1 iPasolink Introduction

99

Click here to load reader

Transcript of 1 iPasolink Introduction

Page 1: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

March 2011-Second Draft

Page 2: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

iPasolink is a modular network element that integrates a comprehensive set

of TDM cross connect switching, packet switching and microwave / optical

features, resulting in reduced costs and a long investments lifetime. The

following iPasolink series cover mobile backhaul requirements all the way

from the access tail links through to the metro aggregation network.

iPASOLINK 200

iPASOLINK 400

iPASOLINK 1000

12-way Nodal

Redundancy

High Speed INTF

SDH and All IP

with CWDM

4-way Nodal

Redundancy

Pay as grow architecture

2-way radio

Redundancy

Compact design

Page 3: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft) 2

iPASOLINK 400

VLAN ・ Port-based VLAN ・ 802.1Q Tag-based VLAN ・ 802.1ad Q in Q

QoS ・ 802.1p CoS / ToS /Diffserv/ - MPLS EXE

・ Advanced QoS (for AMR) Synchronous Ethernet / IEEE1588v2 RSTP, ITU-T G.8031, 8032V2 Ethernet OAM, IEE802.1ag, ITU-T Y1731 TDM Ring Protection (SNCP)

Frequency bands: 6 to 38 GHz Radio Transmission Capacities: ・QPSK/16/32/64/128/256 QAM ・ Hitless-AMR ・ LDPC FEC ・Narrowband transmission 7MHz & 14 MHz ・ MTPC / ATPC . Any combination of SDH / PDH / LAN traffic

Interface :10/100/1000 Base-T 1000 Base-SX / LX 16 x E1, 2xSTM-1(thru)or 1x Chanallized

Pay as you grow concept - software upgrade Flexible configuration - 1+0, 1+1 HS/SD/FD,XPIC (1+0)/(1+1) - 168xE1 Cross Connect SW - PWE (SAToP, CESoPSN)

Transmission Specification

Scalability and Flexibility

Advanced Ethernet Functionalities

Page 4: 1 iPasolink Introduction

iPASOLINK Introduction 3

Native TDM

TDM based network is the bandwidth-guaranteed and synchronous network. It is free from time and

synchronization issues. However, TDM network can not manage the growth of data traffic efficiently.

Native IP

Unlike Native TDM network, IP based network can accommodate the growth of data traffic efficiently. In

addition, wiring work can be reduced dramatically as a result of shared connections.

However, IP-based network, due to its asynchronous and on-demand nature, does not guarantee synchronous delivery of

data. Therefore, synchronization issue due to fluctuation of delay, latency or jitter must be carefully considered in

transmission of mobile service.

Dual Native (Native TDM and Native IP) Both packet switching and TDM cross connect are supported natively, which enables flexible transport per

traffic type on a single platform. Without incurring additional latency, delay/jitter sensitive traffic and clock such as 3GPP

Release-99 traffic is transmitted on TDM network directly, and IP based traffic such as LTE traffic is transmitted on IP

network directly without conversion. Moderate packet data growth may be efficiently aggregated by statistical multiplexing

while keeping the quality of delay/jitter sensitive TDM services..

TDM splitting (with PWE)

TDM splitting enables a port of legacy network traffic, such as HSPA data, to be dispensed onto IP network

with Pseudo-Wire Emulation (PWE), keeping only critical and timing-sensitive data on TDM network. With this functionality,

it is possible to streamline legacy network while increasing IP network usage.

PWE should be applied for transmission of jitter and latency relaxed services or where clock synchronization within mobile

RAN has been established by adoption of other synchronization measures.

Traffic Offload/Concentration

Traffic offload allows the operator to unload their IP traffic, including emulated legacy traffic, onto other cost

effective IP network. The benefit of traffic offloading is twofold: > Differentiation of services to customers

> Reduction of OPEX by converging voice and data traffic

In contrast to offload, concentration creates an opportunity for wholesale operators and carriers to maximize the utilization of

their networks by converging services and traffic from various customers .

Page 5: 1 iPasolink Introduction

iPASOLINK Introduction 4

iPASOLINK Radio Transmission Method

TDM TDM(E1)

Ethernet Ethernet

TDM(E1)

2) Hybrid Radio (Native Ethernet + Native TDM)

Ethernet

PWE

SW

PWE

Ethernet

TDM(E1)

Ethernet Ethernet

TDM(E1)

3) Packet Radio

IP over E1 IP over E1

TDM TDM(E1)

Ethernet Ethernet

TDM(E1)

1) TDM Radio

SW

PWE Ethernet Ethernet

Ethernet

TDM(E1)

4) Hybrid + Packet Radio

TDM(E1) TDM(E1)

iPASOLINK

TDM S

W

SW

XC XC

PWE

Page 6: 1 iPasolink Introduction

iPASOLINK Introduction 5

BSC/

RNC/

MME

AGW

iPASOLINK 200 iPASOLINK 200

iPASOLINK 400

eNB

2G/3G/LTE

WiMAX

BS

E1

Ethernet

Access Aggregation Metro Core

Ethernet

BTS/Node-B

iPASOLINK 200 iPASOLINK 200

iPASOLINK

1000

iPASOLINK 1000

iPASOLINK

1000

MS5000

iPASOLINK

400/1000

iPASOLINK

1000

Internet

Packet network

: All IP : Dual Native (Hybrid) : Hybrid Split : Off Load : CWDM

iPASOLINK support both native TDM and native Ethernet. It is possible to provide TDM and Ethernet

Hybrid transmission or ALL IP transmission without external box within the same equipment. iPASOLINK

can provide flexible and optimized migration scenario according to network situations and customer

evolution

iPASOLINK can provide end to end Ethernet connectivity with the extension of reach and capacity, nodal packet

radio, aggregation and bandwidth management. It is possible to use it also for WIMAX network and fixed network.

Page 7: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

iPASOLINK capability for Evolution of Mobile Backhaul

BS

TDM Based

Network

2/3G Backhaul

BSC/ RNC

MME

S-GW eNB

IP Based

Network

BS

TDM Based

Network

2/3G/LTE Backhaul

BSC/ RNC

Option-2

ALL IP based Backhaul

Option-1

TDM + IP based Backhaul

TDM based Backhaul

MME

S-GW eNB

IP Based

Network

BS

2/3G/LTE Backhaul

BSC/

RNC PWE PWE TDM Core

Only iPASOLINK can make these transitions on the same platform

Page 8: 1 iPasolink Introduction

7 iPASOLINK Introduction

Risk free migration to All IP-1

The migration from TDM based network to All IP network is achieved

by simply adding the MSE (Multi Service Engine) card.

Packet Radio

Migration

MSE: Multi Service Engine Note: Network needs to be synchronized by sync ETH , etc.

16xE1

Hybrid Radio

16xE1

16xE1

MSE

(PWE)

Page 9: 1 iPasolink Introduction

iPASOLINK Introduction 8

Risk free migration to All IP

The migration from TDM based network to All IP network is achieved

by simply adding the MSE (Multi Service Engine) card.

Packet Radio Migration

Note: Network needs to be synchronized by sync ETH , etc.

16xE1

Hybrid Radio 16xE1

64xE1

MSE

(PWE)

MSE

MSE: Multi Service Engine

64xE

1 16xE1

16xE1

16xE1

16xE1

TDM transmission

Packet transmission

Page 10: 1 iPasolink Introduction

iPASOLINK Introduction 9

Flexible PWE configuration

iPASOLINK can configure PWE at both access site and aggregation site.

It allows operator easy configuration of the network.

