

els

9663

.94

5.69

3215

9.28

21.7

114

0477

.83

133.

1818

2461

.62

5.30

%17

.64%

77.0

6%P

etro

leum

4310

.74

1.90

1208

4.96

10.9

914

0477

.83

133.

1815

7019

.60

2.75

%7.

70%

89.5

5%C

O2

-174

1181

812.

7654

4119

.65

2298

1487

05.8

216

0823

3.07

1391

2483

620.

1910

6231

20.5

214

4822

2598

6.50

-12.

02%

15.8

8%96

.14%

CH

413

1110

57.6

612

093.

8329

1637

5.61

1301

.64

6968

14.7

453

8.04

1673

8181

.51

78.4

0%17

.43%

4.17

%N

2O12

9551

.18

9.67

3836

9.74

24.9

468

9915

.58

266.

3685

8137

.47

15.1

0%4.

47%

80.4

3%G

HG

s-1

4256

8873

5.35

8010

86.8

523

7128

7214

.08

1643

299.

4514

1409

9055

9.57

1071

6990

.10

1509

9750

414.

70-9

.44%

15.7

2%93

.72%

VO

C59

1395

.59

434.

6293

9099

.79

676.

8814

2391

67.6

610

994.

6915

7817

69.2

23.

75%

5.95

%90

.30%

CO

1581

976.

8510

01.8

126

6473

0.88

773.

9042

6850

76.9

632

959.

0346

9665

19.4

23.

37%

5.68

%90

.95%

NO

x56

6389

9.77

3649

.73

6630

424.

2130

62.4

438

4607

928.

5229

6972

.73

3972

0593

7.40

1.43

%1.

67%

96.9

0%P

M10

1553

348.

2512

67.5

039

5107

.30

309.

7795

3635

8.11

7363

.44

1149

3754

.37

13.5

3%3.

44%

83.0

3%S

Ox

2599

615.

3219

33.1

748

0655

3.32

3706

.90

2479

406.

3223

43.9

498

9355

8.97

26.3

0%48

.62%

25.0

8%

BD

CO

2 C

redi

t-2

6153

9104

6.25

0.00

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

mm

Btu

/trip

or g

ram

s/tr

ip

Figure 89: Graphical Results (Main Engine Fuel: Biodiesel)

Ves

sel:

M

ain

Eng

ine

Fuel

: B

iodi

esel

Con

tain

er S

hip

- 650

0 TE

UA

uxili

ary

Eng

ine

Fuel

: C

onve

ntio

nal D

iese

l

You

r V

esse

l usi

ng B

iodi

esel

Con

trib

utio

n of

Eac

h S

tage

-20%0%20

%

40%

60%

80%

100% To

tal E

nergy

Fossil

Fuels

Petrole

um

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

97

Page 112: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 90: Tabular Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Figure 91: Graphical Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Vess

el:

Con

t. Sh

ip 6

000

Mai

n En

gine

Fue

l:

Fisc

her-

Trop

sch

Die

sel

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 99

41.1

55.

9111

1623

.56

21.9

917

7868

.86

133.

1829

9594

.65

3.32

%37

.27%

59.4

1%Fo

ssil

Fuel

s98

80.1

05.

6911

1579

.90

21.7

117

7868

.86

133.

1829

9489

.43

3.30

%37

.26%

59.4

4%P

etro

leum

645.

481.

9013

21.9

210

.99

0.00

133.

1821

13.4

830

.63%

63.0

7%6.

30%

CO

279

6936

759.

3754

4119

.65

3455

7794

19.7

016

0823

3.07

1376

0352

474.

6110

6231

20.5

218

0258

4412

6.92

4.42

%19

.18%

76.4

0%C

H4

1966

9197

.11

1209

3.83

7732

2.64

1301

.64

7185

90.2

053

8.04

2047

9043

.45

96.1

0%0.

38%

3.51

%N

2O11

999.

749.

6716

84.7

924

.94

3557

37.7

226

6.36

3697

23.2

23.

25%

0.46

%96

.29%

GH

Gs

1213

7098

18.5

880

1086

.85

3457

9254

79.9

816

4329

9.45

1388

5721

562.

2910

7169

90.1

018

5705

1823

7.25

6.54

%18

.63%

74.8

3%V

OC

6018

1.79

434.

6290

4781

.10

676.

8814

6841

41.6

510

994.

6915

6612

10.7

40.

39%

5.78

%93

.83%

CO

1137

684.

5210

01.8

153

2880

9.25

773.

9044

0189

85.6

132

959.

0350

5202

14.1

12.

25%

10.5

5%87

.20%

NO

x21

3696

6.39

3649

.73

3917

364.

2430

62.4

439

6626

926.

2829

6972

.73

4029

8494

1.81

0.53

%0.

97%

98.5

0%P

M10

5740

0.48

1267

.50

2384

9.33

309.

7798

3436

9.30

7363

.44

9924

559.

820.

59%

0.24

%99

.17%

SO

x69

8645

.81

1933

.17

5533

70.8

837

06.9

00.

0023

43.9

412

6000

0.70

55.6

0%44

.21%

0.19

%

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

mm

Btu

/trip

or g

ram

s/tr

ip

Vess

el:

Mai

n En

gine

Fue

l:

Fisc

her-

Trop

sch

Die

sel

Con

tain

er S

hip

- 650

0 TE

UA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Your

Ves

sel u

sing

Fis

her-

Trop

sch

Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

98

Page 113: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 92: Tabular Results - Percent Changes Energy Consumption and Emissions Relative to Conventional Diesel

Residual OilLow-Sulfur

Diesel Natural Gas BiodieselFischer-Tropsch

DieselTotal Energy -6.04% 6.06% 5.50% 9.40% 52.28%Fossil Fuels -5.95% 6.06% 4.99% -7.02% 52.70%Petroleum -1.84% 6.06% -99.38% -12.03% -98.68%CO2 -2.77% 7.31% -18.24% -7.23% 15.56%CH4 -3.08% 6.06% 251.89% -1.69% 20.36%N2O -2.41% 6.06% 6.03% 133.29% 0.62%GHGs -2.78% 7.27% -12.07% -6.11% 15.56%VOC: Total -1.72% 6.23% 2.18% 6.67% 5.89%CO: Total 1.84% -5.40% -33.40% 10.64% 19.05%NOx: Total 2.69% 6.08% 10.19% 7.03% 8.62%PM10: Total 1.09% 6.37% -96.47% 5.18% -9.20%SOx: Total 393.47% -21.92% -39.55% 1.54% -83.87%

Figure 93: Graphical Results – Percent Change in Total Energy Consumption

Percent Change in Total Energy Consumption

-10.00% 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 94: Graphical Results – Percent Change in Fossil Fuel Consumption

Percent Change in Fossil Fuel Consumption

-20.00% -10.00% 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

99

Page 114: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 95: Graphical Results – Percent Change in Petroleum Consumption

Percent Change in Petroleum Consumption

-120.00% -100.00% -80.00% -60.00% -40.00% -20.00% 0.00% 20.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 96: Graphical Results – Percent Change in CO2 Emissions

Percent Change in CO2 Emissions

-20.00% -15.00% -10.00% -5.00% 0.00% 5.00% 10.00% 15.00% 20.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 97: Graphical Results – Percent Change in CH4 Emissions

Percent Change in CH4 Emissions

-50.00% 0.00% 50.00% 100.00% 150.00% 200.00% 250.00% 300.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

100

Page 115: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 98: Graphical Results – Percent Change in N2O Emissions

Percent Change in N2O Emissions

-20.00% 0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00% 140.00% 160.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 99: Graphical Results – Percent Change in Greenhouse Gas Emissions

Percent Change in Greenhouse Gas Emissions

-15.00% -10.00% -5.00% 0.00% 5.00% 10.00% 15.00% 20.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 100: Graphical Results – Percent Change in VOC Emissions

Percent Change in VOC Emissions

-3.00% -2.00% -1.00% 0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

101

Page 116: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 101: Graphical Results – Percent Change in CO Emissions

Percent Change in CO Emissions

-40.00% -30.00% -20.00% -10.00% 0.00% 10.00% 20.00% 30.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 102: Graphical Results – Percent Change in NOx Emissions

Percent Change in NOx Emissions

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

Figure 103: Graphical Results – Percent Change in PM10 Emissions

Percent Change in PM10 Emissions

-120.00% -100.00% -80.00% -60.00% -40.00% -20.00% 0.00% 20.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

102

Page 117: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 104: Graphical Results – Percent Change in SOx Emissions

Percent Change in SOx Emissions

-200.00% -100.00% 0.00% 100.00% 200.00% 300.00% 400.00% 500.00%

Residual Oil

Low -Sulfur Diesel

Natural Gas

Biodiesel

Fischer-Tropsch Diesel

103

Page 118: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

APPENDIX A. CASE STUDIES

A.1 Case Study 1: Ferry Vessel Vessel description: Fast ferry typical for U.S. routes, particularly in New York/New Jersey transit. This ferry would be representative of a larger privately operated passenger ferry, with passenger capacity of 400 persons, operating on an 18 nautical mile route (Winebrake et al. 2005).7 Vessel characteristics: This vessel has 4 main engines, rated at 1950 Hp each, with total main propulsion power of about 7800 Hp. The vessel has 2 auxiliary engines, each rated at 127 Hp, for a total installed auxiliary power of about 255 Hp. The engines operate on conventional diesel fuel, most often meeting on-road heavy duty diesel specifications. Trip characterization: Total one-way trip distance is 18 nautical miles, with a peak (full cruise) speed of 38 knots (nautical miles per hour). Based on published schedules, the trip takes 55 minutes. Previous analyses determined the main engine duty cycle on the route, which was applied to the engine characterization by mode in TEAMS (Winebrake et al. 2005). Auxiliary engine operation assumes that both AEs operate at all times, at an average load of approximately 75% of full load, consistent with previous analyses (Winebrake et al. 2005). Inputs: This case only discusses those elements specific to the case study; default parameters in TEAMS are discussed in Section 8 and 9 of this document. Inputs Section 1. Conventional diesel characteristics followed current non-road diesel specifications, although actual fuel sulfur content may be lower. Figure 105: FERRY CASE STUDY Inputs Section 1.2

1.2) Petroleum-Based Efficiency Options

7

P

Sulfur LevelRefining Efficiency

Conventional Diesel 350 87.5%Low-Sulfur Diesel 15 87.5%Crude Oil 16,000Residual Oil (Marine Bunkers) 24,000 95.5%

Information for this case study was obtained from an FTA-funded project, An Evaluation of Public-rivate Incentives to Reduce Emissions from Regional Ferries, FTA Project ID: NJ-42-0002-00.

