*1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel...

13
2019 6 40 2 Jun., 2019 Journal on Numerical Methods and Computer Applications Vol.40, No.2 - *1) ( , 410082; , ) ( , ) ( , ) - , . ( ) - . , , - , - . , - - , . , , . , , , . : - ; - ; ; ; MR (2010) : 15A06, 90C25, 90C20 SOME PROBLEMS ON THE GAUSS-SEIDEL ITERATION METHOD IN DEGENERATE CASES Chen Liang (College of Mathematics and Econometrics, Hunan University, Changsha 410082, China; Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China ) Sun Defeng (Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China ) Toh Kim-Chuan (Department of Mathematics, National University of Singapore, Singapore ) * 2018 12 7 . 1) : (11801158, 11871205) .

Transcript of *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel...

Page 1: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2019 s 6 z U� ao aV℄ f 40 �f 2 xJun., 2019 Journal on Numerical Methods and Computer Applications Vol.40, No.2.(*10&, - +!$# %")'/-*1)���

(CkLATAnbH�`Av, .% 410082;!�8"LA\bTA�, !�)���(!�8"LA\bTA�, !�)���(1kv0?LATA�, 1kv)� ��Z - $[~mO�FL(�j_���9�6�_mO`�, hvT��9OT[T�BeJ_��,3K0u__&. ��0IjX���T`:<d���oS���o_�9�6�_ (℄{J5_) �Z - $[~mO�. �_O(�`�IC9�_��;<, En�9�6�an_ xRx�C/Ho<�, jXTk�Z - $[~mO_,F��y�_IC9, E|and℄<�Z - $[~mO����6�9�6�_IC9. nAu7, �_MwjXn�Z - $[~mO�a$'_v2�Z - $[~mO�, v�FÆIC9�_Wu. D:(, �z&_$u�>fG>K���< xRx�C/Ho,F��y�_IC9�d,i�=y *o_�>F�m$KqU. B�, Tk��n�, �_wm<L.n�a� *S*���_o, �h_D��L&0 F�_v*.^ K: �Z - $[~mO; v2�Z - $[~mO; �9�6�; xRx�C/Ho; ,F��y�

MR (2010) wZk: 15A06, 90C25, 90C20

SOME PROBLEMS ON THE GAUSS-SEIDEL ITERATION

METHOD IN DEGENERATE CASES

Chen Liang

(College of Mathematics and Econometrics, Hunan University, Changsha 410082, China;

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China)

Sun Defeng

(Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China)

Toh Kim-Chuan

(Department of Mathematics, National University of Singapore, Singapore)

* 2018 s 12 z 7 �IX.1) T�(i: 0i<�%AT� (11801158, 11871205) 81.

Page 2: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2 x 0I a: {J5��Z - $[~mO�_^�o 99

Abstract

The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for

solving linear systems of equations. It has a profound impact on the development of numerical

linear algebra and numerical optimization. In this paper, we mainly discuss the Gauss-

Seidel iteration method for solving linear systems of equations associated with self-adjoint

and positive semidefinite, but not necessarily positive definite, coefficient operators (i.e., the

degenerate case). We will provide a review on the development of the convergence analysis for

the Gauss-Seidel method, and discuss the related block coordinate descent method applied to

the equivalent unconstrained quadratic programming problems. As a consequence, we derive

the convergence of the Gauss-Seidel iteration method for the linear equations we considered

in this paper. We also compare the convergence analysis and results of the Gauss-Seidel

iteration with the symmetric Gauss-Seidel iteration. The differences observed from this

comparison not only motivate the proof provided in this paper, but also pave the way for

related research topics in the future. Finally, we highlight some unresolved questions that

are highly related to this paper and leave them as future research topics.

Keywords: Gauss-Seidel iteration; Symmetric Gauss-Seidel iteration; Linear system

of equations; Unconstrained convex quadratic programming; Block coordi-

nate descent

2010 Mathematics Subject Classification: 15A06, 90C25, 90C20

1. �����Y - #Z}lN� [11, g 20 �] ( 0.K�G 09+�G 0E'��, �t) EK'�i^�� (�G�S`j�5�S^) �8�5?^lN_�1) , gf 1823 r Gauss/�f^�2 Gerling^2 [8, 10] PZ Seidel ��j 1874r^�� [25] ��{2, �uS��8NS9S�AdI`�$^��+2J/t^^%.+e,�, !�8�5?^�S_9E; ��n^QEC�u{d^,��Y - #Z}lN�D�S:?h;�+2^hLrHBW�5?^�. �{, Gauss /� Gerling ^2%iW^�E����^�8�5?:

67 −13 −28 −26

−13 69 −50 −6

−28 −50 156 −78

−26 −6 −78 110

a

b

c

d

=

−6

7558

14604

−22156

. (1.1)< �, �8�5? (1.1) ^�S���6Z�L�9�� 0 . X�, Æ+���Eu1^, Rge#Eu{d^, J#E�n^. C9', Gauss ^2%�\g� fe�;^_�^HB8. �|, m�^N�^�Y - #Z}lN�#t, Gauss 2%_�^℄K%e\W^rEK� \^�S�,�?/q (pivot)^[$�f2%^_�:Jgep�.jE, �BV���a_9?/q�-9ga_%^��P?, �^#�P�: ���8�5? (1.1) ^�Y -#Z}lN�e+2^hLE�HBW��5?^�? g7^E, b��#�xS�e��,R�K�n�'BhR5rN�O�gJ)n^J� [9, p9 21.2].