PWE

E1/TDM E1/Ethernet

Access Aggregation

1) PWE at Access site

E1/TDM E1/Ethernet

Access Aggregation

2) PWE at Aggregation site

PWE

core

core

E1/TDM

Access Aggregation

Initial Configuration

core

or

Page 11: 1 iPasolink Introduction

iPASOLINK Introduction 10

Using the STM-1, E1 and Ether BB options iPASOLINK200

Access Aggregation

16xE1 16xE1

16xE1 32xE1

STM-1 STM-1

STM-1 transparent

16E1/MDR x 2 or

Channelized STM-1

1) E1 with Ethernet Transmission

2) STM-1 with Ethernet transmission

Ethernet

Ethernet

FE or GbE

FE or GbE FE or GbE

Page 12: 1 iPasolink Introduction

iPASOLINK Introduction 11

iPASOLINK XPIC (Cross Polarization Interference Canceller)

iPASOLINK can double its transmission capacity up to 880Mbps in 56MHz

bandwidth by adopting NEC’s state of the art XPIC technology.

The additional required components for XPIC are;

Dual polarized antenna,

Additional ODU,

Associated IF cable kit, (iPASO 400 / 1000)

Soft-key upgrade in IDU.

(In case of iPASOLINK200, no cable connection is required at the front panel for XPIC )

iPASOLINK400 can be configured 2 pair of XPIC links with one IDU.

Page 13: 1 iPasolink Introduction

iPASOLINK Introduction 12

iPASOLINK 200 iPASOLINK 400

Radio Nodal capability Two way Four way

Interfaces

Main Board 16xE1 + 2xFE (2FE+ 2 GbE or 4xGbE) + 2xGbE(SFP Slots)

16xE1 + 2xFE(GbE) + 2xGbE(SFP Ports)

Optional 16xE1 card 1x STM-1/chSTM-1 card

16xE1 card (Universal Slot) 2 x STM-1/chSTM-1 card (Universal Slot) 2xFE(GbE)+`2xGbE(SFP Ports) (Universal Slot)

Ethernet Functionality

Port based & Tag based VLAN, Jumbo Frames CoS/ ToS/ Diffserv based Priority Control Strict priority, D-WRR with Bandwidth Management Policing with CIR/EIR Excess Information Rate

Port based & Tag based VLAN, Jumbo Frames CoS/ ToS/ Diffserv based Priority Control Strict priority, D-WRR with Bandwidth Management Policing with CIR/EIR Excess Information Rate

Synchronization TDM / Synchronous Ethernet TDM / Synchronous Ethernet / IEEE 1588v2

TDM Cross-Connect E1 Cross-Connect with ADM for Radio and channelized STM-1

E1 Cross-Connect with ADM for Radio and channelized STM-1

TDM SW Capacity E1 x 126ch E1 x 168ch

Radio Protection HS,HS/SD,FD Hot Standby, Space / Frequency Diversity HS,HS/SD,FD Hot Standby, Space / Frequency Diversity

Resiliency Packet RSTP RSTP / MSTP /ITU-T G.8031 / G.8032v2

TDM E1 SNCP with Radio Ring Sub Network Connection Protection

E1 SNCP with Radio Ring Sub Network Connection Protection

Ethernet OAM IEEE 802.1ag Service OAM and ITU-T Y.1731 PM

IEEE 802.1ag Service OAM and ITU-T Y.1731 PM

Other Functions XPIC, Traffic Aggregation XPIC, Traffic Aggregation

iPASOLINK Series Functionalities Summary

Page 14: 1 iPasolink Introduction

iPASOLINK Introduction 13

Page 15: 1 iPasolink Introduction

iPASOLINK Introduction 14

FEATURES-1

INTERFACES - 400

• 2 x 10/100/1000 Base-T(X), 2 x 1000 Base –SX/LX SFP (Main Board)

• 16 x E1 main board and 16E1 card (Universal slot)

• MSE (Multi Service Engine) 64X E1 PWE card (Universal slot)

• 2 x 10/100/1000 Base-T(X), 2 x 1000 Base –SX/LX SFP (Universal slot)

• 2xSTM-1 optical /electrical (Universal slot)

• Four front mounted universal slots are available for Modems and

option interface cards

SAToP (RFC4553), CESoPSN (RFC5086), ATMoP(RFC4717)

COMPACT AND RELIABLE PLATFORM

• Very compact and light platform for easy installation

1u IDU and 3/3.5 kg ODU with GUI LCT for easy setting up

High reliability and quality backed by excellent field proven MTBF

Backward compatible with Pasolink neo series ODU

Low Power consumption: adoption of high efficient RF components

Page 16: 1 iPasolink Introduction

iPASOLINK Introduction 15

FEATURES-3

ADVANCED QoS FUNCTION - 400

•Enhanced QoS functions

Class mapping (4 or 8 Class queues for QoS control)

(802.1p, IPv4 Precedence, IPv4/IPv6 DSCP. MPLS EXP)

ETHERNET / VLAN - 400

• VLAN table size 256 group or option-4094 group (VLAN 1 ~4094)

• Redundancy Function :RSTP(IEEE802.1W) for redundancy loop prevention

Packet classification functions based on header information

Bandwidth Management (Traffic shaping, CIR/PIR policing per port/VLAN)

Flexible Scheduling (Deficit-weighted round robin or strict Priority)

• Support Jumbo frame (FE < 2000 , GbE < 9600)

Congestion avoidance mechanism (WTD or WRED)

• VLAN functions on layer 2 based carrier network

• Port based VLAN, tag based (IEEE 802.1Q), Provider bridge (IEEE802.1ad)

• Link aggregation (IEEE802.3 ad) with LACP

Page 17: 1 iPasolink Introduction

iPASOLINK Introduction

FEATURES-4

HYBRID SWITCHING FUNCTION-400

•TDM Cross connect: max 168 x 168 E1 left and right hand routes

•Support SNCP

•Packet Switching: up to 40 Gbps

Note : The number of E1 channels depend on modulation scheme and TDM capacity

16

Page 18: 1 iPasolink Introduction

iPASOLINK Introduction 17

FEATURES-3

VERSATILE RADIO SECTION

• High system gain using LDPC FEC and Linearizer techniques

• cross polarization interference canceller. (XPIC)

• High modulation up to 256 QAM for Native ether and native TDM

• Adaptive modulation Radio (AMR)

•Double transmission capacity up to 920 mbps in 56 MHz BW

• Enhanced system gain with new ODU (IHG)

FREQUENCY AGILITY AND EASY TUNING

• Field tunable local oscillators (Synthesizer)

• RF Point Frequency can be changed through Local Craft Terminal (LCT)

• ODU Sub-band changeable by simply replacing the RF Filter.