104

Page 119: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 2: Department of Energy data show that significant residual fuel is transported from refineries in the Gulf Coast to the Northeast region, including to New York. Therefore, the navigable distance of 2000 miles from Houston to New York was used for this case study. Other distances use default distances by mode obtained from the 2002 Commodity Flow Survey, updating the 1998 CFS data used in recent GREET model defaults. Figure 106: FERRY CASE STUDY Inputs Section 2.4

2.4) Distance from Feedstock Recovery Site to Fuel Stations for Different Fuels: miles (One-Way Distance)

PADD 3 to PADD 1 movement of residual fuel - same for ferry and tankerPetroleum Based → Crude Oil Residual Oil US Diesel US LS Diesel

Ocean Tanker 500 2000 1,450 1,450Barge 500 50 520 520

Pipeline 750 400 400Rail 800 800 800 800

Truck for Distribution 170 170

Inputs Section 5: Key input parameters for simulating main engine operations were obtained from data used in previous vessel analyses of ferries in New York/New Jersey. Figure 107: FERRY CASE STUDY Inputs Section 5.1

F

5) Key Input Parameters for Simulating Main Engine Operations5.1) Main Engine Variables

Vessel Type IDNumber of Engines

Single Engine HPTotal Onboard HP

4Ferry - New York/New Jersey

78001950

igure 108: FERRY CASE STUDY Inputs Section 5.2

5.2) Trip Distance and Time

Total Trip Distance (miles) 20.00

Trip TimeHours 0.00

Minutes 55.00

Total Trip Time (hours) 0.92

105

Page 120: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 109: FERRY CASE STUDY Inputs Section 5.3

5.3) Engine Characterization per Mode

Idle Maneuvering Precautionary Slow Cruise Full Cruisepercent of trip in mode based on time 32.00% 32.00% 18.00% 10.00% 8.00%

time per mode (hours) 0.29 0.29 0.17 0.09 0.07

HP load factor (single engine) 13.00% 25.00% 49.00% 85.00% 100.00%HP per engine 254 488 956 1,658 1,950 Total

Energy Consumption (kWh) (all engines) 221.80 426.54 470.26 453.20 426.54 1998.34 kWh out

Engine Mode

Inputs Section 6: Key input parameters for simulating auxiliary engine operations were obtained from data used in previous vessel analyses of ferries in New York/New Jersey. Figure 110: FERRY CASE STUDY Inputs Section 6.2

6.2) Auxiliary Engine Variables

F

Caff

Number of Auxiliary Engines 2Auxiliary Engine HP 127

Total Onboard Auxiliary HP 254

igure 111: FERRY CASE STUDY Inputs Section 6.3

6.3) Auxiliary Engine Characterization (Conventional Diesel as Baseline Fuel)

percent of trip Auxiliary engine(s) active; based on time 100.00%time active (hours) 0.92

HP load factor (single engine) 75.00%HP per Auxiliary engine 95

Total Auxiliary Energy Consumption (kWh) 130.22

ase Validation: TEAMS results for total energy usage agreed very well with previous nalyses (97% of earlier estimates for total energy use). Expected differences include the act that TEAMS estimates one trip, while the earlier work estimated weekly and annual uel usage.

106

Page 121: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Case Results: Figure 112: FERRY CASE STUDY Tabular Results (Main Engine Fuel: Conventional Diesel)

Vess

el:

Ferr

y - N

ew Y

ork/

New

Jer

sey

Mai

n En

gine

Fue

l:

Con

vent

iona

l Die

sel

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 0.

600.

042.

630.

1915

.15

1.11

19.7

33.

24%

14.3

1%82

.44%

Foss

il Fu

els

0.57

0.04

2.60

0.19

15.1

51.

1119

.66

3.12

%14

.18%

82.7

0%P

etro

leum

0.14

0.01

1.37

0.10

15.1

51.

1117

.88

0.86

%8.

20%

90.9

3%C

O2

5560

7.09

4076

.46

1936

83.8

014

198.

6412

0903

8.08

8863

2.56

1565

236.

633.

81%

13.2

8%82

.91%

CH

413

69.1

110

0.37

159.

3911

.68

61.2

94.

4917

06.3

386

.12%

10.0

3%3.

86%

N2O

0.95

0.07

3.11

0.23

0.00

0.00

4.36

23.4

5%76

.55%

0.00

%G

HG

s84

653.

4662

05.8

019

7994

.60

1451

4.65

1210

325.

2388

726.

9216

0242

0.67

5.67

%13

.26%

81.0

7%V

OC

43.3

33.

1881

.05

5.94

1300

.91

95.3

715

29.7

83.

04%

5.69

%91

.27%

CO

97.1

17.

1210

4.79

7.68

3464

.71

253.

9939

35.4

12.

65%

2.86

%94

.49%

NO

x25

8.14

18.9

241

6.35

30.5

233

448.

4524

52.0

536

624.

440.

76%

1.22

%98

.02%

PM

1040

.81

2.99

38.1

02.

7960

6.88

44.4

973

6.07

5.95

%5.

56%

88.4

9%S

Ox

116.

038.

5141

8.02

30.6

426

7.43

19.6

086

0.24

14.4

8%52

.16%

33.3

7%

Perc

enta

ge o

f eac

h st

age

Engi

neO

pera

tion

Feed

stoc

kFu

elO

pera

tion

mB

tu/tr

ip o

r gra

ms/

trip

Figure 113: FERRY CASE STUDY Graphical Results (Main Engine Fuel: Conventional Diesel)

Vess

el:

Mai

n En

gine

Fue

l:

Con

vent

iona

l Die

sel

Ferr

y - N

ew Y

ork/

New

Jer

sey

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Your

Ves

sel u

sing

Con

vent

iona

l Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

107

Page 122: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 114: FERRY CASE STUDY Tabular Results (Main Engine Fuel: Residual Oil)

Figure 115: FERRY CASE STUDY Graphical Results (Main Engine Fuel: Residual Oil)

Vess

el:

Ferr

y - N

ew Y

ork/

New

Jer

sey

Mai

n En

gine

Fue

l:

Res

idua

l Oil

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 0.

600.

040.

820.

1915

.15

1.11

17.9

23.

57%

5.66

%90

.77%

Foss

il Fu

els

0.57

0.04

0.81

0.19

15.1

51.

1117

.88

3.43

%5.

60%

90.9

7%P

etro

leum

0.14

0.01

0.41

0.10

15.1

51.

1116

.93

0.91

%3.

03%

96.0

5%C

O2

5559

9.40

4076

.46

6188

7.71

1419

8.64

1243

941.

4888

632.

5614

6833

6.26

4.06

%5.

18%

90.7

5%C

H4

1368

.92

100.

3749

.01

11.6

861

.29

4.49

1595

.76

92.0

7%3.

80%

4.12

%N

2O0.

950.

070.

950.

2330

.30

0.00

32.5

03.

14%

3.63

%93

.23%

GH

Gs

8464

1.76

6205

.80

6321

1.78

1451

4.65

1254

622.

8088

726.

9215

1192

3.71

6.01

%5.

14%

88.8

5%V

OC

43.3

23.

189.

825.

9412

50.8

895

.37

1408

.51

3.30

%1.

12%

95.5

8%C

O97

.10

7.12

30.6

67.

6833

31.4

625

3.99

3728

.01

2.80

%1.

03%

96.1

8%N

Ox

258.

1018

.92

146.

9830

.52

3378

6.31

2452

.05

3669

2.89

0.75

%0.

48%

98.7

6%P

M10

40.8

12.

9916

.61

2.79

3034

.40

44.4

931

42.0

91.

39%

0.62

%97

.99%

SO

x11

6.02

8.51

157.

6530

.64

1799

3.28

19.6

018

325.

700.

68%

1.03

%98

.29%

Perc

enta

ge o

f eac

h st

age

mB

tu/tr

ip o

r gra

ms/

trip

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Res

idua

l Oil

Ferr

y - N

ew Y

ork/

New

Jer

sey

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Your

Ves

sel u

sing

Res

idua

l Oil

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

108

Page 123: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 116: FERRY CASE STUDY Tabular Results (Main Engine Fuel: Low-Sulfur Diesel)

Figure 117: FERRY CASE STUDY Graphical Results (Main Engine Fuel: Low-Sulfur Diesel)

Vess

el:

Ferr

y - N

ew Y

ork/

New

Jer

sey

Mai

n En

gine

Fue

l:

Low

-Sul

fur D

iese

lA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 0.

670.

042.

960.

1917

.05

1.11

22.0

23.

24%

14.3

2%82

.44%

Foss

il Fu

els

0.64

0.04

2.92

0.19

17.0

51.

1121

.96

3.12

%14

.18%

82.7

0%P

etro

leum

0.16

0.01

1.54

0.10

17.0

51.

1119

.97

0.86

%8.

21%

90.9

3%C

O2

6255

7.97

4076

.46

2207

37.2

814

198.

6413

7620

9.92

8863

2.56

1766

412.

843.

77%

13.3

0%82

.93%

CH

415

40.2

410

0.37

179.

3911

.68

68.9

54.

4919

05.1

386

.12%

10.0

3%3.

86%

N2O

1.07

0.07

3.50

0.23

0.00

0.00

4.87

23.4

4%76

.56%

0.00

%G

HG

s95

235.

1462

05.8

022

5589

.18

1451

4.65

1377

657.

9788

726.

9218

0792

9.67

5.61

%13

.28%

81.1

1%V

OC

48.7

43.

1893

.81

5.94

1463

.53

95.3

717

10.5

73.

04%

5.83

%91

.13%

CO

109.

257.

1211

8.86

7.68

3897

.80

253.

9943

94.7

12.

65%

2.88

%94

.47%

NO

x29

0.41

18.9

247

9.09

30.5

237

629.

5124

52.0

540

900.

500.

76%

1.25

%98

.00%

PM

1045

.92

2.99

46.2

42.

7968

2.74

44.4

982

5.17

5.93

%5.

94%

88.1

3%S

Ox

130.

548.

5148

5.66

30.6

412

.94

19.6

068

7.90

20.2

1%75

.06%

4.73

%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Low

-Sul

fur D

iese

lFe

rry

- New

Yor

k/N

ew J

erse

yA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Your

Ves

sel u

sing

Low

-Sul

fur D

iese

lC

ontr

ibut

ion

of E

ach

Stag

e

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

109

Page 124: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 118: FERRY CASE STUDY Tabular Results (Main Engine Fuel: Natural Gas)

Figure 119: FERRY CASE STUDY Graphical Results (Main Engine Fuel: Natural Gas)

Vess

el:

Ferr

y - N

ew Y

ork/

New

Jer

sey

Mai

n En

gine

Fue

l:

Nat

ural

Gas

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 1.

340.

041.

910.

1919

.48

1.11

24.0

85.

75%

8.74

%85

.51%

Foss

il Fu

els

1.33

0.04

1.74

0.19

19.4

81.

1123

.90

5.75

%8.

08%

86.1

7%P

etro

leum

0.07

0.01

0.03

0.10

0.00

1.11

1.33

6.20

%10

.02%

83.7

8%C

O2

9158

1.74

4076

.46

1512

21.7

314

198.

6411

5691

5.47

8863

2.56

1506

626.

606.

35%

10.9

8%82

.67%

CH

445

86.6

510

0.37

342.