1) *k���9�6�_mO�_��;<, ')# [4, 12, 13, 24] a��[zZ�.

Page 3: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

100 T�b`nb`U\b 2019 sC9', !e:��^�8�5?^�S_9; ��n,�<�Q� �Y - #Z}lN�^HB8 [12, p9 11.2.3]. t6, J&PD��h�5S�w^�wQw�B.G�n;�2� �K�W, X��KAdI�n^K�Ad89Hru�7EK��S_9; ��n^�8�5?, {����8�5?^�Y - #Z}lN�m���[^�wQw�B.G�n^Sj�Y - #Z}lN^+E��x�e+2^hL}�K$, �? ^HB8 [28] J<�Q\;. X�, uj�G (h�5S�w/VuYg�/��K) ^�wQ�BwdI�n, DAdI^{t"T��g^Sj�Y - #Z}lN^+E��x�, y�WmDNS^{tÆ(a�Y - #Z}lN���g^Ad8ru (�8�5?) E}���^. �{, T�wQw�B.G�n^h�5S#~E�w^ (VuYZ�Y��) 6>, �'��8^(F�/l\x. DS�NS^{t2!, uj�g; ��n�S_9^�8�5?, �Y - #Z}lN�^HB8�'BhR5rN�O\� ("r [9, n7 21.2] PZ [16, yW 2.1]), Ruj�wQ�BwdI�n, Sj�Y - #Z}lN^+E��x�,���DAdI�n^{t�#l-�w8^ru��� EHB^. �|, [9, n7 21.2]PZ [16,e 3 �] %^� �EDNS�5^{t;�^, /t|aJ-�:`X9�!T�63`NS!�. Sj'PC9, ^;�{� P"TW���n:zv 1. o�DAdI�n^{t;�, #M3!T�63`NS!�, 2� ���wQw�B.G�n^Sj�Y - #Z}lN^+E��x�e+2hLHBW�n^�?���%, ^v~��n 1 2iW�� (H�x�^) �wQw�B.G�n, �DAdI�n^{t (D{#M3�:`X9�!T�63`NS!�) 2� �[^Sj�Y -#Z}lN^+E��x�^HB8, =\ujeg^�wQw�B.G�n, Sj�Y -#Z}lN^+E��x�^HB8, mDNS^{t"T���5�n^Ad8ru^�Y - #Z}lN�}���. C9', ���ePY��G^SjAdI�n^HB8�EX�^KWJu1�Y - #Z}lN�A0E�� [19] ^}�. u1�Y - #Z}lN�EK'm�Y - #Z}lN�`��)^���8�5?^lN_�, gf Aitken j1950 r��^�� [1] %JBl;, �� Sheldon [26] j 1955 ry-�u1/℄8lN�, {���^u1�Y - #Z}lN�j 1988 rf Bank ` [2] JBl;l;.D��AdI�n^{t2!,uj�wQw�B.G�n, Sju1�Y -#Z}lN^+E��x�`mj����nAd8ru�5?^u1�Y - #Z}lN�. !�6h�5SE�w^, �Sju1�Y - #Z}lN^+E��x�^HB8<�Q�o\W, �m���[^Ad8ru�5?^u1�Y - #Z}lN�^HB8�W [1, g 5 �] �7E��^.RETh�5S%^�B5S#~E�w^6>, �'Sju1�Y - #Z}lN^+E��x�+2hL^HB8&Ps2A Li `�l;^u1�Y - #Z}�n7 [19, p9 1] �;N h_�^HB8� [22, 23] 2� . X�, uju1��n�S_9^�8�5?, u1�Y - #Z}lN�+2^hLREHB^,Æ+�K�W)�DNS�n^{t2� .7�, Q?D��; ��n�S_9^�8�5?2!, ��l;����n 1 !EuO��1l#JPK'� [S. RE, D��K�^�wQwdI�n^{t2!, �n 1 ^��u+E��x�^K%E�!C^��&|W)H^}ACa. �EX���n^���"7H�K-wdI�n (#+ 4Jeg^�wQw�B.G�n), =\S