HYBRID SWITCHING FUNCTION-400

•TDM Cross connect: max 168 x 168 E1 left and right hand routes

•Support SNCP

•Packet Switching: up to 40 Gbps

Note : The number of E1 channels depend on modulation scheme and TDM capacity

Page 19: 1 iPasolink Introduction

iPASOLINK Introduction 18

FEATURES-4

SUPERB OAM FUNCTIONALITIES

•Loopback capability Near end, far end and IF loop-backs

•Ethernet OAM (IEE802.1ag / ITU-T Y.1731)

NETWORK MANAGEMENT SYSTEM

•Three management systems are supported (PNMSj, PC-MG, MS5000)

•Web based local craft terminal for local and remote NE access

SYNCHRONIZATION

•High Accuracy clock supply for clock synchronization

•Support both native TDM and synchronous Ethernet for clock reference

•Support external clock input / output

PROTECTION SCHEMES

•E1 Ring Protection

•RSTP and Ether Ring protection

•Timing source protection Priority or Quality

•Automatic Protection switching (APS) for STM-1

•Hot Standby and Twin path for radio protection

•Fault detection, fault localization/isolation, Performance measurement

Page 20: 1 iPasolink Introduction

iPASOLINK Introduction 19

iPASOLINK 400 Features

PWE

PDH Ring Ether Ring

6 – 38 GHz AMR

Ether OAM

16-32 xE1 1X STM1 10/100/1000Base-T Super PDH

TDM Ring Ether Ring

QPSK – 256 QAM Hitless AMR (1+0)/(1+1) 4way Nodal

Ether OAM

16-64 xE1 2xSTM1

XPIC

ATM AGGREGATION

SYNC ETHER VLAN

NEO/c Mode Modem

GbE(SFP)

Page 21: 1 iPasolink Introduction

(1+1) HS / SD

iPASOLINK Introduction 20

iPasolink 200/400 Radio Configurations

VERSATILE PLATFORM CONFIGURATION

• Redundancy Configurations in one IDU (1+0) No Protection ( up to 4 )

(1+1) Hot Standby (up to two groups )

(1+1) Hot Standby with Space Diversity (1+1) Twin Path (Frequency Diversity) (two groups)

• Other Configurations in one IDU

(1+1) HS

(2+0) CCDP (XPIC) (1+0) x 2

(1+0)

• 1U Single IDU provide the following radio configuration

(2+0) x Dual Polarization with XPIC (1+0) up to two groups

(2+0) x Dual Polarization with XPIC (1+1) one group

(1+0) x 4 Nodal

400

400

(1+1) Twin Path

Page 22: 1 iPasolink Introduction

iPASOLINK Introduction 21

Radio Configurations (Redundancy) iPaso 400

iPaso 400

Page 23: 1 iPasolink Introduction

iPASOLINK Introduction 22

Radio Configurations (XPIC)

iPaso 400

iPaso 400

Page 24: 1 iPasolink Introduction

iPASOLINK Introduction 23

Radio Configurations - Nodal

4 way Nodal Configurations in

one IDU (iPASOLINK 400)

NEO/c

iPASOLINK 400 modem : standard operate with iPASOLINK

: Optional modem operate with NEO/c (compatible with NEO/c radio frame)

iPaso 400

Optional Modem NEO/c mode

iPaso 400

iPaso 200

iPaso 400

2 way Nodal

Configurations

in one IDU

iPASOLINK 200) Site-A

Site-B

Site-C

Site-D

Site-E

Site-F

Page 25: 1 iPasolink Introduction

iPASOLINK Introduction 24

Baseband Configurations

Super PDH 16 x E1

STM-1 (63E1)

16 x E1

STM-1 (63E1)

79 E1

PWE

16 x E1 16 x E1

MSC (PWE) card

All IP

MSC (PWE) card

GbE GbE

Native TDM + Native Ether

2 x STM1

STM-1

2 x STM-1

16 x E1

16 x E1

FE

E1 + Ether (Dual Native)

STM-1

16 x E1

16 x E1

FE

Page 26: 1 iPasolink Introduction

iPASOLINK Introduction 25

iPasolink Radio using NEO ODU

Replace NEO IDU with iPASOLINK 16 x E1

STM-1 (63E1)

16 x E1

STM-1 (63E1)

79 E1

PASOLINK NEO PDH

16 x E1 16 x E1

PDH NHG2

NHG2

NHG2

NHG2

NEO IDU

Replace NEO IDU with iPASOLINK 16 x E1

STM-1 (63E1)

16 x E1

STM-1 (63E1)

79 E1 + LAN

NHG2

NHG2

FE/GbE FE/GbE

Page 27: 1 iPasolink Introduction

iPASOLINK Introduction 26 26

• Ethernet Ring protection

- Protection Switching Time

<2s (RSTP)

< 50 ms (ITU-T G.8032v2)

Ethernet Ring

TDM Ring

• TDM Ring protection - E1 SNCP - Protection Switching Time <50ms

63 x E1 63 x E1

Channelized STM-1

63 x E1

E1

63 x E1

(200/400)

63xE1(400)

32xE1(200)

Page 28: 1 iPasolink Introduction

iPASOLINK Introduction 27

iPASOLINK400 IDU Block Diagram

Universal

slot #1

TDM SW L2 SW CPU

PS

PS

Universal

slot #2

Universal

slot #3

Universal

slot #4

16xE1 Alarm

DSC

Clock

Optional

Clock

Native

TDM

Bus

Native Packet Bus

Control Bus

Main Board

- 48V

- 48V

Synchronous Ethernet

or IEEE1588 Optional redundant

Power supply

2xGbE

(SFP)

16 x E1 INTFC

MSE (63xE1 PWE)

Modem (Neo /c mode)

2x STM-1

Modem

4 x GbE

Universal Slot-Cards

PS

PS

Auxiliary

2xFE/GbE

Page 29: 1 iPasolink Introduction

iPASOLINK Introduction 28

iPASOLINK 400 –Slots and Module configuration

OW Jack

ODU Interface

USB Memory Slot

FE1 / FE2

ALM / SC/CLK 16 x E1 INTFC

16 x E1 TDM INTFC

Channelized STM-1(or 2xSTM-1) AUX (HK Ext ALM)

Power Supply-1

SFP

2 x GbE FAN Unit

LCT / NMS

Universal Slot-1 Universal Slot-2 Universal Slot-3 Universal Slot-4

Modem 4xGbE [2xRJ45, 2x(SFP)] Multi Service Engine

Universal Slot-Cards

Power Supply-2 NE / FE2 or

Protect SW

Call Button

Page 30: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

COMPONENTS MODULE NAME Code Remarks

iPASOLINK 400 CHASSIS CHASSIS WITH MAIN BOARD Required

FAN-C AIR COOLING FAN NWA-055294-001 Required

MAIN BOARD MC-A4 Main Card (E1×16CH + GBE (2XSFP SX / LX / T)

+ 2FE OR OPTIONAL 2 X GbE) NWA-055298-001 Required

GbE-A 4 x GbE Interface card SFP options to select NWA-055303-001 Universal Slot

MODEM-A Standard Modem (QPSK-256 QAM) AMR NWA-055300-001 Universal Slot

16E1-A E1×16ch, 75 ohm to 120 ohm software selectable NWA-055302-001 Universal Slot

STM1-A 2 x STM-1 Interface Card (SFP Options to select) NWA-055304-004 Universal Slot

MSE TDM PWE, ATM PWE etc. NWA-055306-001 Universal Slot

AUX-S EOW, HK, NE2 option NWA-055307-001 Universal Slot

CLK2M-C Clock module (for SYNCE, SNCP and Channelized STM-1) NWA-055289-001 option

PS-A4 -48V DC Power Supply Unit NWA-055310-001 Required (at least one)

MAIN Board

FAN

PS 1

2 x GbE (LX/SX)

AUX: HK,

16 X E1 -48 VDC PS

PWE

2FE or 2 X GbE (elect)

16- xE1 1X CH STM1

FAN

2 x STM-1

Universal Slot4 Universal Slot3 Universal Slot2 Universal Slot1

PS 2

Page 31: 1 iPasolink Introduction

iPASOLINK Introduction 30

iPASOLINK 400 Main Board -Indicators

Port2 (Green)

LAN Link Status

Blink when data TX

Por1 (Green)

LAN Link Status

Blink when data TX

Port 3(Green)

LAN Link Status

Blink when data TX

Port4(Green)

LAN Link Status

Blink when data TX

Alarm (Red)