5111

.68

1576

.11

4.49

6621

.81

70.7

8%5.

35%

23.8

7%N

2O1.

440.

072.

300.

230.

000.

004.

0337

.36%

62.6

4%0.

00%

GH

Gs

1883

46.4

062

05.8

015

9126

.23

1451

4.65

1190

013.

7088

726.

9216

4693

3.70

11.8

1%10

.54%

77.6

4%V

OC

18.3

33.

1828

.19

5.94

936.

6695

.37

1087

.66

1.98

%3.

14%

94.8

8%C

O14

4.89

7.12

537.

727.

6822

27.3

225

3.99

3178

.72

4.78

%17

.16%

78.0

6%N

Ox

291.

1518

.92

1037

.07

30.5

225

803.

0924

52.0

529

632.

811.

05%

3.60

%95

.35%

PM

106.

612.

9923

.54

2.79

7.80

44.4

988

.23

10.8

9%29

.84%

59.2

7%S

Ox

79.4

08.

5156

1.04

30.6

46.

0219

.60

705.

2212

.47%

83.9

0%3.

63%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Nat

ural

Gas

Ferr

y - N

ew Y

ork/

New

Jer

sey

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Your

Ves

sel u

sing

Nat

ural

Gas

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

110

Page 125: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 120: FERRY CASE STUDY Tabular Results (Main Engine Fuel: Biodiesel)

Figure 121: FERRY CASE STUDY Graphical Results (Main Engine Fuel: Biodiesel)

Vess

el:

Ferr

y - N

ew Y

ork/

New

Jer

sey

Mai

n En

gine

Fue

l:

Bio

dies

elA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 0.

920.

043.

350.

1917

.05

1.11

22.6

64.

25%

15.6

4%80

.11%

Foss

il Fu

els

0.89

0.04

3.30

0.19

13.8

81.

1119

.41

4.78

%17

.96%

77.2

6%P

etro

leum

0.36

0.01

1.30

0.10

13.8

81.

1116

.77

2.21

%8.

36%

89.4

3%C

O2

-177

702.

5640

76.4

623

6940

.80

1419

8.64

1374

951.

6588

632.

5615

4109

7.54

-11.

27%

16.3

0%94

.97%

CH

412

89.6

510

0.37

298.

5711

.68

68.9

54.

4917

73.7

278

.37%

17.4

9%4.

14%

N2O

12.6

70.

074.

040.

230.

000.

0017

.01

74.9

1%25

.09%

0.00

%G

HG

s-1

4669

1.67

6205

.80

2444

63.3

714

514.

6513

7639

9.69

8872

6.92

1583

618.

77-8

.87%

16.3

5%92

.52%

VO

C52

.84

3.18

96.5

15.

9414

63.5

395

.37

1717

.37

3.26

%5.

97%

90.7

7%C

O14

1.02

7.12

278.

687.

6838

97.8

025

3.99

4586

.30

3.23

%6.

24%

90.5

3%N

Ox

415.

0518

.92

717.

3530

.52

3762

9.51

2452

.05

4126

3.41

1.05

%1.

81%

97.1

4%P

M10

57.4

42.

9941

.69

2.79

682.

7444

.49

832.

147.

26%

5.35

%87

.39%

SO

x15

8.83

8.51

470.

9530

.64

245.

0419

.60

933.

5717

.92%

53.7

3%28

.35%

BD

CO

2 C

redi

t-2

5847

5.55

0.00

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Bio

dies

elFe

rry

- New

Yor

k/N

ew J

erse

yA

uxili

ary

Engi

ne F

uel:

C

onve

ntio

nal D

iese

l

Your

Ves

sel u

sing

Bio

dies

elC

ontr

ibut

ion

of E

ach

Stag

e

-20%0%20

%

40%

60%

80%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

111

Page 126: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 122: FERRY CASE STUDY Tabular Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Figure 123: FERRY CASE STUDY Graphical Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Vess

el:

Ferr

y - N

ew Y

ork/

New

Jer

sey

Mai

n En

gine

Fue

l:

Fisc

her-

Trop

sch

Die

sel

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kTo

tal E

nerg

y 0.

950.

0410

.70

0.19

17.0

51.

1130

.04

3.32

%25

%60

.44%

Foss

il Fu

els

0.95

0.04

10.6

90.

1917

.05

1.11

30.0

33.

29%

36.2

4%60

.46%

Pet

role

um0.

060.

010.

130.

100.

001.

111.

415.

14%

16.0

7%78

.79%

CO

276

381.

8440

76.4

633

1161

.31

1419

8.64

1318

707.

1388

632.

5618

3315

7.93

4.39

%18

.84%

76.7

7%C

H4

1884

.97

100.

377.

3911

.68

68.9

54.

4920

77.8

695

.55%

0.92

%3.

53%

N2O

1.15

0.07

0.16

0.23

0.00

0.00

1.61

75.8

3%24

.17%

0.00

%G

HG

s11

6322

.88

6205

.80

3313

66.3

514

514.

6513

2015

5.17

8872

6.92

1877

291.

796.

53%

18.4

2%75

.05%

VO

C5.

763.

1886

.68

5.94

1522

.07

95.3

717

18.9

90.

52%

5.39

%94

.09%

CO

109.

017.

1251

0.61

7.68

4053

.71

253.

9949

42.1

32.

35%

10.4

9%87

.16%

NO

x20

4.37

18.9

237

4.72

30.5

237

253.

2124

52.0

540

333.

800.

55%

1.00

%98

.44%

PM

105.

122.

994.

852.

7913

6.55

44.4

919

6.80

4.12

%3.

88%

91.9

9%S

Ox

65.8

68.

5146

.88

30.6

40.

0019

.60

171.

5043

.36%

45.2

1%11

.43%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

geag

e

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

F36

.

of e

a uel

ch s

t

Vess

el:

Mai

n En

gine

Fue

l:

Fisc

her-

Trop

sch

Die

sel

Ferr

y - N

ew Y

ork/

New

Jer

sey

Aux

iliar

y En

gine

Fue

l:

Con

vent

iona

l Die

sel

Your

Ves

sel u

sing

Fis

her-

Trop

sch

Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

112

Page 127: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 124: FERRY CASE STUDY Results W2H Energy & Emission % Changes

4) Well-to-Hull Energy and Emission Changes (%, relative to vessel with main engines using Conventional Diesel)

Residual OilLow-Sulfur

Diesel Natural Gas BiodieselFischer-Tropsch

DieselTotal Energy -9.17% 11.65% 22.09% 14.90% 52.30%Fossil Fuels -9.08% 11.65% 21.53% -1.30% 52.71%Petroleum -5.33% 11.65% -92.59% -6.26% -92.12%CO2 -6.19% 12.85% -3.74% -1.54% 17.12%CH4 -6.48% 11.65% 288.07% 3.95% 21.77%N2O 645.79% 11.69% -7.55% 290.28% -63.08%GHGs -5.65% 12.82% 2.78% -1.17% 17.15%VOC -7.93% 11.82% -28.90% 12.26% 12.37%CO -5.27% 11.67% -19.23% 16.54% 25.58%Nox 0.19% 11.68% -19.09% 12.67% 10.13%PM10 326.88% 12.11% -88.01% 13.05% -73.26%Sox 2030.31% -20.03% -18.02% 8.52% -80.06%

113

Page 128: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

A.2 Case Study 2: Tanker Vessel Vessel description: Crude oil tanker with specifications similar to the tanker chosen for case study in the IMO Study of Greenhouse Gas Emissions from Ships (Skyølsvik et al. 2000), described in that IMO report and appendices. Vessel characteristics: We assume this vessel has one main engine, a slow-speed diesel rated at 23,800 kW, and operates at a rated speed of 14 knots. It has capacity to carry an estimated average of 220,000 tons cargo. This case study will assume that the tanker is fully loaded, although the IMO study suggests that the average capacity factor is lower, due to return voyages that are typically empty (under ballast). According to a recent study (California Air Resources Board 2005), AE installed power as a percent of main engine installed power for tankers is about 21%. We assume that the vessel has 4 auxiliary engines of equal size, and that under steady-state conditions at sea only 2 are operating. Trip characterization: The trip will assume crude oil is transported from Houston to New York. At 14 knots, the trip requires 5 days, 2 hours per www.distances.com; we use the 36 hour turnaround time in the IMO study for in-port operations (Skyølsvik et al. 2000). We estimate the main engine duty cycle on the route includes a majority of time (77%) at full cruise speed, and allocate the remaining time among speeds corresponding to slow cruise operations, precautionary zone operations, near-dock maneuvering, and idling. Auxiliary engine operation assumes that 2 of the 4 AEs operate at sea, at an average load of approximately 80% of full load. Inputs: This case only discusses those elements specific to the case study; default parameters in TEAMS are discussed in Section 8 and 9 of this document.

114

Page 129: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 1: The world average fuel sulfur content for residual fuels typically used by a tanker of this type is 2.7%, but this varies regionally. Actual data on regional fuel sulfur suggest that the number may be lower in parts of the United States, including the Gulf Coast and East Coast8. For the Gulf coast, the volume-weighted average residual fuel-sulfur content for imports is approximately 2.49%; for the East Coast, the value is 2.53%. Figure 125: TANKER CASE STUDY Inputs Section 1.2

1.2) Petroleum-Based Efficiency Options

Sulfur LevelRefining Efficiency

Conventional Diesel 350 87.5%Low-Sulfur Diesel 15 87.5%Crude Oil 16,000Residual Oil (Marine Bunkers) 24,900 95.5%

Inputs Section 2: Significant residual fuel is imported from Venezuelan refineries to the United States. For this case study, we use the navigable distance of 2000 miles from Venezuela to Texas. Other distances use default distances by mode obtained from the 2002 Commodity Flow Survey, updating the 1998 CFS data used in recent GREET model defaults. Figure 126: TANKER CASE STUDY Inputs Section 2.4

2.4) Distance from Feedstock Recovery Site to Fuel Stations for Different Fuels: miles (One-Way Distance)

8

Residual Oil imported from Venezuela to TexasPetroleum Based ? Crude Oil Residual Oil US Diesel US LS Diesel

Ocean Tanker 500 2000 1,450 1,450Barge 500 50 520 520

Pipeline 750 400 400Rail 800 800 800 800

Truck for Distribution 170 170

see http://www.eia.doe.gov/oil_gas/petroleum/data_publications/company_level_imports/cli.html

115

Page 130: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 5: Key input parameters for simulating main engine operations were obtained from data used in the IMO study. Figure 127: TANKER CASE STUDY Inputs Section 5.1