Page 4: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2 x 0I a: {J5��Z - $[~mO�_^�o 101j�Y - #Z}lN^+E��x�D�S^:?h;�e+2^hLrHBW�n^�(�1�n^�H�), �W�-�n%h�5S^VuYE�g�. C9', �#l-VuYg�^�l�, uj��K�wdI�n^Sj�Y - #Z}lN^+E��x�, Og^E�31o&�K-ru�� �_�+2^hL^�hE�n^� (� [3, en 2.5]`), Rh�5S�^HB8PZ_�+2^hL^HB8�#o&�Æ�.C9', �� 1957r, Hildreth [14] ��u4g��wQ^w�B.G�n�JSj�Y -#Z}lN^E��x�^HB8.Æ+ Hildreth "TWJ�ngx�^�.,RN6^E, jtKr, f�� [15] %1 D’esopo �;J� [14, e 5 �] %)jx��.^� EIÆ^. �N6^E, ~�� , ����I^w�B.G�n ( 04��wQ^w�B.G�n) ^Sj�Y - #Z}lN^ (+) E��x��#l-VuYg�^�.�E�HB��E��^. b�ujK-s;�8D"�n^M��wQ^w�B.G�n, Sj�Y -#Z}lN^E��x� (�1�v^�Y - #Z}lN�)^HB8&P�#l-VuYg�^�.�\W, R:Hz| �jK-)j�nh�5S^ru, "r [7, n7 5.3.9].m�K�.#t^E, � [19] %^+u1�Y - #Z}�n7o&Æ�ujK5��I^A+�4�n, Sju1�Y - #Z}lN^+E��x�EHB^, \=#l-VuYg�. X�, ��%� ^K�/Hh^�E�JFÆ;w�B.G�n^+E��x�^HB8�^E�. �|, 7�n 1 ^��, -xm��)^�nJ;�{� ;�,���%^vPl;�y%^K-�g9gST�nC�?=E�^h�.��^m�/H��: �e 2 �, ^�;��eiW�n^�p4�PZ�)^p��;, N' (u1) �Y - #Z}lN�PZ�[^+E��x�^OgE��1, ����-�W3>e:^ru2�9u��-�W, D{X ��l;����n 1 ^�H8.�e 3 �, ^vDAdI�n^{t2iW (H�x�^) �wQw�B.G�nSj�Y- #Z}lN^+E��x�^HB8. �e 4 �, ^v����\W^�WPZ�)�n^E�^�4l;K-gP��^)H�n.

2. �Gra��~ge_Q X1, . . . ,Xn � n�g���}!k*p, �y%^℄�*p Xi� gmW 〈·, ·〉ZyhV^�S ‖·‖. Q X ��-*p^b�}W, \ X := X1×· · ·×Xn. u�S x ∈ X ,^&Pdx = (x1; . . . ;xn),y% xi ∈ Xi, ∀i = 1, . . . , n. u�S x′ ∈ X ,^nT 〈x,x′〉 := ∑n

i=1〈xi,x′i〉,PZ ‖x‖ :=

〈x,x〉.Q A : X → X �K�; ^��n�8_9, b = (b1; . . . ;bn) ∈ X �K��n^)G. ^"T��^�8�5?:

Ax = b, (2.1)y% x ∈ X ���G.^&Pv�8_9 A �4�'C��+A =

A11 A12 · · · A1n

A21 A22 · · · A2n

......

. . ....

An1 An2 · · · Ann

, (2.2)

Page 5: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

102 T�b`nb`U\b 2019 sy% Aij : Xj → Xi, ∀i, j = 1, . . . , n ���8_9. fj A E; ^, \ A = A∗, {^g Aij = A∗ji PZ Aii = A∗

ii, ∀i, j = 1, . . . , n. ���%, ^u�8�5? (2.1) C��^S�l-.bq 1. (i) �8�5? (2.1) ^�Y�*�(ii) �8_9 A ^+ (2.2) %^egu{+���n^�8_9, \ Aii ≻ 0, ∀i = 1, . . . , n.

2.1. \s - oOVRLuX 1. (�Y - #Z}lN�) ? �S^ x0 ∈ X C�:?h, u k = 0, 1, . . ., ��i = 1, 2, . . . , n ^W<MBa_

xk+1i = A−1

ii

bi −i−1∑

j=1

Aijxk+1j −

n∑

j=i+1

Aijxkj

.�{Qr, �l- 1 3>^�.�, _� 1 ����8�5? (2.1) 6, 7W'&P+2K��hL {xk}. ���?�^iW, ^dD :=

A11

A22

. . .

Ann

PZ E := −

0

A21 0

.... . .

. . .

An1 · · · An(n−1) 0

.D{^gA = D − E − E∗, (2.3)�_� 1 +2^<L {xk} Y>

xk+1 = (D − E)−1(E∗xk + b), ∀k = 0, 1, . . . . (2.4)C9', (2.4) �'lN4�Oj���8�5? (2.1) ^MlN�%^K'. e�MlN�, � [12, e 11.2.3 �] %eP, \Ev A /3 A = M−N , y% M EK�&q^�8_9, {(a��lN��6a_xk+1 = M−1

(

Nxk + b)

. (2.5)��, ! x∗ Y> Ax∗ = Mx∗−Nx∗ = b, �g xk+1−x∗ = M−1N (xk −x∗). d G := M−1N�Q ρ(G) � G ^w��. �� [12, n7 11.2.1], lN�� (2.5) e+2^hL� A &q�ρ(G) < 1 6EHB^ (��1u A �; ^�.J3>1) ). X�, ! A E; ��n^, � ρ((D − E)−1E∗) < 1, D{flN (2.4) +2^<L {xk} HBW�8�5? (2.1) ^�,"r [12, n7 11.2.3]. PK�b, ��nT, u1�Y - #Z}lN���8�5? (2.1) 6+2^<L {xk} Y>

xk+1 − x∗ = (D − E∗)−1E(D − E)−1E∗(xk − x∗), ∀x∗ ∈ X. (2.6)

1) "�9`: A FD�v|eR$'xv|e_ [24, pU 4.5], � {xk} ICX�6� (2.1) _�, #s [24, o8 4.9].