Alarm Status

Maintenance (Yellow)

Maintenance ON status

Blink during reset, up / down

loading

Page 32: 1 iPasolink Introduction

1 NMS TXD(+)

2 NMS TXD (-)

3 NMS RXD (+)

4 Not Connected

5 Not Connected

6 NMS RXD (-)

7 Not Connected

8 Not Connected

LCT / NMS (RJ-45)

1 Vbus

2 D (-)

3 D (+)

4 Ground

(USB) Type1

1 NMS TXD(+)

2 NMS TXD (-)

3 NMS RXD (+)

4 Not Connected

5 Not Connected

6 NMS RXD (-)

7 Not Connected

8 Not Connected

NE1 (RJ-45)

♦ iPASOLINK 200/400 IDU INTFC pin assignments

ALM/SC/CLK (High Density D-Sub 44 Pins, Female)

1 ALM2 OUT (NO) 16 ALM2 OUT (COM) 30 ALM2 OUT (N)

2 ALM1 OUT (NO) 17 ALM1 OUT (COM) 31 ALM1 OUT (NC)

3 GROUND 18 Ground 32 Ground

4 V.11-1 Data in(+) 19 V.11-1 clock in(+) 33 V.11-1 FP input(+)

5 V.11-1Data in(-) 20 V.11-1 clock in (-) 34 V.11-1 FP input(-)

6 V.11-1 Data out(+) 21 V.11-1 clock out(+) 35 V.11-1 FP output(+)

7 V.11-1Data out(-) 22 V.11-1 clock out(-) 36 V.11-1 FP output(-)

8 V.11-2 Data in(+) 23 V.11-2 clock in(+) 37 V.11-2 FP input(+)

9 V.11-2Data in(-) 24 V.11-2 clock in (-) 38 V.11-2 FP input(-)

10 V.11-2 Data out(+) 25 V.11-1 clock out(+) 39 V.11-2 FP output(+)

11 V.11-2 Data out(-) 26 V.11-1 clock out(-) 40 V.11-2 FP output(-)

12 RS-232C-1Data in 27 Ground 41 RS-232C-2 Data in

13 RS-232C-1Data out 28 42 RS232C-2 data out

14 EXT1 CLK in(+) 29 Ground 43 EXT1 CLK in (-)

15 EXT1 CLK OUT(+) 44 EXT1 CLK OUT(-)

31

Page 33: 1 iPasolink Introduction

iPASOLINK Introduction 32

iPASOLINK 400 Clock Module

Clock Module

CLK2M-C

Option module for Clock Sync and mounted on MC-A4 Main Board.

Required for all stations for Network Sync

1. SNCP E1 Ring Configuration

2. Channelized STM-1 (Not required for STM-1 SPI Mode operation)

3. Sync Ether

4. External CLK In/Out

5. IEEE 1588v2(slave)

*1 Not required for HOP Topology, TREE Topology, for the case Network Sync is not in use in Back-Back

Connection.

*2 SNCP E1 Ring Topology, Channelized STM-1,Sync E and IEEE1588v2 Software key is separately required.

Page 34: 1 iPasolink Introduction

iPASOLINK Introduction 33

iPASOLINK 400 Modem

IF IN / OUT

TX frequency: 350 MHz

RX frequency 140 MHz

Ref Frequency: 5 MHz (XPIC)

DC Power : -48V

Connector: TNC (Female)

Control 10 MHz

Impedance: 50 Ohms

XIF IN/ OUT

Frequency: 140 MHz

REF FREQ: 5 MHz

Connector: IEC 169-29(1.0/2.3)

Impedance: 75 Ohms

FOR XPIC BETWEEN MASTER

AND SUB MASTER

TX STATUS (Green)

RX STATUS (Green)

Power ON (Green)

Alarm ( Red )

Power ON/OFF

Switch Ground

iPASOLINK-400

Page 35: 1 iPasolink Introduction

Option Card

34 iPASOLINK Introduction

iPASOLINK 400 IDU E1 Interfaces

Main Board

2M IN /OUT

Input / Output

signal

16 x E1

Bit Rate 2.048Mpps +/_ 50ppm

Interface HDB3 (ITU-T G.703)

Impedance

(S/W

Selectable)

75 Ohms, Unbalance

120 Ohms Balance

Connector MDR-68 pins

Alarm (Red)

Alarm Status

Page 36: 1 iPasolink Introduction

iPASOLINK Introduction 35

iPASOLINK 400 IDU – STM-1 Card

STM-1 INTFC (ELECTRICAL) -SPECIFICATIONS

TYPE ITU-T G.703

BITRATE 155.520 Mbps

LEVEL 1 Vp_p

CODE CMI

CONNECTOR IEC 169-29 (1.0/2.3)

IMPEDANCE 75 Ohms (Unbalanced)

STM-1 INTFC (OPTICAL) -SPECIFICATIONS

TYPE ITU-T G957

BITRATE 155.520 Mbps

LEVEL L-1.1: 0 TO -8 (5)dBm (TX) / -10 TO -34 dBm (RX)

S-1.1: -8 TO -15dBm (TX) / -8 TO -28 dBm (RX)

CODE NRZ

WAVELENGTH 1310 NM

CONNECTOR LC

iPASO 400 Automatic Protection Switching

APS Grp-1 APS Grp1 APS Grp2

Same slot Different slot

Port 1 Port2 Slot1 Port1

Slot2 port1

Slot1 port2

Slot2 port2

SFP combination

No Port 1 Port 2

1 S-1.1 -

2 L-1.1 -

3 ELE -

4 S-1.1 S-1.1

5 L-1.1 L-1.1

6 ELE ELE

iPASOLINK 400

Page 37: 1 iPasolink Introduction

iPASOLINK Introduction 36

Transparent mode of STM-1. No processing in IDU. -2 STM-1 can be handled by single module

SPI mode with line redundancy (APS). The following Software Key is required -STM-1 APS Protection Key

Terminating MST / RST of STM-1 and drop insert in VC-12 (E1)level Port1should be source port CLK2M-C module is required The following Software Key is required - STM-1 MUX/DEMUX Key

Channelized-STM-1 mode with line redundancy (APS) CLK2M-C module is required The following Software Key is required -STM-1 MUX/DEMUX Key -STM-1 APS Protection Key

2 x STM-1 universal card (STM1-A)

Alarm ( Red ) Online Status (Green) Online Status (Green)

Port1

Port2

Through (SPI) Mode

STM1

STM1

STM1

STM1

Port1

Port2

Through (SPI) Mode with APS

STM1

STM1

STM1

Port1

Port2

Channelized Mode

STM1

63 E1 - - - -

Port1

Channelized Mode with APS

STM1

63 E1 - - - - Port2 STM1

Transport modes of STM-1.