5.1) Main Engine VariablesFrom IMO cases (220,000 tons cargo)Vessel Type ID

Number of EnginesSingle Engine HPTotal Onboard HP

1Tanker Ship - 275,000 DWT

2380023800

Figure 128: TANKER CASE STUDY Inputs Section 5.2

5.2) Trip Distance and Time

Total Trip Distance (miles) 2190

Trip TimeHours 158.00

Minutes 0.00

Total Trip Time (hours) 158.00

Figure 129: TANKER CASE STUDY Inputs Section 5.3

5.3) Engine Characterization per Mode 29.47 23%

36 in port hours

Idle Maneuvering Precautionary Slow Cruise Full Cruise 122 at sea hourspercent of trip in mode based on time 4.90% 1.75% 5.00% 7.00% 81.35% similar to underway time for container

time per mode (hours) 7.74 2.77 7.90 11.06 128.53

HP load factor (single engine) 2.00% 8.00% 12.00% 50.00% 80.00% estimate from speed installed, with maHP per engine 476 1,904 2,856 11,900 19,040 Total

Energy Consumption (kWh) (all engines) 2748.05 3925.78 16824.78 98144.56 1824927.99 1946571.16 kWh out

Engine Mode

116

Page 131: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 6: Key input parameters for simulating auxiliary engine operations were obtained from data derived from the ARB survey of vessels, corresponding to the IMO tanker data for main engines. Figure 130: TANKER CASE STUDY Inputs Section 6.2

6.2) Auxiliary Engine Variables

Number of Auxiliary Engines 4Auxiliary Engine HP 1250

Total Onboard Auxiliary HP 5000

Figure 131: TANKER CASE STUDY Inputs Section 6.3

6.3) Auxiliary Engine Characterization (Conventional Diesel as Baseline Fuel)

percent of trip Auxiliary engine(s) active; based on time 50.00%time active (hours) 79.00

HP load factor (single engine) 80.00%HP per Auxiliary engine 1,000

Total Auxiliary Energy Consumption (kWh) 235641.20

Case Validation: We estimated the energy intensity for this tanker and obtained about 40 Btu/ton-mile, assuming a full cargo load. This agrees well with the average energy intensities estimated in other work, perhaps representing a bit lower energy intensity than the IMO study. However, when we adjust for the cargo capacity factor described in the IMO work, the value increases to be very similar to the IMO study results (about 60 Btu/ton-mile).

117

Page 132: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Case Results: Figure 132: TANKER CASE STUDY Tabular Results (Main Engine Fuel: Conventional Diesel)

Vess

el:

Tank

er S

hip

- 275

,000

DW

T M

ain

Engi

ne F

uel:

C

onve

ntio

nal D

iese

lA

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 58

0.80

70.3

025

62.1

796

.90

1475

9.34

1786

.68

1985

6.18

3.28

%13

.39%

83.3

3%Fo

ssil

Fuel

s55

6.76

67.3

925

30.3

995

.67

1475

9.34

1786

.68

1979

6.24

3.15

%13

.27%

83.5

8%P

etro

leum

140.

1516

.96

1331

.75

48.7

714

759.

3417

86.6

818

083.

650.

87%

7.63

%91

.50%

CO

254

1664

86.6

265

5619

0.83

1886

6607

8.19

7297

697.

7811

7771

5786

.79

1466

8354

9.16

1581

0857

89.3

63.

84%

12.3

9%83

.77%

CH

413

3363

6.89

1614

20.4

415

5257

.09

5778

.79

5970

5.11

7227

.57

1723

025.

8986

.77%

9.35

%3.

88%

N2O

927.

4111

2.25

3028

.13

112.

180.

0035

73.3

777

53.3

413

.41%

40.5

0%46

.09%

GH

Gs

8246

0358

.99

9980

818.

0919

2865

196.

8474

5382

9.47

1178

9695

94.0

814

7943

072.

2216

1967

2869

.68

5.71

%12

.37%

81.9

2%V

OC

4220

5.83

5108

.50

7895

3.65

1158

.53

1267

210.

4714

7501

.47

1542

138.

453.

07%

5.19

%91

.74%

CO

9459

8.50

1144

9.99

1020

70.4

236

15.1

233

7495

3.92

3928

39.7

739

7952

7.71

2.66

%2.

66%

94.6

8%N

Ox

2514

50.5

830

435.

0240

5567

.55

1733

1.18

3258

1908

.65

3984

026.

9637

2707

19.9

30.

76%

1.13

%98

.11%

PM

1040

912.

0449

51.9

037

128.

4019

58.8

659

1158

.44

3578

11.9

510

3392

1.58

4.44

%3.

78%

91.7

8%S

Ox

1143

26.6

013

837.

8440

9690

.49

1876

0.06

2604

99.3

921

2173

8.23

2938

852.

604.

36%

14.5

8%81

.06%

mB

tu/tr

ip o

r gra

ms/

trip

Feed

stoc

kFu

elO

pera

tion

Perc

enta

ge o

f eac

h st

age

Engi

neO

pera

tion Figure 133: TANKER CASE STUDY Graphical Results

(Main Engine Fuel: Conventional Diesel)

Vess

el:

Mai

n En

gine

Fue

l:

Con

vent

iona

l Die

sel

Tank

er S

hip

- 275

,000

DW

T A

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Your

Ves

sel u

sing

Con

vent

iona

l Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

118

Page 133: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 134: TANKER CASE STUDY Tabular Results (Main Engine Fuel: Residual Oil)

Figure 135: TANKER CASE STUDY Graphical Results (Main Engine Fuel: Residual Oil)

Vess

el:

Tank

er S

hip

- 275

,000

DW

T M

ain

Engi

ne F

uel:

R

esid

ual O

ilA

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 58

0.72

70.3

080

0.49

96.9

014

759.

3417

86.6

818

094.

423.

60%

4.96

%91

.44%

Foss

il Fu

els

556.

6867

.39

790.

3495

.67

1475

9.34

1786

.68

1805

6.10

3.46

%4.

91%

91.6

4%P

etro

leum

140.

1316

.96

402.

8648

.77

1475

9.34

1786

.68

1715

4.74

0.92

%2.

63%

96.4

5%C

O2

5415

9000

.93

6556

190.

8360

2843

98.5

272

9769

7.78

1211

7149

55.2

414

6683

549.

1614

8669

5792

.45

4.08

%4.

55%

91.3

7%C

H4

1333

452.

5816

1420

.44

4773

7.12

5778

.79

5970

5.11

7227

.57

1615

321.

6192

.54%

3.31

%4.

14%

N2O

927.

2811

2.25

926.

7211

2.18

2951

8.67

3573

.37

3517

0.48

2.96

%2.

95%

94.0

9%G

HG

s82

4489

63.1

699

8081

8.09

6157

4162

.13

7453

829.

4712

2211

9550

.28

1479

4307

2.22

1531

5203

95.3

46.

04%

4.51

%89

.46%

VO

C42

200.

0051

08.5

095

70.3

211

58.5

312

1847

1.60

1475

01.4

714

2401

0.43

3.32

%0.

75%

95.9

2%C

O94

585.

4211

449.

9929

863.

5536

15.1

232

4514

8.00

3928

39.7

737

7750

1.85

2.81

%0.

89%

96.3

1%N

Ox

2514

15.8

330

435.

0214

3168

.44

1733

1.18

3291

1018

.84

3984

026.

9637

3373

96.2

70.

75%

0.43

%98

.82%

PM

1040

906.

3949

51.9

016

181.

6419

58.8

629

5579

2.18

3578

11.9

533

7760

2.91

1.36

%0.

54%

98.1

1%S

Ox

1143

10.8

013

837.

8415

4972

.04

1876

0.06

1752

7132

.11

2121

738.

2319

9507

51.0

80.

64%

0.87

%98

.49%

Engi

neO

pera

tion

Feed

stoc

kFu

elO

pera

tion

Perc

enta

ge o

f eac

h st

age

mB

tu/tr

ip o

r gra

ms/

trip

Vess

el:

Mai

n En

gine

Fue

l:

Res

idua

l Oil

Tank

er S

hip

- 275

,000

DW

T A

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Your

Ves

sel u

sing

Res

idua

l Oil

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

119

Page 134: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 136: TANKER CASE STUDY Tabular Results (Main Engine Fuel: Low-Sulfur Diesel)

Figure 137: TANKER CASE STUDY Graphical Results (Main Engine Fuel: Low-Sulfur Diesel)

Vess

el:

Tank

er S

hip

- 275

,000

DW

T M

ain

Engi

ne F

uel:

Lo

w-S

ulfu

r Die

sel

Aux

iliar

y En

gine

Fue

l:

Res

idua

l Oil

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 65

3.40

70.3

028

83.4

096

.90

1660

4.25

1786

.68

2209

4.93

3.28

%13

.49%

83.2

4%Fo

ssil

Fuel

s62

6.36

67.3

928

47.6

595

.67

1660

4.25

1786

.68

2202

8.00

3.15

%13

.36%

83.4

9%P

etro

leum

157.

6716

.96

1499

.04

48.7

716

604.

2517

86.6

820

113.

380.

87%

7.70

%91

.44%

CO

260

9372

98.3

865

5619

0.83

2150

1868

9.33

7297

697.

7813

4055

6746

.08

1466

8354

9.16

1777

0501

71.5

43.

80%

12.5

1%83

.69%

CH

415

0034

1.52

1614

20.4

417

4743

.75

5778

.79

6716

8.25

7227

.57

1916

680.

3386

.70%

9.42

%3.

88%

N2O

1043

.34

112.

2534

08.3

311

2.18

0.00

3573

.37

8249

.47

14.0

1%42

.68%

43.3

2%G

HG

s92

7679

05.2

899

8081

8.09

2197

4488

9.70

7453

829.

4713

4196

7279

.27

1479

4307

2.22

1819

8577

94.0

25.

65%

12.4

8%81

.87%

VO

C47

481.

5651

08.5

091

381.

4911

58.5

314

2561

1.78

1475

01.4

717

1824

3.33

3.06

%5.

39%

91.5

5%C

O10

6423

.31

1144

9.99

1157

76.8

636

15.1

237

9682

3.16

3928

39.7

744

2692

8.21

2.66

%2.

70%

94.6

4%N

Ox

2828

81.9

030

435.

0246

6680

.82

1733

1.18

3665

4647

.23

3984

026.

9641

4360

03.1

10.

76%

1.17

%98

.08%

PM

1046

026.

0549

51.9

045

064.

9219

58.8

666

5053

.24

3578

11.9

511

2086

6.92

4.55

%4.

20%

91.2

6%S

Ox

1286

17.4

213

837.

8447

5894

.63

1876

0.06

1260

8.85

2121

738.

2327

7145

7.04

5.14

%17

.85%

77.0

1%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Low

-Sul

fur D

iese

lTa

nker

Shi

p - 2

75,0

00 D

WT

Aux

iliar

y En

gine

Fue

l:

Res

idua

l Oil

Your

Ves

sel u

sing

Low

-Sul

fur D

iese

lC

ontr

ibut

ion

of E

ach

Stag

e

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

120

Page 135: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 138: TANKER CASE STUDY Tabular Results (Main Engine Fuel: Natural Gas)

Figure 139: TANKER CASE STUDY Graphical Results (Main Engine Fuel: Natural Gas)

Vess

el:

Tank

er S

hip

- 275

,000

DW

T M

ain

Engi

ne F

uel:

N

atur

al G

asA

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 13

06.3

270

.30

1863

.47

96.9

018

976.