Page 6: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2 x 0I a: {J5��Z - $[~mO�_^�o 103T A &q^6>, ��� [1] %^�^&� ρ(

(D − E∗)−1E(D − E)−1E∗) < 1, D{lN(2.6) e+2^hLJEHB^.�zI�4�, A E��n^6>, ρ((D−E)−1E∗) < 1 E#Kn3>^. X�, �[^�Y - #Z}lN^HB8� �Æ}, :HY� x^NS!�. Forsythe 9 Wasowj 1960 r;�^M% [9, p9 21.2] �;J�K�.����8�5? Ax = 0 ^�Y - #Z}lN�^HB8�, {�K�1� Keller [16, g 3 �] y-W�� K�^�4 (���8�5? (2.1), iWJ 0�Y - #Z}lN��m^�~ -^_�-o). y�)�1P��^S�d8&=���.Tl 1. �l- 1 3>^ru�, ���8�5? (2.1) ^�Y - #Z}lN� (_� 1)D�S:?h;�e+2^hLrHBW��8�5?^K��.

2.2. UJ\s - oOVRL^"TP��wQw�B.GI�nminx∈X

{

f(x) :=1

2〈x,Ax〉 − 〈b,x〉

}

. (2.7)Q X ��n (2.7) ^�Y. �l- 1 3>^�l�, X E�*^, ��6 X EK�QhYQEK����Y. t6, ^gAx− b = 0 ⇔ x ∈ X.� 1. 9g', <x9g[a%;�^�n (2.7) rs;/nQ�n^�8�5?Qp;�ne+2^A+�4�n. Q Y EK��gmW 〈·, ·〉 ZyhV^�S ‖ · ‖ ^g���}!k*p. Q H : X → Y EK��8`,� c ∈ Y EK��n^)G. �8�5? Hx = c^�QA+�4� �r&Ps2��^A+�4�n�;:

minx∈X

1

2‖Hx− c‖2. (2.8)fj�n (2.8) ^h�5S%^-S'#Pu�n^Ad��3^%, X�&���n (2.8)`tj�n (2.7), ��6 A := H∗H E; ���n^, b := H∗c ∈ X .< �, �n (2.7) E��^Æ;w�B.G�n^K�kL�4,

minx∈X

{

ϕ(x) := p(x1) +1

2〈x,Ax〉 − 〈b,x〉

}

, (2.9)y% p : X1 → (−∞,+∞] EK�&o�,E^�- (proper) �w5S.� 2. C9', �t2 1 %eP, �n (2.8) (\�n (2.7)) s-P�8�5? Hx = c ^A+�4�n^4�;�, �n (2.9) ^K�-r^i3^=9JmA+�4g). Q K ∈ Y�K��wY, ^"T��^�8&68�nc−Hx ∈ K,y% x E���G. Y�℄8�G y ∈ Y ?, �K&68�n&`m3I�� x ∈ X PZ

y ∈ Y =\y = c−Hx, y ∈ K.

Page 7: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

104 T�b`nb`U\b 2019 svA+�4^[$Y�?, ^&P"T��^�nmin(y,x)

{

δK(y) +1

2‖y +Hx− c‖2

}

, (2.10)y% δK : X → [0,∞] EY; K ^�A5S: δK(y) = 0, �1 y ∈ K, �� δK(y) = +∞. ��,!v�n (2.10) %^�G (y,x) !C�n (2.9) %^�G x = (x1,x2), � �7E? ^K�k=.}�2^iW���n (2.9) ^Sju1�Y - #Z}lN^+E��x�. Ql- 1(ii) 3>. uj�S�n^ x ∈ X , nT`, P(x) := x+ = (x+1 ; · · · ;x+

n ), y% x+1 , . . . ,x

+nf��lN25+2:

xi = argminzi∈Xi{ϕ(x1; . . . ;xi−1; zi; xi+1; · · · ; xn)}

= A−1ii

(

bi −∑i−1

j=1 Aijxj −∑n

j=i+1 Aij xj

)

, i = n, . . . , 2;

x+1 = argminz1∈X1

{ϕ(z1; x2; · · · ; xn)} ;

x+i = argminzi∈Xi

{

ϕ(x+1 ; . . . ;x

+i−1; zi; xi+1; · · · ; xn)

}

= A−1ii

(

bi −∑i−1

j=1 Aijx+j −∑n

j=i+1 Aij xj

)

, i = 2, . . . , n.