Page 38: 1 iPasolink Introduction

iPASOLINK Introduction 37

iPASOLINK 400 Main Board

2M IN /OUT

Input / Output signal 16 x E1

Bit Rate 2.048Mpps +/_ 50ppm

Interface HDB3 (ITU-T G.703)

Impedance

(S/W Selectable)

75 Ohms, Unbalance

120 Ohms Balance

Connector MDR-68 pins

LAN Interface (Electrical) Port 1,2

Input / Output signal 10/100Base-T(X) or 10/100/1000 BASE-T

Speed & Duplex 10/100 Base-T(X) / 1000 Base-T Auto Sensing or Fixed

Flow Control ON or OFF (Selectable)

Link Loss Forwarding Disable/Enable (Selectable)

Connector RJ-45

Transmission Rate 460 Mbps

Port 1 can be selected as user port1 or Management port NE

Gigabit Ether Interface (Optical) 3,4

Input / Output signal 1000 BASE-SX / 1000 BASE - LX

Speed & Duplex 1000 Mbits Full Duplex Auto Negotiation fixed

Flow Control ON or OFF (Selectable)

Link Loss Forwarding Disable/Enable (Selectable)

Connector SFP Optical Interface (LC)

Transmission Rate 460 Mbps

SFP opticalS-1.1/L1.1

Electrical (RJ-45)*

Software key Required to activate ports 3, 4

Page 39: 1 iPasolink Introduction

iPASOLINK Introduction 38

iPASOLINK 400 GbE Universal Slot Interface

Ethernet Features

VLAN Port Based VLAN/ Tag Based VLAN / Q –in Q

QoS 802.1p CoS / ToS/Diffserv/MPLS EXP

QoS Control 4SP, 1xSP+3xDWRR, 4xDWRR, 1xSP+7DWRR,

2xSP+6DWRR

Bandwidth

Management

Port and class shaper, policing per VLAN or port

Jumbo frame Up to 2000 bytes

Protection RSTP (802.1w, ERP (ITU-T G.8032)* LACP

(802.3ad)*

Note *-late release

LAN Interface (Electrical) Port 1,2

Input / Output signal 10/100Base-T(X)/ 1000 BASE-T

Speed & Duplex 10/100 Base-T(X) / 1000 Base-T Auto Sensing or Fixed

Flow Control ON or OFF (Selectable)

Link Loss Forwarding Disable/Enable (Selectable)

Connector RJ-45

Transmission Rate 460 Mbps

Gigabit Ether Interface (Optical) 3,4

Input / Output signal 1000 BASE-SX / 1000 BASE - LX

Speed & Duplex 1000 Mbits Full Duplex Auto Negotiation fixed

Flow Control ON or OFF (Selectable)

Link Loss Forwarding Disable/Enable (Selectable)

Connector SFP Optical Interface (LC)

Transmission Rate 460 Mbps

Port2 (Green)

LAN Link Status

Blink when data TX

Por1 (Green)

LAN Link Status

Blink when data TX

Port 3(Green)

LAN Link Status

Blink when data TX

Port4(Green)

LAN Link Status

Blink when data TX

Alarm (Red)

Alarm Status

Page 40: 1 iPasolink Introduction

iPASOLINK Introduction 39

iPASOLINK 400 Power Supply

SELV (DC IN) 4 Pin

1 -48 V (-40.5 to -57)

2 -48 V (-40.5 to -57)

3 Ground

4 Ground

AMP 1-178288-4 or DK-3100S-04R

Contacts: AMP:1-175218-2

Connector

Cylindrical Fuse

ES1-12500 (250 V / 12.5 AH

Page 41: 1 iPasolink Introduction

iPASOLINK Introduction 40

Optional auxiliary Module support ALM / EOW / NE2

The following Interface is available ・HK ALM IN/OUT ・additional four parallel alarm outputs ・EOW B-B connection Port ・NE2 : DCN RS-485 (Async.) Back – to-back connection

Interface MC-A4(main card) AUX-A (Option) Note

HK ALM IN - 6

OUT 2 4

OW

Jack 1 -

BZ 1 -

Call SW 1 -

EXT IN/OUT - 2 For Back-Back connection

DSC V.11 2 - Sync / Async

RS-232C 2 - Async

DCN

LCT 1 10/100BASE-T(X)

NMS 1 10/100BASE-T(X)

NE 1 10/100BASE-T(X)

NE2 - 1 9.6kbps Async (RS-485)DCN port

USB MEM slot 1 - For F/W download, etc.

EXT CLK IN / OUT (1)* - 2MHz / bps *Optional clock (CLK2M-C) module is required.

Summary of the auxiliary interface ports.

AUX Card – AUX-A

Page 42: 1 iPasolink Introduction

iPASOLINK Introduction

iPASOLINK 400 - AUX Card ( AUX-S / AUX-A)

ALM / EOW (High Density D-Sub 44 Pins, Female)

1 EOW 1 IN(+) 16 EOW 1 IN (-) (GND) 31 CALL1 OUT

2 EOW 1 OUT(+) 17 EOW 1 OUT (-) (GND) 32 BZ2 IN

3 EOW 2 In (+) 18 EOW 2 IN(-) (GND) 33 CALL2 OUT

4 EOW 2 Out (+) 19 EOW 2 Out (-) (GND) 34 GND

5 GND 20 ALM6/HK1/C1 OUT (COM) 35 ALM6/HK1/C1 OUT (NC)

6 ALM6/HK1/C1 OUT (NO) 21 ALM5/HK2/C2 OUT (COM) 36 ALM5/HK2/C2 OUT (NC)

7 ALM5/HK2/C2 OUT (NO) 22 ALM4/HK3/C3 OUT (COM) 37 ALM4/HK3/C3 OUT (NC)

8 ALM4/HK3/C3 OUT (NO) 23 ALM3/HK4/C4 OUT(COM) 38 ALM3/HK4/C4 OUT(NC)

9 ALM3/HK4/C4 OUT(NO) 24 NE2_RXD_TERM 39 NE2_RXD (+)

10 NE2_TXD(+) 25 40 NE2_RXD(-)

11 NE2_TXD(-) 26 HK4/CLSTR3 IN (-) (GND) 41 HK6/CLSTR1 IN (-) (GND)

12 HK2 INPUT(-) (GND) 27 HK4/CLSTR3 IN (+) 42 HK6/CLSTR1 IN (+)

13 HK2 INPUT(+) 28 HK3/CLSTR4 IN (-) (GND) 43 HK5/CLSTR2 IN (-) (GND)

14 HK1 INPUT(-) (GND) 29 HK3/CLSTR4 IN (+) 44 HK5/CLSTR2 IN (+)

15 HK1 INPUT(+) 30 BZ 1 IN

Page 43: 1 iPasolink Introduction

iPASOLINK Introduction 42

In case the FAN alarm occurs, replace the FAN unit immediately.

The FAN unit can be replaced under power-on condition (hot-swappable).

Page 44: 1 iPasolink Introduction

iPASOLINK Introduction 43

PERFORMANCE – iPASOLINK 400 IDU

ITEM IDU

Transmission

Capacity

and

Channel spacing

Channel Spacing 7 MHZ 14 MHz (13.75 MHz ) 28 MHz (27.5 MHz) 56 MHz (55 MHz)

QPSK 14 28 57 114

16 QAM 28 56 114 229

32 QAM 35 71 143 287

64 QAM 45 85 172 345

128 QAM 49 99 200 402

256 QAM - 114 229 460

[Band width within parenthesis is Channel Spacing at 18 Ghz band ] [capacity is physical layer maximum throughput at 64 bytes packet size]

Main Signal Interface

E1 16xE1 (G703) MDR 68 connector in main board (64 E1 with additional 16 E1 Universal Cards)

LAN 2 x 10/100 Base-T(X) RJ-45 connector (up to 2 x 10/100/1000 Base –T available with software upgrade)

2 x 1000 SX or LX with SFP modules (connector type LC)

STM-1 1or 2 x STM-1 (S 1.1 or L 1.1 ) option card with software selectable channelized STM-1 (connector type – LC)

Inter facility Link (IDU-ODU) Connector Type : TNC female

Cable length : Nominal 300m maximum with 8D-FB-E or equivalent performance cable

FUNCTION OUTLINE

Native IP and Native TDM Modem has dual native (native IP and native TDM) signal processing circuit

Adaptive Modulation Radio (AMR) QPSK / 16 QAM/ 32 QAM / 64 QAM / 128 QAM / 256 QAM (6 modulation schemes changing adaptively)