2917

86.6

824

099.

965.

71%

8.13

%86

.15%

Foss

il Fu

els

1297

.40

67.3

916

95.9

895

.67

1897

6.29

1786

.68

2391

9.41

5.71

%7.

49%

86.8

0%P

etro

leum

69.7

416

.96

31.7

948

.77

0.00

1786

.68

1953

.94

4.44

%4.

12%

91.4

4%C

O2

8920

9154

.71

6556

190.

8314

7304

060.

5372

9769

7.78

1126

9435

08.5

014

6683

549.

1615

2399

4161

.50

6.28

%10

.14%

83.5

7%C

H4

4467

823.

7816

1420

.44

3336

36.3

957

78.7

915

3527

4.22

7227

.57

6511

161.

1971

.10%

5.21

%23

.69%

N2O

1398

.36

112.

2522

36.6

311

2.18

0.00

3573

.37

7432

.79

20.3

2%31

.60%

48.0

8%G

HG

s18

3466

945.

1499

8081

8.09

1550

0377

9.42

7453

829.

4711

5918

4267

.15

1479

4307

2.22

1663

0327

11.4

811

.63%

9.77

%78

.60%

VO

C17

851.

6251

08.5

027

462.

2711

58.5

391

2391

.54

1475

01.4

711

1147

3.93

2.07

%2.

58%

95.3

6%C

O14

1138

.09

1144

9.99

5237

87.2

736

15.1

221

6961

3.23

3928

39.7

732

4244

3.47

4.71

%16

.27%

79.0

3%N

Ox

2836

11.3

730

435.

0210

1019

8.26

1733

1.18

2513

4615

.24

3984

026.

9630

4602

18.0

31.

03%

3.37

%95

.60%

PM

1064

47.2

249

51.9

022

929.

6219

58.8

676

00.6

135

7811

.95

4017

00.1

52.

84%

6.20

%90

.97%

SO

x77

587.

9713

837.

8454

6903

.40

1876

0.06

5868

.74

2121

738.

2327

8469

6.25

3.28

%20

.31%

76.4

0%

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

mB

tu/tr

ip o

r gra

ms/

trip

Vess

el:

Mai

n En

gine

Fue

l:

Nat

ural

Gas

Tank

er S

hip

- 275

,000

DW

T A

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Your

Ves

sel u

sing

Nat

ural

Gas

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

121

Page 136: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 140: TANKER CASE STUDY Tabular Results (Main Engine Fuel: Biodiesel)

Figure 141: TANKER CASE STUDY Graphical Results (Main Engine Fuel: Biodiesel)

Vess

el:

Tank

er S

hip

- 275

,000

DW

T M

ain

Engi

ne F

uel:

B

iodi

esel

Aux

iliar

y En

gine

Fue

l:

Res

idua

l Oil

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 89

4.93

70.3

032

65.2

796

.90

1660

4.25

1786

.68

2271

8.34

4.25

%14

.80%

80.9

5%Fo

ssil

Fuel

s86

2.77

67.3

932

10.1

995

.67

1352

3.56

1786

.68

1954

6.27

4.76

%16

.91%

78.3

3%P

etro

leum

350.

7816

.96

1267

.14

48.7

713

523.

5617

86.6

816

993.

902.

16%

7.74

%90

.09%

CO

2-1

7309

8859

.73

6556

190.

8323

0802

424.

9572

9769

7.78

1339

3310

65.4

514

6683

549.

1615

5757

2068

.44

-10.

69%

15.2

9%95

.41%

CH

412

5623

7.53

1614

20.4

429

0838

.67

5778

.79

6716

8.25

7227

.57

1788

671.

2579

.26%

16.5

8%4.

16%

N2O

1234

3.58

112.

2539

35.7

211

2.18

0.00

3573

.37

2007

7.11

62.0

4%20

.16%

17.8

0%G

HG

s-1

4289

1360

.88

9980

818.

0923

8130

110.

5174

5382

9.47

1340

7415

98.6

414

7943

072.

2216

0135

8068

.04

-8.3

0%15

.34%

92.9

6%V

OC

5147

3.12

5108

.50

9400

9.72

1158

.53

1425

611.

7814

7501

.47

1724

863.

113.

28%

5.52

%91

.20%

CO

1373

66.9

911

449.

9927

1459

.49

3615

.12

3796

823.

1639

2839

.77

4613

554.

523.

23%

5.96

%90

.81%

NO

x40

4299

.80

3043

5.02

6987

67.9

117

331.

1836

6546

47.2

339

8402

6.96

4178

9508

.09

1.04

%1.

71%

97.2

5%P

M10

5702

3.82

4951

.90

4062

3.88

1958

.86

6650

53.2

435

7811

.95

1127

423.

665.

50%

3.78

%90

.73%

SO

x15

6360

.23

1383

7.84

4611

88.3

218

760.

0623

8688

.26

2121

738.

2330

1057

2.94

5.65

%15

.94%

78.4

0%

BD

CO

2 C

redi

t-2

5177

9279

.56

0.00

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

mB

tu/tr

ip o

r gra

ms/

trip

Vess

el:

Mai

n En

gine

Fue

l:

Bio

dies

elTa

nker

Shi

p - 2

75,0

00 D

WT

Aux

iliar

y En

gine

Fue

l:

Res

idua

l Oil

Your

Ves

sel u

sing

Bio

dies

elC

ontr

ibut

ion

of E

ach

Stag

e

-20%0%20

%

40%

60%

80%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

122

Page 137: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 142: TANKER CASE STUDY Tabular Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Figure 143: TANKER CASE STUDY Graphical Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Vess

el:

Tank

er S

hip

- 275

,000

DW

T M

ain

Engi

ne F

uel:

Fi

sche

r-Tr

opsc

h D

iese

lA

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 92

8.10

70.3

010

419.

8596

.90

1660

4.25

1786

.68

2990

6.09

3.34

%35

.17%

61.5

0%Fo

ssil

Fuel

s92

2.40

67.3

910

415.

7895

.67

1660

4.25

1786

.68

2989

2.18

3.31

%35

.16%

61.5

2%P

etro

leum

60.3

216

.96

123.

1148

.77

0.00

1786

.68

2035

.85

3.80

%8.

44%

87.7

6%C

O2

7440

3029

.09

6556

190.

8332

2581

980.

9272

9769

7.78

1284

5436

60.1

014

6683

549.

1618

4206

6107

.88

4.40

%17

.91%

77.7

0%C

H4

1836

140.

9816

1420

.44

7195

.25

5778

.79

6716

8.25

7227

.57

2084

931.

2895

.81%

0.62

%3.

57%

N2O

1120

.45

112.

2515

6.89

112.

180.

0035

73.3

750

75.1

424

.29%

5.30

%70

.41%

GH

Gs

1133

0932

8.57

9980

818.

0932

2781

716.

8774

5382

9.47

1285

9541

93.2

914

7943

072.

2218

8742

2958

.50

6.53

%17

.50%

75.9

7%V

OC

5606

.25

5108

.50

8443

6.98

1158

.53

1482

636.

2514

7501

.47

1726

447.

980.

62%

4.96

%94

.42%

CO

1061

87.8

711

449.

9949

7382

.12

3615

.12

3948

696.

0939

2839

.77

4960

170.

952.

37%

10.1

0%87

.53%

NO

x19

9076

.21

3043

5.02

3650

10.6

917

331.

1836

2881

00.7

639

8402

6.96

4088

3980

.82

0.56

%0.

94%

98.5

0%P

M10

4996

.18

4951

.90

4729

.08

1958

.86

1330

10.6

535

7811

.95

5074

58.6

21.

96%

1.32

%96

.72%

SO

x64

360.

9913

837.

8447

325.

3218

760.

060.

0021

2173

8.23

2266

022.

443.

45%

2.92

%93

.63%

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neer

atio

n

mB

tu/tr

ip o

r gra

ms/

trip

Op

Vess

el:

Mai

n En

gine

Fue

l:

Fisc

her-

Trop

sch

Die

sel

Tank

er S

hip

- 275

,000

DW

T A

uxili

ary

Engi

ne F

uel:

R

esid

ual O

il

Your

Ves

sel u

sing

Fis

her-

Trop

sch

Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

123

Page 138: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 144: TANKER CASE STUDY Results W2H Energy & Emission % Changes

4) Well-to-Hull Energy and Emission Changes (%, relative to vessel with main engines using Conventional Diesel)

Residual OilLow-Sulfur

Diesel Natural Gas BiodieselFischer-Tropsch

DieselTotal Energy -8.87% 11.27% 21.37% 14.41% 50.61%Fossil Fuels -8.79% 11.27% 20.83% -1.26% 51.00%Petroleum -5.14% 11.22% -89.20% -6.03% -88.74%CO2 -5.97% 12.39% -3.61% -1.49% 16.51%CH4 -6.25% 11.24% 277.89% 3.81% 21.00%N2O 353.62% 6.40% -4.13% 158.95% -34.54%GHGs -5.44% 12.36% 2.68% -1.13% 16.53%VOC -7.66% 11.42% -27.93% 11.85% 11.95%CO -5.08% 11.24% -18.52% 15.93% 24.64%Nox 0.18% 11.18% -18.27% 12.12% 9.69%PM10 226.68% 8.41% -61.15% 9.04% -50.92%Sox 578.86% -5.70% -5.25% 2.44% -22.89%

124

Page 139: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

A.3 Case Study 3: Container Vessel Vessel description: For this case study, we considered the distribution of container ships calling on ports in Southern California. The ports of Long Beach and Los Angeles are the two busiest container ports in the United States, together handling more than twice the containerized ship cargo of the third-ranked U.S. container port (Corbett 2003). We identified the typical main engine power range of large modern container ships that call on them, and selected for our case study a large, 6000-TEU container vessel with the characteristics shown in Table YY. Alternatively, the case study could have selected the average or modal container ship characteristics. Vessel characteristics: This vessel has one main engine, rated at ~75000 Hp. We specify four auxiliary engines, each rated at 1400 Hp, for a total installed auxiliary power of about 5600 Hp. The engines operate on the same residual marine fuel as the main engines, typical for most modern larger cargo ships. Trip characterization: For voyage distance, it is important to consider whether the calculation should apply to one leg of a voyage (intermediate stop 1 to intermediate stop 2), one section of a voyage (origin A to destination B), or to an entire round trip (origin A to destination B and return). To clearly illustrate the differences in terms of ship operations, we consider an actual route for a group of container ships operated by Maersk-Sealand.9 This route has the characteristics shown in Figure 145: Figure 145: CONTAINER CASE STUDY Route Characteristics for Typical Container Service

(Maersk-Sealand)

Voyage Node Port Name Typical port dates

Days in port

Days at sea to next port

Distance (nautical miles)