(2.11)

uj�'nT^`, P , � [19, n7 1] �;J��^� �� - �Æ�����.Tl 2. �l- 1(ii) 3>^ru�, `, P Y>P(x) = argminz∈X

{

ϕ(z) +1

2‖z− x‖2T

}

, ∀x ∈ X ,y%; ���n^�8_9 T := E∗D−1E Y> A+ T ≻ 0, PZ ‖z‖2T := 〈z, T z〉.� 3. C9', m��L;^n7 2 ��, [19, n7 1] g7 �K�^4�. ? {;(2.11) %^�-9�n&P���� ��, �}� (FJK�BK?^�pÆ*m℄K%9�n��^Æ*�p^)�. A ^K-E��1� , [19, n7 1] �-a��x+^Æ;wdI�n^+E��x�QSj�-1�4�5S^49�Zzq�)49�%|WJ)tCa, "r� [5, 6, 17, 18, 20, 27, 29]`.T�n (2.9)% p(1) ≡ 06, \e��^�nE (2.7)^6>, (2.11)% x+

1 &f��\;:

x+1 = A−1

11

(

b1 −n∑

j=2

A1j xj

)

.D{�� (2.11) PZu1�Y - #Z}^lN%� (2.6) &�, uj�n (2.7) ^�SK��x∗ ∈ X PZ�S^ x ∈ X rg

P(x)− x∗ = (D − E∗)−1E(D − E)−1E∗(x− x∗).)j���8�5? (2.1) ^u1�Y - #Z}lN�^HB8, ^g���W.Tl 3. �l- 1 3>^�.�, ���8�5? (2.1) ^u1�Y - #Z}lN�D�::?h;�, e+2^hLrHBW��8�5?^K��.

Page 8: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2 x 0I a: {J5��Z - $[~mO�_^�o 105�m. fj���8�5? (2.1) ^u1�Y - #Z}lN�`mj���n (2.7) ^Sju1�Y - #Z}lN^+E��x�, ^!:� ? ^HB8. �'HB8&Pfn7 2 �;N h_�^HB8�\W. fj�K� ^25EB.U�,1) �=^#~5P. �

3. `�℄t - pPWSMQ[j�H|dY!l- 1 3>, ��AdI�n (2.7) ^Sj�Y - #Z}lN^+E��x�9���8�5? Ax = b ^�Y - #Z}lN��EDn (well-defined) ^, �D�t^:?hx0 ∈ X ;�, �E'_�e+2^hL}��t. X{^&Pv�E'_�G�tK'��. e:2S^E, [9, n7 21.2] PZ [16, e 3 �] %�;^�Y - #Z}lN�^HB8� rEDNS�5^{t;�^,=aJ-�:`X9�!T�63`NS!�. Rm���#t^E, �'K�eP, Og^u1�Y - #Z}lN� (2.6) ^HB8� �EDAdI�n^{t;�^. ��K�, ^vDAdI�n^{t� _� 1 ���n (2.7) 6+2^hL {xk} ^HB8. mOg^��wdI�n^+E��x�^HB8���, ��^HB8� #:Hl-h�5S^VuYg�. t6, e:~B�k^E, mOg^��u1��n�S_9^�8�5?^�Y - #Z}lN^HB8���, ��^� #M3j:`X9�!T�63`NS!�.uj�S�n^ x ∈ X , ^d ‖x‖A :=

〈x,Ax〉 PZ ‖x‖D :=√

〈x,Dx〉. ^J��;?=� P-aW^K�`�:

f(x)− f(x) =1

2〈x,Ax〉 − 〈b,x〉 − 1

2〈x,Ax〉+ 〈b, x〉

=1

2‖x− x‖2A + 〈x− x,Ax− b〉, ∀x, x ∈ X .

(3.1)}�2, ^ ?%� ��^/H�W.�l 1. !l- 1 3>, �_� 1 +2^<L {xk} Y>Axk+1 − b = E∗(xk − xk+1), ∀k ≥ 0, (3.2)PZ

f(xk)− f(xk+1) ≥ 1

2‖xk − xk+1‖2D, ∀k ≥ 0. (3.3)�m. fj_� 1 +2^<L {xk} Y> (2.4), ^g (D − E)xk+1 = E∗xk + b, D{�� (2.3) &� (3.2) 3>. v (3.2) N� (3.1), �<a A = D − E − E∗ \&\W

f(xk)− f(xk+1)

=1

2‖xk − xk+1‖2A + 〈xk − xk+1, E∗(xk − xk+1)〉

=1

2‖xk − xk+1‖2A +

1

2〈xk − xk+1, E∗(xk − xk+1)〉+ 1

2〈xk − xk+1, E(xk − xk+1)〉

=1

2〈xk − xk+1,D(xk − xk+1)〉.

1) D:(, �L�d36^AsF�*�� [22, 23] &_�d.

Page 9: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

106 T�b`nb`U\b 2019 sD{ (3.3) 3>, \\�. �nv 1. !l- 1 3>, �_� 1 +2^<L {xk} Y>:

(i) f(xk) HBW�n (2.7) ^X+� fmin, �HB^tE R- �8^, \H�E�-S > 0PZ σ ∈ (0, 1) =\f(xk+1)− fmin ≤ σk

(

f(x0)− fmin

)

.