Protection

Radio (1+1) Hot standby / Space diversity , (1+1) twin Path (Frequency Diversity), XPIC (1+1)

E1 Ring E1 SNCP (sub network connection protection ) support

LAN Ring RSTP (Rapid Spanning Tree Protocol) support / ITU-T G.8032

XPIC (CCDP) Function QPSK to 256 QAM modulation at (14 MHz/28MHz/56MHz),

AMR (1+1) and XPIC combination AMR and (1+1), AMR and XPIC combination available

DXC (E1 Cross Connect) Capacity Up to 168 x 168 E1 non blocking

External Clock Interface 2.048 MHz or 2.048 Mbps external clock input / output, 75 or 120 Ohms selectable, D-Sub 44 pin connector

Page 45: 1 iPasolink Introduction

iPASOLINK Introduction 44

PERFORMANCE – iPASOLINK 400 IDU

ITEM IDU

DCN AND SERVICE CHANNELS

NMS Interface 1 Port, 10/100 Base-T, RJ-45 (in-band and Out-band connections supported)

NE1 1 Ports, 10/100 Base-T(X), RJ-45

NE2 (RS-485) 1 Port Serial signal port for legacy equipment , available with optional AUX card, D-Sub 44 pin

Local Craft Terminal (LCT) 1-Port, 10/100 Base-T(X), RJ -45

House Keeping and Cluster Alarms Input 6 CH, output 6 CH available with optional AUX card, D-Sub 44 pin

Service Channels 2 Ports , RS -232C, 9.6 Kbps Async. D-sub -44 pin

2 Ports , V.11 ( co-direction or contra-direction) 64 Kbps Sync, D-Sub 44 pin

Engineering Order Wire (EOW) (Back to Back) 2 port 4-wire voice channel, available with optional AUX card, D-Sub 44 pin

Loop Back

Far-End Baseband Loop Back

Near-End Baseband Loop Back

IF Loop Back

TX Power control Mode Manual TX Power Control,

Automatic TX Power Control

Performance Monitor

PMON Items: OFS, BBE, ES, SES, SEP, UAS

Metering Items: Output Power Level (TX PWR), Received Signal Level (RSL). Bit Error Rate (BER)

LAN Monitoring items: RX Unicast, RX Broadcast, RX Multicast, RX Pause, RX CRC error

POWER REQUIREMENTS AND DIMENSION

Power requirement -48 V DC (-40.5 to -57 VDC) conform to EN300 132-2

Power Consumption IDU without Options (1+0) : 55W, (1+1) 65 W

AUX option: 5W, 16xE1 option : 5W, STM-1 option: 8W. MSE option: 10W, external Clock option: 3W

Mechanical Dimensions 482 (W), 44(H), 240 (D) mm, 3 Kg approx.

Environmental Condition Workable: -10 to +55 Deg. C,

Page 46: 1 iPasolink Introduction

iPASOLINK Introduction 45

PERFORMANCE-AMR ITEM 6GHz 7-8GHz 10-11GHz 13 GHz 15 GHz 18 GHz 23 GHz 26 GHz 28GHz 32GHz 38GHz CS

Transmit Power - Measured at ODU TX port

QPSK 29 29 25 25 25 24 24 23 22 22 20 7MHz/ 14 MHz / 28 MHz/56MHz

Receiver Threshold Measured at ODU RX port (dBm) at 10-6 BER [BER at 10-3 value below -1.5 dB]

QPSK ( 56 MHz) -84.5 -84.5 -84.0 -83.5 -83.5 -83 -83.5 -82.5 -82.5 -82.5 -81.5

QPSK ( 28 MHz) -87.5 -87.5 -87 -86.5 -86.5 -86 -86.5 -85.5 -85.5 -85.5 -84.5

QPSK ( 14 MHz) -90.5 -90.5 -90 -89.5 -89.5 -89 -89.5 -88.5 -88.5 -88.5 -87.5

QPSK ( 7 MHz) -93.5 -93.5 -93 -92.5 -92.5 -92 -92.5 -91.5 -91.5 -91.5 -90.5

System Gain Measured at ODU RX port at 10-6 BER [BER at 10-3 value below +1.5 dB]

QPSK ( 56 MHz) 113.5 113.5 109 108.5 108.5 107 107.5 105.5 104.5 104.5 101

QPSK ( 28 MHz) 116.5 116.5 112 111.5 111.5 110 110.5 108.5 107.5 107.5 104.5

QPSK ( 14 MHz) 119.5 119.5 115 114.5 114.5 113 113.5 111.5 110.5 110.5 107.5

QPSK ( 7 MHz) 122.5 122.5 118 117.5 117.5 116 116.5 114.5 113.5 113.5 110.5

Power Control 0 to 24 dB ( 1 dB step)

Max input level - 20 dBm for BER less than 10-3

Transmit Power - Measured at ODU TX port

16 QAM 26 26 22 22 22 21 21 19 18 18 17 56 MHz

16 QAM 27 27 23 23 23 22 22 20 19 19 18 7MHz/ 14 MHz / 28 MHz

Receiver Threshold Measured at ODU RX port (dBm) at 10-6 BER [BER at 10-3 value below -1.5 dB]

16 QAM ( 56 MHz) -78 -78 -77.5 -77 -77 -76.5 -77 -76 -76 -76 -75

16 QAM( 28 MHz) -81 -81 -80.5 -80 -80 -79.5 -80 -79 -79 -79 -78

16 QAM ( 14 MHz) -84 -84 -83.5 -83 -83 -82.5 -83 -82 -82 -82 -81

16 QAM ( 7 MHz) -87 -87 -86.5 -86 -86 -85.5 -86 -85 -85 -85 -84

System Gain Measured at ODU RX port at 10-6 BER [BER at 10-3 value below +1.5 dB]

16 QAM ( 56 MHz) 104 104 99.5 99 99 97.5 98 95 94 94 92

16 QAM( 28 MHz) 108 108 103.5 106 106 104.5 105 102 101 101 99

16 QAM ( 14 MHz) 111 111 106.5 106 106 104.5 105 102 101 101 99

16 QAM ( 7 MHz) 114 114 109.5 109 109 107.5 108 105 104 104 102

Power Control 0 to 24 dB ( 1 dB step)

Max input level - 20 dBm for BER less than 10-3

Guaranteed TX Power

6-28 GHz +/- 1.5dB

32-38 GHz +/-2.5 dB

Guaranteed Threshold

Rx Threshold at 10-6 BER

6-38 GHz +3 dB

Guaranteed System Gain

6-28 GHz -3 dB

32-38 GHz -4 dB

Page 47: 1 iPasolink Introduction

iPASOLINK Introduction 46

PERFORMANCE - AMR

ITEM 6GHz 7-8GHz 10-11GHz 13 GHz 15 GHz 18 GHz 23 GHz 26 GHz 28GHz 32GHz 38GHz CS

Transmit Power - Measured at ODU TX port

32 QAM 25 25 21 21 21 20 18 18 18 18 17 56 MHz

32 QAM 26 26 22 22 22 21 19 19 19 19 18 7MHz/ 14 MHz / 28 MHz

Receiver Threshold Measured at ODU RX port (dBm) at 10-6 BER [BER at 10-3 value below -1.5 dB]