Port 1 Hong Kong 27-27 Jul 1 1 543 Port 2 Yantian 28-28 Jul 1 1 543 Port 3 Xiamen 29-29 Jul 1 1 543 Port 4 Kaohsiung 30-30 Jul 1 11 5,975 Port 5 Los Angeles 10-12 Aug 3 3 1,630 Port 6 Tacoma 15-17 Aug 3 14 7,061 Port 1 Hong Kong 31-31 Aug - - -

Total voyage 10 32 16,838

9 See http://www.maersksealand.com/HomePage/appmanager/?_nfpb=true&_pageLabel=page_schedules_routemaps, then transpacific route TP9 or http://www.maersksealand.com/HomePage/frameset.jsp?app=schedules.vessels

125

Page 140: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

The simplest application would evaluate a single leg of the voyage; primarily at-sea conditions would be needed or the port activity of the two ports involved in the voyage leg. One could use the model to calculate each voyage leg separately, for example, from Port 4 in Kaohsiung to Port 5 in Los Angeles; this would be a distance of ~6870 miles (5975 nautical miles). In applying the model to multiport vessel activity, the user would need to consider how in-port activity in each of the ports modifies the overall load profile; this activity could be similar for short port calls (e.g., Ports 1 through 4, which may each be primarily loading ports), but may vary for longer port calls (e.g., Ports 5 and 6, which are likely discharge ports). Alternatively, one could model the entire round trip voyage, with a total distance of nearly 20,000 miles (16,838 nautical miles). We consider a typical “westbound voyage,” representing the movement of cargo from Origin A in Los Angeles to Destination B in Hong Kong. This covers a distance of ~10,600 miles (9234 nautical miles) in approximately 480 hours (17 days at sea and 3 days in port). We include additional detail and analysis for a more complicated voyage to demonstrate the potential to apply the TEAMS model to more realistic and complicated route patterns describing ship activity. Inputs: This case only discusses those elements specific to the case study; default parameters in TEAMS are discussed in Section 8 and 9 of this document. Inputs Section 1: The world average fuel sulfur content for residual fuels typically used by a tanker of this type is 2.7%, but this varies regionally. Actual data on regional fuel sulfur suggest that the number may be lower in parts of the United States, including the Gulf Coast and East Coast10. For the Gulf coast, the volume-weighted average residual fuel-sulfur content for imports is approximately 2.49%; for the East Coast, the value is 2.53%. Figure 146: CONTAINER CASE STUDY Inputs Section 1.2

1.2) Petroleum-Based Efficiency Options

1

Sulfur LevelRefining Efficiency

Conventional Diesel 350 87.5%Low-Sulfur Diesel 15 87.5%Crude Oil 16,000Residual Oil (Marine Bunkers) 22,900 95.5%

0 See http://www.eia.doe.gov/oil_gas/petroleum/data_publications/company_level_imports/cli.html

126

Page 141: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 2: Significant residual fuel is imported from Venezuelan refineries to the United States. For this case study, we use the navigable distance of 6675 miles from Venezuela to Texas. Other distances use default distances by mode obtained from the 2002 Commodity Flow Survey, updating the 1998 CFS data used in recent GREET model defaults. Figure 147: CONTAINER CASE STUDY Inputs Section 2.4

2.4) Distance from Feedstock Recovery Site to Fuel Stations for Different Fuels: miles (One-Way Distance)

Venezuelan residual imported to California for marine bunkersPetroleum Based ? Crude Oil Residual Oil US Diesel US LS Diesel

Ocean Tanker 500 6675 1,450 1,450Barge 500 50 520 520

Pipeline 750 400 400Rail 800 800 800 800

Truck for Distribution 170 170

127

Page 142: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 5: Key input parameters for simulating main engine operations were developed using information about vessel activity developed by a series of studies that directly considered West Coast ports, including Los Angeles and Long Beach (Chen et al. 2005, Corbett 2004, Starcrest Consulting Group LLC et al. 2004). Figure 148: CONTAINER CASE STUDY Inputs Section 5.1

5.1) Main Engine Variables

Vessel Type IDNumber of Engines

Single Engine HPTotal Onboard HP

1Container Ship - 6000 TEU

7509775097

Figure 149: CONTAINER CASE STUDY Inputs Section 5.2

5.2) Trip Distance and Time

Total Trip Distance (miles) 10600.00

Trip TimeHours 480.00

Minutes 0.00

Total Trip Time (hours) 480.00

Figure 150: CONTAINER CASE STUDY Inputs Section 5.3

5.3) Engine Characterization per Mode

Idle Maneuvering Precautionary Slow Cruise Full Cruisepercent of trip in mode based on time 1.25% 1.75% 5.00% 7.00% 85.00%

time per mode (hours) 6.00 8.40 24.00 33.60 408.00

HP load factor (single engine) 2.00% 8.00% 12.00% 50.00% 80.00%HP per engine 1,502 6,008 9,012 37,549 60,078 Total

Energy Consumption (kWh) (all engines) 6719.98 37631.89 161279.52 940797.19 18278345.46 19424774.04 kW

Engine Mode

128

Page 143: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Inputs Section 6: Key input parameters for simulating auxiliary engine operations were obtained from data derived from the ARB survey of vessels, corresponding to the IMO containership data for main engines. Figure 151: CONTAINER CASE STUDY Inputs Section 6.2

6.2) Auxiliary Engine Variables

F

CadaeLc

Number of Auxiliary Engines 4Auxiliary Engine HP 1400

Total Onboard Auxiliary HP 5600

igure 152: CONTAINER CASE STUDY Inputs Section 6.3

6.3) Auxiliary Engine Characterization (Conventional Diesel as Baseline Fuel)

percent of trip Auxiliary engine(s) active; based on time 50.00%time active (hours) 240.00

HP load factor (single engine) 80.00%HP per Auxiliary engine 1,120

Total Auxiliary Energy Consumption (kWh) 801776.64

ase Validation: We compared the energy intensity for this container ship with other nalyses, and obtained a range between 200 Btu/ton-mile and 400 Btu/ton-mile, epending on assumptions about the average weight of cargo in each container. This grees well with the average energy intensities estimated in other work, where our lower stimate is in very close agreement with the energy intensity estimated in the IMO study. ighter containers would correspond to the higher energy intensities, due to fewer tons argo being moved by a full (i.e., volume-limited) container ship.

129

Page 144: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Case Results: Figure 153: CONTAINER CASE STUDY Tabular Results (Main Engine Fuel: Conventional Diesel)

Vess

el:

Con

tain

er S

hip

- 600

0 TE

UM

ain

Engi

ne F

uel:

C

onve

ntio

nal D

iese

lA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 57

97.1

126

9.19

2557

0.38

1187

.77

1472

82.9

568

39.1

518

6946

.56

3.24

%14

.31%

82.4

4%Fo

ssil

Fuel

s55

57.2

425

8.05

2525

3.31

1173

.04

1472

82.9

568

39.1

518

6363

.76

3.12

%14

.18%

82.7

0%P

etro

leum

1399

.84

65.0

013

291.

9161

7.56

1472

82.9

568

39.1

516

9496

.42

0.86

%8.

21%

90.9

3%C

O2

5405

9322

9.86

2510

2706

.88

1882

8831

01.2

088

5732

62.9

611

7523

8981

0.05

5521

6429

1.20

1484

1706

402.

133.

81%

13.2

8%82

.91%

CH

413

3083

79.3

161

7981

.00

1549

507.

7471

984.

9059

5795

.45

2766

6.05

1617

1314

.45

86.1

2%10

.03%

3.86

%N

2O92

56.1

942

9.82

3022

2.03

1404

.07

0.00

0.00

4131

2.10

23.4

5%76

.55%

0.00

%G

HG

s82

2938

613.

7238

2135

50.7

019

2479

1593

.76

9052

0207

.01

1176

4901

514.

5555

2745

278.

2115

1941

1075

7.95

5.67

%13

.26%

81.0

7%V

OC

4212

35.2

819

560.

2678

8057

.94

3764

7.74

1264

5454

.50

5871

97.7

614

4991

53.4

93.

04%

5.69

%91

.26%

CO

9441

74.1

243

843.

1810

1906

0.65

4771

0.92

3367

8561

.92

1563

880.

2137

2972

31.0

02.

65%

2.86

%94

.49%

NO

x25

1087

9.16

1165

93.8

840

5182

5.28

1924

39.4

632

5133

869.

7015

0977

47.5

334

7103

355.

010.

76%

1.22

%98

.02%

PM

1038

3392

.01

1780

2.99

3705

55.4

418

564.

2758

9915

1.94

2739

29.9

669

6339

6.60

5.76

%5.

59%

88.6

5%S

Ox

1112

897.

8951

677.

9540

3542

5.82

1935

58.7

325

9951

5.47

5193

.48

7998

269.

3514

.56%

52.8

7%32

.57%

Perc

enta

ge o

f eac

h st

age

Engi

neO

pera

tion

Feed

stoc

kFu

elO

pera

tion

mB

tu/tr

ip o

r gra

ms/

trip

Figure 154: CONTAINER CASE STUDY Graphical Results (Main Engine Fuel: Conventional Diesel)

Vess

el:

Mai

n En

gine

Fue

l:

Con

vent

iona

l Die

sel

Con

tain

er S

hip

- 600

0 TE

UA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Your

Ves

sel u

sing

Con

vent

iona

l Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

130

Page 145: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 155: CONTAINER CASE STUDY Tabular Results (Main Engine Fuel: Residual Oil)

Figure 156: CONTAINER CASE STUDY Graphical Results (Main Engine Fuel: Residual Oil)

Vess

el:

Con

tain

er S

hip

- 600

0 TE

UM

ain

Engi

ne F

uel:

R

esid

ual O

ilA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 57

96.3

026

9.19

8374

.41

1187

.77

1472

82.9

568

39.1

516

9749

.78

3.57

%5.

63%

90.7

9%Fo

ssil

Fuel

s55

56.4

825

8.05

8272

.33

1173

.04

1472

82.9

568

39.1

516

9382

.01

3.43

%5.

58%

90.9

9%P

etro

leum

1399

.65

65.0

043

86.4

361

7.56

1472

82.9

568

39.1

516

0590

.74

0.91

%3.

12%

95.9

7%C

O2

5405

1852

1.11

2510

2706

.88

6335

4340

7.34

8857

3262

.96

1209

1666

471.

9255

2164

291.

2013

9315

6866

1.41

4.06

%5.

18%

90.7

6%C

H4

1330

6540

.12

6179

81.0

051

0882

.39

7198

4.90

5957

95.4

527

666.

0515

1308

49.9

192

.03%

3.85

%4.

12%

N2O

9254

.91

429.

8299

98.7

214

04.0

729

4565

.91

0.00

3156

53.4

23.

07%

3.61

%93

.32%

GH

Gs

8228

2488

5.48

3821

3550

.70

6473

7153

9.68

9052

0207

.01

1219

5493

607.

5155

2745

278.

2114

3471

6906

8.60

6.00

%5.

14%

88.8

6%V

OC

4211

77.0

719

560.