(ii) <L {xk} Eg�^.�m. fj A E; ��n^�8_9, Q d � A ^�'�Ok��^�S. fw�n7&�H��8_9 U : Rd → X PZ�{V���^u{�� Λ ∈ Rd×d =\

Ax = U(ΛU∗x), ∀x ∈ X ,

U∗Ud = d, ∀d ∈ Rd.(3.4)^&Pv Λ �A3 Λ = Diag(λ1, . . . , λd), y% λ1, . . . , λd � Λ ^MBtL^u{q. D{^&PnT Λ1/2 = Diag(

√λ1, . . . ,

√λd) ≻ 0 =\ Λ = Λ1/2Λ1/2. t6, ^nT Λ−1/2 :=

(Λ1/2)−1.u�S^ x∗ ∈ X , ^g Ax∗ = b. X�, f (3.1) &�u�S x ∈ X PZ x∗ ∈ X ^rgf(x)− f(x∗) =

1

2〈x− x∗,A(x− x∗)〉

=1

2〈〈x − x∗,U(ΛU∗(x− x∗))〉

=1

2〈Λ1/2U∗(x− x∗),Λ1/2U∗(x− x∗)〉 = 1

2‖Λ1/2U∗(x − x∗)‖2.

(3.5)f (3.4) �;Y7 1 %^ (3.2) &\U(ΛU∗(xk+1 − x∗)) = E∗(xk − xk+1),{^g

Λ1/2U∗(xk+1 − x∗) = Λ−1/2U∗E∗(xk − xk+1).f��; (3.5) &�, u�S x∗ ∈ X ,

f(xk+1)− f(x∗) =1

2‖Λ−1/2U∗E∗(xk − xk+1)‖2 =

1

2‖xk − xk+1‖2O, (3.6)y%, ; ���n^�8_9 O : X → X PZ ‖ · ‖O : X → R+ nT�

Ox =: E(UΛ−1U∗(E∗x)), ‖x‖O :=√

〈x,Ox〉, ∀x ∈ X ,��Y7 1 % (3.3) PZ (3.6) ^&�u�S x∗ ∈ X PZ k ≥ 0,

1

2‖xk − xk+1‖2O = f(xk+1)− f(x∗) ≥ 1

2

∞∑

t=k+1

‖xt − xt+1‖2D. (3.7)Q λmax(O) � O ^AK^k��, ��Q λmin(D) � D ^A+k��. ��, λmax(O) > 0PZ λmin(D) > 0. X�,

′ :=λmax(O)

λmin(D)> 0, σ :=

1 + ′∈ (0, 1), :=

1− σ> 0, (3.8)

Page 10: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2 x 0I a: {J5��Z - $[~mO�_^�o 107�� (3.7) PZ (3.8) ^&�‖xk − xk+1‖2 ≥ 1

∞∑

t=k+1

‖xt − xt+1‖2, ∀k ≥ 0.X�, u�S^ k ≥ 0, ^g∞∑

t=k

‖xt − xt+1‖2 = ‖xk − xk+1‖2 +∞∑

t=k+1

‖xt − xt+1‖2

≥ 1 + ′

∞∑

t=k+1

‖xt − xt+1‖2 =1

σ

∞∑

t=k+1

‖xt − xt+1‖2.D{&\∞∑

t=k+1

‖xt − xt+1‖2 ≤ σ∞∑

t=k

‖xt − xt+1‖2 ≤ σk∞∑

t=1

‖xt − xt+1‖2, (3.9)�g∞∑

t=1

‖xt − xt+1‖2 ≤ σ

∞∑

t=0

‖xt − xt+1‖2.{^g∞∑

t=1

‖xt − xt+1‖2 ≤ σ

(1 − σ)‖x0 − x1‖2.v'�N� (3.9) \&\W

∞∑

t=k+1

‖xt − xt+1‖2 ≤ σk+1

1− σ‖x0 − x1‖2.{^g

‖xk − xk+1‖2 ≤∞∑

t=k

‖xt − xt+1‖2 ≤ σk

1− σ‖x0 − x1‖2. (3.10)

(i) K�b, f (3.6) PZ (3.10) &�u�S x∗ ∈ X ,

f(xk+1)− f(x∗) =1

2‖xk − xk+1‖2O ≤ λmax(O)

2‖xk − xk+1‖2 ≤ λmax(O)

2(1 − σ)σk‖x0 − x1‖2.PK�b��Y7 1 % (3.3) &�u�S x∗ ∈ X ,

f(x0)− f(x∗) ≥ 1

2

∞∑

k=0

‖xk − xk+1‖2D ≥ 1

2‖x0 − x1‖2D ≥ λmin(D)

2‖x0 − x1‖2.f'bE��; (3.8) % ^nT&\

f(xk+1)− f(x∗) ≤ σk(

f(x0)− f(x∗))

, ∀x∗ ∈ X.fj f(xk) ≥ f(x∗), ∀k ≥ 0, D{ limk→∞ f(xk) = fmin = f(x∗), \ (i) \�.

(ii) f (3.10) &\‖xk − xk+1‖ ≤ (

√σ)k

‖x0 − x1‖√1− σ

.