32 QAM ( 56 MHz) -75 -75 -74.5 -74 -74 -73.5 74 -73 -73 -73 -72

32 QAM( 28 MHz) -78 -78 -77.5 -77 -77 -76.5 -77 -76 -76 -76 -75

32 QAM ( 14 MHz) -81 -81 -80.5 -80 -80 -79.5 -80 -79 -79 -79 -78

32 QAM ( 7 MHz) -84 -84 -83.5 -83 -83 -82.5 -83 -82 -82 -82 -81

System Gain Measured at ODU RX port at 10-6 BER [BER at 10-3 value below +1.5 dB]

32 QAM ( 56 MHz) 100 100 95.5 95 95 93.5 92 91 91 91 89

32 QAM( 28 MHz) 104 104 99.5 99 99 97.5 96 95 95 95 93

32 QAM ( 14 MHz) 107 107 102.5 102 102 100.5 99 98 98 98 96

32 QAM ( 7 MHz) 110 110 105.5 105 105 103.5 102 101 101 101 99

Power Control 0 to 23 dB (1 dB step) + (5 dB additional ATT) 0 to 23 dB

Transmit Power - Measured at ODU TX port

64 QAM 25 25 21 21 21 20 18 18 18 18 17 56 MHz

64 QAM 26 26 22 22 22 21 19 19 19 19 18 7MHZ/ 14MHz/ 28 MHz

Receiver Threshold Measured at ODU RX port (dBm) at 10-6 BER [BER at 10-3 value below -1.5 dB]

64QAM ( 56 MHz) -72 -72 -71.5 -71 -71 -70.5 -71 -70 -70 -70 -69

64 QAM( 28 MHz) -75 -75 -74.5 -74 -74 -73.5 -74 -73 -73 -73 -72

64 QAM ( 14 MHz) -78 -78 -77.5 -77 -77 -76.5 -77 -76 -76 -76 -75

64 QAM ( 7 MHz) -81 -81 -80.5 -80 -80 -79.5 -80 -79 -79 -79 -78

System Gain Measured at ODU RX port at 10-6 BER [BER at 10-3 value below +1.5 dB]

64 QAM ( 56 MHz) 97 97 92.5 91 91.5 90.5 88.5 88 88 86.5 85.5

64 QAM( 28 MHz) 101 101 96.5 96 96 94.5 93 92 92 92 90

64 QAM ( 14 MHz) 104 104 99.5 99 99 97.5 96 95 95 95 93

64 QAM ( 7 MHz) 107 107 102.5 102 102 100.5 99 98 98 98 96

Power Control 0 to 23 dB (1 dB step) + (5 dB additional ATT) 0 to 23 dB

Page 48: 1 iPasolink Introduction

iPASOLINK Introduction 47

PERFORMANCE - AMR

ITEM 6GHz 7-8GHz 10-11GHz 13 GHz 15 GHz 18 GHz 23 GHz 26 GHz 28GHz 32GHz 38GHz CS / THROUGHPUT

Transmit Power - Measured at ODU TX port

128 QAM 25 25 21 21 21 20 18 18 18 18 17 56 MHz

128 QAM 26 26 22 22 22 21 19 19 19 19 18 14 MHz/28 MHz

Receiver Threshold Measured at ODU RX port (dBm) at 10-6 BER [BER at 10-3 value below -1.5 dB]

128 QAM ( 56 MHz) -69 -69 -68.5 -68 -68 -67.5 -68 -67 -67 -67 -66

128 QAM( 28 MHz) -72 -72 -71.5 -71 -71 -70.5 -70.5 -71 -70 -70 -69

128 QAM ( 14 MHz) -75 -75 -74.5 -74 -74 -73.5 -74 -73 -73 -73 -72

128 QAM ( 7 MHz) -77.5 -77.5 -77 -76.5 -76.5 -76 -76.5 -75.5 -75.5 -75.5 -74.5

System Gain Measured at ODU RX port at 10-6 BER [BER at 10-3 value below +1.5 dB]

128 QAM ( 56 MHz) 94 94 89.5 89 89 87.5 86 85 85 85 83

128 QAM( 28 MHz) 98 98 93.5 93 93 91.5 90 89 89 89 87

128 QAM ( 14 MHz) 101 101 96.5 96 96 94.5 93 92 92 92 90

128 QAM ( 7 MHz) 103 103 98 98 98.5 97.5 95.5 95 95 93.5 92.5

Power Control 0 to 20 dB (1 dB step) + (5 dB additional ATT) 0 to 20 dB

Transmit Power - Measured at ODU TX port

400 MB / 256 QAM 24 24 20 20 20 19 17 17 17 17 16

200 MB / 256 QAM 25 25 21 21 21 20 18 18 18 18 17

Receiver Threshold Measured at ODU RX port (dBm) at 10-6 BER [BER at 10-3 value below -1.5 dB]

256QAM ( 56 MHz) -65.5 -65.5 -65 -64.5 -64.5 -64 -64.5 -63.5 -63.5 -63.5 -62.5

256 QAM( 28 MHz) -68.5 -68.5 -68 -67.5 -67.5 -67 -67.5 -66.5 -66.5 -66.5 -65.5

256 QAM( 14 MHz) -71 -71 -70.5 -70 -70 -69.5 -70 -69 -69 -69 -68

System Gain Measured at ODU RX port at 10-6 BER [BER at 10-3 value below +1.5 dB]

256 QAM ( 56 MHz) 89.5 89.5 85 84.5 84.5 83 81.5 80.5 80.5 80.5 78.5

256 QAM( 28 MHz) 93.5 93.5 89 88.5 88.5 87 85.5 84.5 84.5 84.5 82.5

256 QAM( 14 MHz) 96 96 91.5 91 91 89.5 88 87 87 87 85

Power Control 0 to 20 dB (1 dB step) + (5 dB additional ATT) 0 to 20 dB

Page 49: 1 iPasolink Introduction

iPASOLINK Introduction 48

OUT DOOR UNIT

iPASOLINK

Page 50: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

TX RF

BPF

MPX

RX RF

BPF

RF AMP UP CONV

LO

DC-DC CONV

DOWN CONV

CONTROL

LNA

Page 51: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Label

IF IN/OUT

Turn OFF the IDU DC

power before removing

the IF cable

RX LEV MONITOR

RF IN/OUT COAXIAL TYPE (6-8 GHz)

RF IN/OUT WG TYPE (6-8 GHz)

HANDLE

Frame Ground

Page 52: 1 iPasolink Introduction

iPASOLINK Introduction 51

Frame Ground

IF IN/OUT

Turn OFF the IDU DC

power before removing

the IF cable

RX LEV MONITOR

RF IN/OUT 13 – 38 GHz

HANDLE

TRP-15G 1D (IHG)

Page 53: 1 iPasolink Introduction

iPASOLINK Introduction 52

Input IF signal consists of:

•350 MHz TX IF

•140 MHz RX IF

•10MHz Control

•DC power -48V

Each of the input IF signal components are separated in the MULTIPLEXER using

separation filters. DC voltage is supplied to the DC-DC CONV to produce

regulated DC voltages required in the ODU.

The 10 MHz control signal which is ASK modulated is sent to the Control circuit,

where the ODU controls like TX Power, RF Frequencies etc. are implemented. The

Alarms in ODU are collected in the Control module and sent to the IDU using the

ASK modulated 10 MHz signal.