2612

6411

.25

3764

7.74

1215

9090

.87

5871

97.7

613

3510

84.9

53.

30%

1.23

%95

.47%

CO

9440

43.6

443

843.

1838

3256

.62

4771

0.92

3238

3232

.61

1563

880.

2135

3659

67.1

82.

79%

1.22

%95

.99%

NO

x25

1053

2.16

1165

93.8

822

2162

8.45

1924

39.4

632

8418

050.

2115

0977

47.5

334

8556

991.

700.

75%

0.69

%98

.55%

PM

1038

3339

.02

1780

2.99

2382

75.7

818

564.

2729

4957

59.7

027

3929

.96

3042

7671

.72

1.32

%0.

84%

97.8

4%S

Ox

1112

744.

0951

677.

9519

4114

1.01

1935

58.7

317

4902

715.

2151

93.4

817

8207

030.

480.

65%

1.20

%98

.15%

Perc

enta

ge o

f eac

h st

age

mB

tu/tr

ip o

r gra

ms/

trip

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Res

idua

l Oil

Con

tain

er S

hip

- 600

0 TE

UA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Your

Ves

sel u

sing

Res

idua

l Oil

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elEn

gine

Ope

ratio

n

131

Page 146: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 157: CONTAINER CASE STUDY Tabular Results (Main Engine Fuel: Low-Sulfur Diesel)

Figure 158: CONTAINER CASE STUDY Graphical Results (Main Engine Fuel: Low-Sulfur Diesel)

Vess

el:

Con

tain

er S

hip

- 600

0 TE

UM

ain

Engi

ne F

uel:

Lo

w-S

ulfu

r Die

sel

Aux

iliar

y En

gine

Fue

l:

Low

Sul

fur D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 65

21.7

426

9.19

2877

6.27

1187

.77

1656

93.3

268

39.1

520

9287

.45

3.24

%14

.32%

82.4

4%Fo

ssil

Fuel

s62

51.9

025

8.05

2841

9.52

1173

.04

1656

93.3

268

39.1

520

8634

.99

3.12

%14

.18%

82.7

0%P

etro

leum

1574

.82

65.0

014

961.

6761

7.56

1656

93.3

268

39.1

518

9751

.53

0.86

%8.

21%

90.9

3%C

O2

6081

6739

2.88

2510

2706

.88

2145

8789

55.3

788

5732

62.9

613

3773

7476

1.41

5521

6429

1.20

1679

7261

370.

703.

77%

13.3

0%82

.93%

CH

414

9719

26.9

561

7981

.00

1743

990.

0271

984.

9067

0269

.88

2766

6.05

1810

3818

.80

86.1

1%10

.03%

3.86

%N

2O10

413.

2142

9.82

3401

6.59

1404

.07

0.00

0.00

4626

3.68

23.4

4%76

.56%

0.00

%G

HG

s92

5805

954.

5838

2135

50.7

021

9304

7888

.05

9052

0207

.01

1339

1450

428.

9755

2745

278.

2117

1917

8330

7.52

5.61

%13

.28%

81.1

1%V

OC

4738

89.7

019

560.

2691

2097

.89

3764

7.74

1422

6136

.31

5871

97.7

616

2565

29.6

63.

04%

5.84

%91

.12%

CO

1062

195.

9043

843.

1811

5590

0.18

4771

0.92

3788

8382

.16

1563

880.

2141

7619

12.5

52.

65%

2.88

%94

.47%

NO

x28

2473

9.09

1165

93.8

846

6226

2.41

1924

39.4

636

5775

603.

4215

0977

47.5

338

8669

385.

800.

76%

1.25

%97

.99%

PM

1043

1316

.01

1780

2.99

4497

59.5

518

564.

2766

3654

5.93

2739

29.9

678

2791

8.71

5.74

%5.

98%

88.2

8%S

Ox

1252

010.

1451

677.

9546

8937

9.19

1935

58.7

312

5823

.37

5193

.48

6317

642.

8720

.64%

77.2

9%2.

07%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Low

-Sul

fur D

iese

lC

onta

iner

Shi

p - 6

000

TEU

Aux

iliar

y En

gine

Fue

l:

Low

Sul

fur D

iese

l

Your

Ves

sel u

sing

Low

-Sul

fur D

iese

lC

ontr

ibut

ion

of E

ach

Stag

e

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

132

Page 147: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 159: CONTAINER CASE STUDY Tabular Results (Main Engine Fuel: Natural Gas)

Figure 160: CONTAINER CASE STUDY Graphical Results (Main Engine Fuel: Natural Gas)

Vess

el:

Con

tain

er S

hip

- 600

0 TE

UM

ain

Engi

ne F

uel:

N

atur

al G

asA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 13

036.

0026

9.19

1859

5.92

1187

.77

1893

63.8

068

39.1

522

9291

.83

5.80

%8.

63%

85.5

7%Fo

ssil

Fuel

s12

946.

9425

8.05

1692

4.54

1173

.04

1893

63.8

068

39.1

522

7505

.53

5.80

%7.

95%

86.2

4%P

etro

leum

696.

1565

.00

317.

6161

7.56

0.00

6839

.15

8535

.47

8.92

%10

.96%

80.1

3%C

O2

8902

1542

5.92

2510

2706

.88

1469

9802

16.4

488

5732

62.9

611

2457

3479

8.05

5521

6429

1.20

1427

1770

701.

446.

41%

10.9

2%82

.67%

CH

444

5842

76.7

761

7981

.00

3329

385.

7571

984.

9015

3204

54.4

927

666.

0563

9517

48.9

770

.68%

5.32

%24

.00%

N2O

1395

4.69

429.

8222

320.

1114

04.0

70.

000.

0038

108.

6837

.75%

62.2

5%0.

00%

GH

Gs

1830

8111

92.8

338

2135

50.7

015

4681

6550

.70

9052

0207

.01

1156

7464

342.

3655

2745

278.

2115

6265

7112

1.81

11.9

6%10

.48%

77.5

6%V

OC

1781

61.8

419

560.

2627

4079

.79

3764

7.74

9104

727.

2458

7197

.76

1020

1374

.63

1.94

%3.

06%

95.0

1%C

O14

0847

1.22

4384

3.18

5226

955.

6947

710.

9221

6505

04.0

915

6388

0.21

2994

1365

.30

4.85

%17

.62%

77.5

3%N

Ox

2830

691.

7411

6593

.88

1008

1654

.23

1924

39.4

625

0817

556.

6315

0977

47.5

327

9136

683.

471.

06%

3.68

%95

.26%

PM

1064

279.

4317

802.

9922

8856

.07

1856

4.27

7584

6.24

2739

29.9

667

9278

.96

12.0

8%36

.42%

51.4

9%S

Ox

7692

05.9

251

677.

9554

4917

2.61

1935

58.7

358

564.

0251

93.4

865

2737

2.72

12.5

8%86

.45%

0.98

%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Nat

ural

Gas

Con

tain

er S

hip

- 600

0 TE

UA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Your

Ves

sel u

sing

Nat

ural

Gas

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

133

Page 148: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 161: CONTAINER CASE STUDY Tabular Results (Main Engine Fuel: Biodiesel)

Figure 162: CONTAINER CASE STUDY Graphical Results (Main Engine Fuel: Biodiesel)

Vess

el:

Con

tain

er S

hip

- 600

0 TE

UM

ain

Engi

ne F

uel:

B

iodi

esel

Aux

iliar

y En

gine

Fue

l:

Low

Sul

fur D

iese

l

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kFu

elTo

tal E

nerg

y 89

32.2

026

9.19

3258

6.64

1187

.77

1656

93.3

268

39.1

521

5508

.28

4.27

%15

.67%

80.0

6%Fo

ssil

Fuel

s86

11.2

125

8.05

3203

6.98

1173

.04

1349

51.2

268

39.1

518

3869

.66

4.82

%18

.06%

77.1

1%P

etro

leum

3502

.06

65.0

012

647.

2161

7.56

1349

51.2

268

39.1

515

8622

.22

2.25

%8.

36%

89.3

9%C

O2

-172

7246

408.

8525

1027

06.8

823

0335

4880

.50

8857

3262

.96

1336

5143

731.

9455

2164

291.

2014

6070

9246

4.62

-11.

65%

16.3

8%95

.28%

CH

412

5360

50.8

061

7981

.00

2902

465.

3671

984.

9067

0269

.88

2766

6.05

1682

6418

.00

78.1

7%17

.68%

4.15

%N

2O12

3178

.60

429.

8239

278.

7414

04.0

70.

000.

0016

4291

.23

75.2

4%24

.76%

0.00

%G

HG

s-1

4258

0397

5.44

3821

3550

.70

2376

4830

63.3

790

5202

07.0

113

3792

1939

9.51

5527

4527

8.21

1501

1377

523.

36-9

.24%

16.4

3%92

.81%

VO

C51

3745

.85

1956

0.26

9382

96.5

137

647.

7414

2261

36.3

158

7197

.76

1632

2584

.42

3.27

%5.

98%

90.7

5%C

O13

7104

9.69

4384

3.18

2709

374.

2747

710.

9237

8883

82.1

615

6388

0.21

4362

4240

.43

3.24

%6.

32%

90.4

4%N

Ox

4036

994.

1711

6593

.88

6977

525.

9719

2439

.46

3657

7560

3.42

1509

7747

.53

3921

9690

4.43

1.06

%1.

83%

97.1

1%P

M10

5459

91.8

717

802.

9940

5422

.90

1856

4.27

6636

545.

9327

3929

.96

7898

257.

927.

14%

5.37

%87

.49%

SO

x15

2515

1.21

5167

7.95

4550

440.

7419

3558

.73

2381

862.

8451

93.4

887

0788

4.96

18.1

1%54

.48%

27.4

1%

BD

CO

2 C

redi

t-2

5124

9772

8.79

0.00

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f eac

h st

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

Vess

el:

Mai

n En

gine

Fue

l:

Bio

dies

elC

onta

iner

Shi

p - 6

000

TEU

Aux

iliar

y En

gine

Fue

l:

Low

Sul

fur D

iese

l

Your

Ves

sel u

sing

Bio

dies

elC

ontr

ibut

ion

of E

ach

Stag

e

-20%0%20

%

40%

60%

80%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

134

Page 149: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 163: CONTAINER CASE STUDY Tabular Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Figure 164: CONTAINER CASE STUDY Graphical Results (Main Engine Fuel: Fischer-Tropsch Diesel)

Vess

el:

Con

tain

er S

hip

- 600

0 TE

UM

ain

Engi

ne F

uel:

Fi

sche

r-Tr

opsc

h D

iese

lA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Item

Mai

nAu

xilia

ryM

ain

Auxi

liary

Mai

nAu

xilia

ryTo

tal

Feed

stoc

kF

Tota

l Ene

rgy

9261

.72

269.