Page 11: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

108 T�b`nb`U\b 2019 sX�, u�S^ k ≥ 0,

‖xk − x0‖ ≤k−1∑

t=0

‖xt − xt+1‖ ≤k∑

t=1

(√σ)t−1 ‖x0 − x1‖√

1− σ≤ 1

1−√σ

‖x0 − x1‖√1− σ

. (3.11)D{en\�. �Tl 4. !l- 1 3>, �_� 1 +2^hL {xk} HBW�n (2.7) ^K��.�m. ��en 1(i) &\ limk→∞ f(xk) = fmin. fj f EA=5S, <L {xk} ^�SK��hrE�n (2.7) ^�. ��en 1(ii) ^�Y_� 1 +2^hL {xk} Eg�^. X�,�hLg#+K�HB^9L, �HBW�n (2.7) ^g�� ∞. l-<L {xk} H�PK�9L�HBWPK��h x∞ 6= x∞ . ^dε := ‖x∞ − x∞‖ > 0.fj limk→∞(xk − xk+1) = 0 �H� {xk} ^9LHBW x∞, KnH�g�9K^��S

K =\‖xK − xK+1‖ ≤ ε(1−√

σ)√1− σ

4PZ ‖xK − x∞‖ ≤ ε

4.^&Pv xK G�_�l�lN^:?h. ��en 1 ^� %^ (3.11) ^&�, uj�S^ s ≥ 0,

‖xK+s − xK‖ ≤ 1

1−√σ ‖xK+1−xK‖√

1−σ

≤ ε

4.X�, u�S^ s ≥ 0 rg

‖xK+s − x∞‖ ≤ ‖xK+s − xK‖+ ‖xK − x∞‖ ≤ ε

2.f�&�, u�S^ k ≥ K rg ‖xk − x∞‖ ≤ ε/2, D{f ‖x∞ − x∞‖ = ε &� ‖xk − x∞‖ ≥

ε/2. X� x∞ #~&oE<L {xk} ^K��h, �m x∞ E�h^l-�Zw. D{n7\�. �

4. �NfhQ{x��^v���e 2�3 �%eP^m�, �;�)�nE�^�4l;K-gP��^�n.J�, ���e 3 �%, ���n (2.7) ^�Y - #Z}lN_� 1 %eg^9�nrE����^, { [19,n7 1] �{;u1�Y - #Z}lN�^9�n�����. X�, Sj��e 2 �%^���;PZe 3 �%^n7 4, �^<�QP�$W��^�n:zv 2. o�-aKn^Æ*�;ru, =\_� 1 %^9�n&P�����, �n74 %^HB8�W��3>?yB, D���wQw�B.G�n (2.7)^{t2!, [19,en 2(b)] �;JSj+u1�Y -#Z}lN^+E��x�^lNÆ}8�,� [19,en 2(a)] L� J�K_�&Pm Nesterov ^j^_� [21] ��;, vlN^Æ}8f O( 1k ) l4# O( 1

k2 ), y% k ElN%S. qj�-C9, D=a_� 1 ���n (2.7) ^{t2!, &l;���n:zv 3. _� 1 ^lNÆ}8�:�>? o�<a�'Æ}8��;j^^_�2l�_�^,U? m�t6, o�M�{;9�n������?

Page 12: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

2 x 0I a: {J5��Z - $[~mO�_^�o 109A?, ��e 3 �ZP'E��nrE�u���n (2.7) ^. Æ+�K�n�.EK5)H^wdI�n, Ry2yx^9g[a%\W^�nf3~Eg��4�^Æ;w�B.GI�nminx∈X

{

g(x) :=

n∑

i=1

pi(xi) +1

2〈x,Ax〉 − 〈b,x〉

}

, (4.1)y% pi : xi → (−∞,∞], i = 1, . . . , n E n ��-^�w5S. �#l-�n (4.1) ^VuYg�6, Sj�Y - #Z}lN^+E��x�+2hL^HB8�T�2!��E��^. C9', �'��8JEF=��l;�n 1 �� n7 4 ^K�/HrX. ��, ^l;P�gPE�9��^�n:zv 4. l-�n (4.1) ^�H�, �Ql- 1 3>. j[, �#l-�n (4.1) ^VuYg�^�.�, ujSj+ (u1) �Y - #Z}lN^+E��x�:

(1) o�� _�+2^hL^HB8?

(2) _�^HB8:H5S pi, i = 1, . . . , n Y>8[G^ru?

(3) o�\W_�lNÆ}8�^�1?

(4) o�{;9�n�����?

(5) o�Y�j^_�2K�t�&_�lN^Æ}8?

(6) ujY�j^_�?^_�, o��y+2hL^HB8?I i y }[1] Aitken A. IV. Studies in practical mathematics; V. On the iterative solution of a system of

linear equations[J]. Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and

Physical Sciences, 1950, 63(1): 52–60.

[2] Bank R E, Dupont T F, Yserentant H. The hierarchical basis multigrid method[J]. Numerische

Mathematik, 1988, 52: 427–458.

[3] Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods[M].

Upper Saddle River, NJ, Prentice-Hall, 1989.

[4] Chabert J L. A History of Algorithms[M]. Berlin, Heidelberg, Springer-Verlag, 1999.