1910

3980

.81

1187

.77

1656

93.3

268

39.1

528

7231

.97

3.32

%36

.61%

60.0

7%Fo

ssil

Fuel

s92

04.8

525

8.05

1039

40.1

511

73.0

416

5693

.32

6839

.15

2871

08.5

73.

30%

36.6

1%60

.09%

Pet

role

um60

2.20

65.0

012

29.8

661

7.56

0.00

6839

.15

9353

.77

7.13

%19

.75%

73.1

2%C

O2

7424

8454

0.65

2510

2706

.88

3219

1131

81.9

688

5732

62.9

612

8184

2188

9.89

5521

6429

1.20

1744

5859

873.

544.

40%

18.9

6%76

.64%

CH

418

3227

94.6

861

7981

.00

7188

4.12

7198

4.90

6702

69.8

827

666.

0519

7825

80.6

495

.74%

0.73

%3.

53%

N2O

1118

1.36

429.

8215

67.4

014

04.0

70.

000.

0014

582.

6479

.62%

20.3

8%0.

00%

GH

Gs

1130

7294

50.0

538

2135

50.7

032

2110

8643

.03

9052

0207

.01

1283

2497

557.

4655

2745

278.

2117

8658

1468

6.47

6.54

%18

.54%

74.9

2%V

OC

5596

2.70

1956

0.26

8426

68.3

737

647.

7414

7951

81.7

758

7197

.76

1633

8218

.60

0.46

%5.

39%

94.1

5%C

O10

5969

5.75

4384

3.18

4963

566.

0847

710.

9239

4039

17.4

415

6388

0.21

4708

2613

.58

2.34

%10

.64%

87.0

1%N

Ox

1987

041.

4811

6593

.88

3644

338.

0819

2439

.46

3621

1784

7.38

1509

7747

.53

3831

5600

7.83

0.55

%1.

00%

98.4

5%P

M10

4980

6.88

1780

2.99

4728

6.12

1856

4.27

1327

309.

1927

3929

.96

1734

699.

413.

90%

3.80

%92

.31%

SO

x63

7924

.58

5167

7.95

4365

25.0

319

3558

.73

0.00

5193

.48

1324

879.

7852

.05%

47.5

6%0.

39%

mB

tu/tr

ip o

r gra

ms/

trip

Perc

enta

ge o

f ea

age

Feed

stoc

kFu

elO

pera

tion

Engi

neO

pera

tion

uel

ch s

t

Vess

el:

Mai

n En

gine

Fue

l:

Fisc

her-

Trop

sch

Die

sel

Con

tain

er S

hip

- 600

0 TE

UA

uxili

ary

Engi

ne F

uel:

Lo

w S

ulfu

r Die

sel

Your

Ves

sel u

sing

Fis

her-

Trop

sch

Die

sel

Con

trib

utio

n of

Eac

h St

age

0%10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Tota

l Ene

rgy Fos

sil Fue

lsPetr

oleum

CO2

CH4

N2O

GHGs

VOC

CO

NOx

PM10

SOx

Feed

stoc

kFu

elE

ngin

e O

pera

tion

135

Page 150: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Figure 165: CONTAINER CASE STUDY Results W2H Energy & Emission % Changes

4) Well-to-Hull Energy and Emission Changes (%, relative to vessel with main engines using Convention

Residual OilLow-Sulfur

Diesel Natural Gas BiodieselFischer-Tropsch

DieselTotal Energy -9.20% 11.95% 22.65% 15.28% 53.64%Fossil Fuels -9.11% 11.95% 22.08% -1.34% 54.06%Petroleum -5.25% 11.95% -94.96% -6.42% -94.48%CO2 -6.13% 13.18% -3.84% -1.58% 17.55%CH4 -6.43% 11.95% 295.46% 4.05% 22.33%N2O 664.07% 11.99% -7.75% 297.68% -64.70%GHGs -5.57% 13.15% 2.85% -1.20% 17.58%VOC -7.92% 12.12% -29.64% 12.58% 12.68%CO -5.18% 11.97% -19.72% 16.96% 26.24%Nox 0.42% 11.98% -19.58% 12.99% 10.39%PM10 336.97% 12.42% -90.25% 13.43% -75.09%Sox 2128.07% -21.01% -18.39% 8.87% -83.44%

136

Page 151: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

137

Page 152: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

REFERENCES Bay Area Council, Bay Area Water Transit Initiative: Charting the Course. 1999: San Francisco. California Air Resources Board, Emissions Estimation Methodology for Ocean-Going Vessels, California Air Resources Board, Sacramento, CA, 2005. p. 54. Chan, L.Y., C.Y. Chan, and Y. Qin, The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong. Atmospheric Environment, 1999. 33(11): p. 1777-1787. Chen, G., L.G. Huey, M. Trainer, D. Nicks, J. Corbett, T. Ryerson, D. Parrish, J.A. Neuman, J. Nowak, D. Tanner, J. Holloway, C. Brock, J. Crawford, J.R. Olson, A. Sullivan, R. Weber, S. Schauffler, S. Donnelly, E. Atlas, J. Roberts, F. Flocke, G. Hübler, and F. Fehsenfeld, An Investigation of the Chemistry of Ship Emission Plumes during ITCT 2002, Journal of Geophysical Research - Atmospheres, 110 (D10), 2005. Corbett, J.J., The Marine Transportation System, in Transportation Engineer's Handbook, edited by M. Kutz, McGraw-Hill, New York, NY, 2003. Corbett, J.J., Verification of Ship Emission Estimates with Monitoring Measurements to Improve Inventory and Modeling, pp. 47, University of Delaware, Newark, DE, 2004. Corbett, J.J. and A. Farrell, Mitigating Air Pollution Impacts of Passenger Ferries. Transportation Research D - Environment, 2002. 7: p. 197-211. Corbett, J.J. and P.S. Fischbeck, Emissions from Waterborne Commerce Vessels in United States Continental and Inland Waterways. Environmental Science & Technology, 2000. 34(15): p. 3254-3260. Corbett, J.J. and P.S. Fishbeck, Emissions from Ships. Science, 1997. 278(5339): p. 823-824. Dunlap, D.W., Launching a Flotilla of Ferry Terminals, in The New York Times. 2002: New York. p. 11. Delucchi, M., A Revised Model of Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity. 1997. Institute of Transportation Studies, University of California, Davis, Calif., Nov. Delucchi, M., Conceptual and Methodological Issues in Lifecycle Analysis of Transportation Fuels. Institute of Transportation Studies. Davis, University of California: 25, 2004.

138

Page 153: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Delucchi, M., Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels. 1996. Davis, CA., University of California. Delucchi, M., Overview of the Lifecycle Emissions Model (LEM). 2002: Davis, CA., University of California. [EPA] Environmental Protection Agency. AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources. 1995. E-version available at http://www.epa.gov/ttn/chief/ap42/index.html Farrell, A.E., et al., Comparing Air Pollution from Ferry and Landside Commuting. Transportation Research D - Environment, 2003. 8(5): p. 343-360. Farrell, A.E., J.J. Corbett, and J.J. Winebrake, Controlling Air Pollution from Passenger Ferries: Cost Effectiveness of Seven Technological Options. Journal of Air and Waste Management Association, 2002. 52(December): p. 1399-1410. [FHA] Federal Highway Administration, National Ferry Database. 2000, U.S. Department of Transportation Volpe Center. Gupta, A.K., R.S. Patil, and S.K. Gupta, Emissions of gaseous and particulate pollutants in a port and harbour region in India. Environmental Monitoring and Assessment, 2002. 80(2): p. 187-205. [IMO] International maritime Organization and marine Environment Protection Committee, Assembly Resolution A.963(23): IMO Policies and Practices Related to the Reduction of Greenhouse Gas Emissions From Ships. 2004, International Maritime Organization: London, UK. p. 3. Isakson, J., T.A. Persson, and E.S. Lindgren, Identification and assessment of ship emissions and their effects in the harbour of G(o)over-circleteborg, Sweden. Atmospheric Environment, 2001. 35(21): p. 3659-3666. Jacobs, A., A Ferry Loop Plan To Connect the Dots For New York Bay, in The New York Times. 2001: New York. p. A.1. Kim, S., and B. Dale, Life Cycle Assessment of Various Cropping Systems Utilized for Producing Biofuels: Bioethanol and Biodiesel. Biomass & Bioenergy, 2005, 29(6): 426-439. Skjølsvik, K.O., A.B. Andersen, J.J. Corbett, and J.M. Skjelvik, Study of Greenhouse Gas Emissions from Ships (MEPC 45/8 Report to International Maritime Organization on the outcome of the IMO Study on Greenhouse Gas Emissions from Ships), MARINTEK

139

Page 154: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

Sintef Group, Carnegie Mellon University, Center for Economic Analysis, and Det Norske Veritas, Trondheim, Norway, 2000. Starcrest Consulting Group LLC, G. Aldrete, B. Anderson, J. Ray, and S. Wells, The Port of Los Angeles, Final Draft, Port-wide Baseline Air Emissions Inventory, edited by C. Patton, and T.L. Garrett, pp. 218, Starcrest Consulting Group LLC, Los Angeles, CA, 2004. Wang, M., GREET 1.0 -- Transportation Fuel Cycles Model: Methodology and Use. 1996, Argonne National Laboratory, Center for Transportation Research: Argonne, IL. p. 78. Wang, M.Q., Contribution Feedstock and Fuel Transportation to Total Fuel-Cycle Energy Use and Emissions. 2000, Argonne National Laboratory, Center for Transportation Research; Argonne, IL. Wang, M.Q., GREET 1.5 -- Transportation Fuel-Cycle Model, Volume 1. 1999, Argonne National Laboratory, Center for Transportation Research: Argonne, IL. p. 3. Wang, M.Q., GREET 1.5 -- Transportation Fuel-Cycle Model, Volume 1. 1999, Argonne National Lab: Argonne, IL. Wang, M.Q., GREET 1.6 - The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model. Version 1.6. 2001, Argonne National Laboratory, Center for Transportation Research; Argonne, IL. Wang, M., Development and Use of GREET 1.6 Fuel-Cycle Model for Transportation Fuels and Vehicle Technologies. 2001, Argonne National Lab: Argonne, IL. Winebrake, J.J., J.J. Corbett, C. Wang, A.E. Farrell, and P. Woods, Optimal Fleetwide Emissions Reductions for Passenger Ferries: An Application of a Mixed-Integer Nonlinear Programming Model for the New York-New Jersey Harbor, Journal of Air and Waste Management, 2005. p. 55 (4), 458–466. Winebrake, J.J., M.Q. Wang, and D. He, Toxic Emissions from Mobile Sources: A Total Fuel Cycle Analysis of Conventional and Alternative Fuel Vehicles. Journal of the Air & Waste Management Association, 2001. 51(7): p. 1073-1086.

140

Page 155: 1) Key Input Parameters for Simulating Petroleum-Based Fuelsw-teams/downloads/TEAMS_USER_GUIDE... · 2008. 6. 6. · 6.4 MANUAL CALCULATIONS ... Share of Power Generation Technologies

141