[5] Chen L, Sun D F, Toh K C. An efficient inexact symmetric Gauss-Seidel based majorized ADMM

for high-dimensional convex composite conic programming[J]. Mathematical Programming, 2017,

161(1-2): 237–270.

[6] Chen L, Sun D F, Toh K C. On the equivalence of inexact proximal ALM and ADMM for a class

of convex composite programming [OL]. arXiv:1803.10803, 2018.

[7] Cottle R W, Pang J S, Stone R E. The Linear Complementarity Problem[M]. Philadelphia, PA,

Society for Industrial and Applied Mathematics, 2009.

[8] Forsythe G E. Gauss to Gerling on relaxation[J]. Mathematical Tables and Other Aids to Com-

putation, 1951, 5: 255–258.

[9] Forsythe G E, Wasow W R. Finite Difference Methods for Partial Differential Equations[M]. New

York, John Wiley, 1960.

[10] Gauss C F. Brief an Gerling (1823). In: Werke, Vol. 9[G]. Konigliche Gesellschaft der Wissenschaft,

Gottingen, 1903. Reprint by Georg Olms, Hildesheim, 1981.

Page 13: *1) - ira.lib.polyu.edu.hkira.lib.polyu.edu.hk/bitstream/10397/81072/1/Chen... · The Gauss-Seidel iteration method is a highly popular classical iteration algorithm for solving linear

110 T�b`nb`U\b 2019 s[11] Gauss C F. Supplementum theoriae combinationis observationum erroribus minimis obnoxiae

(1826). In: Werke, Vol. 4[G]. pp. 55–93. Konigliche Gesellschaft der Wissenschaft, Gottingen

(1873). Reprint by Georg Olms, Hildesheim, 1981.

[12] Golub G H, Van Loan C F. Matrix Computations, 4th Edition[M]. Johns Hopkins University

Press, 2013.

[13] Hackbusch W. Iterative Solution of Large Sparse Systems of Equations[M]. Heidelberg, NY,

Springer-Verlag, 1994.

[14] Hildreth C. A quadratic programming procedure[J]. Naval Research Logistics Quarterly, 1957,

4(1): 79–85.

[15] Hildreth C. Notes [J]. Naval Research Logistics Quarterly, 1957, 4(4): 361.

[16] Keller H B. On the solution of singular and semidefinite linear systems by iteration[J]. Journal of

the Society for Industrial and Applied Mathematics (Series B, Numerical Analysis), 1965, 2(2):

281–290.

[17] Lam X Y, Marron J S, Sun D F, Toh K C. Fast algorithms for large scale generalized distance

weighted discrimination[J]. Journal of Computational and Graphical Statistics, 2018, 27: 368–379.

[18] Li X D, Sun D F, Toh K C. A Schur complement based semi-proximal ADMM for convex quadratic

conic programming and extensions[J]. Mathematical Programming, 2016, 155: 333-373.

[19] Li X D, Sun D F, Toh K C. A block symmetric Gauss-Seidel decomposition theorem for con-

vex composite quadratic programming and its applications[J]. Mathematical Programming, 2018,

online, DOI: 10.1007/s10107-018-1247-7.

[20] Li X D, Sun D F, Toh K C. QSDPNAL: A two-phase augmented Lagrangian method for convex

quadratic semidefinite programming[J]. Mathematical Programming Computation, 2018, 10: 703–

743.

[21] Nesterov Y. A method of solving a convex programming problem with convergence rate O(1/k2)[J].

Soviet Mathematics Doklady, 1983, 27(2): 372–376.

[22] Rockafellar R T. Augmented Lagrangians and applications of the proximal point algorithm in

convex programming[J]. Mathematics of Operations Research, 1976, 1(2): 97–116.

[23] Rockafellar R T. Monotone operators and the proximal point algorithm[J]. SIAM Journal on

Control and Optimization, 1976, 14(5): 877–898.

[24] Saad Y. Iterative Methods for Sparse Linear Systems, 2nd Edition[M]. Philadelphia, PA, Society

for Industrial and Applied Mathematics, 2003.

[25] Seidel L. Ueber ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate

fuhrt, sowie lineare Gleichungen uberhaupt, durch successive Annaherung aufzulosen[C]. Abhand-

lungen der Mathematisch-Physikalischen Klasse der Koniglich Bayerischen Akademie der Wis-

senschaften, 1874, Band 11, III: 81–108.

[26] Sheldon J W. On the numerical solution of elliptic difference equations[J]. Mathematics of Com-

putation, 1955, 9: 101–112.

[27] Sun D F, Toh K C, Yang L Q. An efficient inexact ABCD method for least squares semidefinite

programming[J]. SIAM Journal on Optimization, 2016, 26: 1072–1100.

[28] Warga J. Minimizing certain convex functions[J]. Journal of the Society for Industrial and Applied

Mathematics, 1963, 11(3): 588–593.

[29] Xiao Y H, Chen L, Li D H. A generalized alternating direction method of multipliers with semi-

proximal terms for convex composite conic programming[J]. Mathematical Programming Compu-

tation, 2018, 10: 533–555.