Output IF signal consists of:

•10MHz Alarm/Response

RX LEV ALM

TX PWR ALM IF INPUT ALM

350 MHz

TX: 350 MHz

RX: 140 MHZ

DC: -48V

Page 54: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

NHG2

IHG

iPASOLINK 200

ODU Compatibility

(Existing only)

(Supplied with iPaso)

Page 55: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

PERFORMANCE - ODU

ITEM OUT DOOR UNIT

iPASOLINK High Grade (IHG) type ODU

Power Consumption (1+0) (1+1)

6 – 11 GHz 30W Hot standby: 450W, Twin path: 60W

13 -26, 28, 32,and 38 GHz 23 W Hot standby: 38W, Twin path: 46W

Mechanical Dimensions

6-11 GHz 237(W), 237(H), 101 (D), 3.5 Kg

13-38GHz 239(W), 247(H), 68 (D), 3 Kg

EMC Conforms to EN301 489-4

Safety Conforms to EN60950-1

Environmental Condition Operation: -33 to +50deg.C, (ETSI EN301019-1-4 class 4.1), Humidity: 100% (IP66)

Workable: -40 to +55 deg.C

Transportation ETSI EN301019-1-2 class 2.3

Storage ETSI 201019-1-1 class 1.2

Page 56: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

50

60

70

80

90

100

6 7 10 13 15 18 23 26 32 38

Frequncy(GHz)S

ys

tem

Ga

in(d

B)

NEO HP with NHG2 iPASOLINK with IHG

(256QAM/56MHz)

Enhanced System Gain

High System Gain

•High System Gain achieved by Low Density Parity

Check (LDPC) Forward Error Correction (FEC)

technology and distortion canceling technique

called linearizer allowing smaller antennas and

reducing platform cost.

Enhanced Radio Performances with new ODU (IHG)

Page 55

Page 57: 1 iPasolink Introduction

iPASOLINK Introduction 56

June 25, 2010

Page 58: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

CS Modulation

Mode 1 7 MHz

Mode 2 14 MHz

Mode 3 28 MHz

Mode 4 56 MHz

Radio Transmission

capacity

Max Packet Throughput

Radio Transmission

capacity

Max Packet Throughput

Radio Transmission

capacity

Max Packet Throughput

Radio Transmission

capacity

Max Packet Throughput

QPSK 10 Mbps 14 Mbps 21 Mbps 28 Mbps 44 Mbps 57 Mbps 90 Mbps 114 Mbps

16 QAM 21 Mbps 28 Mbps 44Mbps 56 Mbps 89 Mbps 114 Mbps 181 Mbps 229 Mbps

32 QAM 27 Mbps 35 Mbps 55 Mbps 71 Mbps 111 Mbps 143 Mbps 226 Mbps 287 Mbps

64 QAM 33 Mbps 42 Mbps 66 Mbps 85 Mbps 134 Mbps 172 Mbps 271 Mbps 345 Mbps

128 QAM 38 Mbps 49 Mbps 77 Mbps 99 Mbps 160 Mbps 200 Mbps 316 Mbps 402 Mbps

256 QAM - - 89 Mbps 114 Mbps 180 Mbps 229 Mbps 361 Mbps 460 Mbps

iPASOLINK – Adaptive Modulation Radio

AMR is a technology to improve robustness mainly in the packet transmission environment by

utilizing thermal threshold difference between modulation hierarchy such as QPSK and 256

QAM.

On the fine day, the operator can get the 229Mbps throughput over the link which is designed

for 57Mbps throughput as illustrated in the figure.

iPASOLINK support hitless modulation switchover from 256QAM to QPSK as shown in table.

Note: Maximum throughput at 64 byte VLAN tagged frame passed rate base

Page 59: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

iPASOLINK – Adaptive Modulation Radio

C/N18 dB (16Q)

C/N 24 dB (64Q)

256QAM

128QAM

64QAM

16QAM

C/N 30 dB (256Q)

C/N 21 dB (32Q)

32QAM

QPSK

Modulation switching is done at BER=10-10.

Equivalent C/N is shown

C/N 27 dB (128Q)

Page 60: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

iPASOLINK – Adaptive Modulation Radio

“Reference modulation” is the word of definition in AMR operation, that is base condition in link budget calculation

and this is related to ATPC operation. The selection of reference modulation and TX power control (MTPC/ATPC)

relates to link budget of system gain and capacity. Please refer as follows.

18

19

20

21

22

23

24

QPSK 32QAM 128QAM

Ref.256QAM

Ref.QPSK

Reference modulation effects TX power range in order to avoid interference.

TX power is restricted in lower modulation scheme.

Ex. TX maximum power comparison by reference modulation at 18GHz 28MHz

dBm

Modulation

Page 61: 1 iPasolink Introduction

iPASOLINK Introduction 60

Adaptive Modulation Radio (AMR)

QPSK 16 QAM 32 QAM 64 QAM 128 QAM 256 QAM MODULATION SCHEME

Traffic Capacity

14 Mbps 28 Mbps 35 Mbps 42 Mbps 49 Mbps 7 MHz CH BW

28 Mbps 56 Mbps 71 Mbps 85 Mbps 99 Mbps 114Mbps 14 MHz CH BW

57 Mbps 114 Mbps 143 Mbps 172 Mbps 200 Mbps 229 Mbps 28 MHz CH BW

114 Mbps 229 Mbps 287 Mbps 345 Mbps 402 Mbps 460 Mbps 56 MHz CH BW

99.999% 99.996% 99.994% 99.990% 99.975% Reliability

Critical Traffic Critical Traffic Voice Traffic

Less Critical Less critical Data (video)

Best Effort Internet / e-mail

Microwave links are designed to carry traffic at 99.999% availability under all path conditions with a approx. 30 dB

fade margin. With higher modulation for the same link 99.98% availability can be achieved with reduced fade margin

for higher throughput.

System Outage

5 min 364.91 Days

1 Year / (365 days)

126.4 min

Page 62: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Traffic Type Combinations

STM-1 LAN OH

STM-1 LAN OH

E1 LAN OH

E1 OH

STM-1 LAN OH E1

STM-1 LAN OH

STM-1 LAN OH

E1 LAN OH

E1 OH

STM-1 LAN OH E1

Traffic type convergence fixed modulation Traffic type convergence AMR modulation

Priority traffic

Page 63: 1 iPasolink Introduction

iPASOLINK Introduction 62

Monitor & Control

Monitor & Control

400

200

Local and remote monitor & control

LAN cable

WEB

browser

Back to back

Back to back

Cannot Monitor from Web LCT

PNMTj Cannot Monitor

iPASOLINK

400

400

NEO

Page 64: 1 iPasolink Introduction

iPASOLINK Introduction 63

June 25, 2010

Page 65: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

RNC

Node-B/ BTS

PRC

E1 PDH TDM Backhaul (Sync Network)

Clock Distribution

PRC; Primary Reference Clock

Core

Mobile Network is synchronized by the primary clock.

If there is no synchronization,

1) Data Buffer slip

2) Bit error

3) Signal hand-off failure between BTS , etc.

or Synchronization by GPS receiver

( like WiMAX system , because of packet backhaul network)

Synchronization by clock relay

BS BS

Page 66: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Data

Backhaul

Clock & Data

E1/ STM-1 NE

Timing Recovery with Legacy TDM • clock recovery from line TDM data(Legacy Clock synchronization technique)

NE

E1/ STM-1

FE / GbE

Sync

Ether

Timing Recovery with ITU-T G.8261 Synchronous Ethernet •Clock is recovered from Ethernet but does not affect the Ethernet layer

•Intermediate equipments must also support Synchronous Ethernet

•Very effective but limited to specific segments of the network

Sync

Ether

Synchronous Ethernet

Capable equipment

FE/GbE FE/GbE

NE NE

Sync. Ethernet

B

S

B

S

E1/ STM-1

Page 67: 1 iPasolink Introduction

iPASOLINK Introduction 66

Clock (Recovered from

PTP Packet)

PTP Server Clock (PTP Packet)

FE / GbE

Timing Recovery with PTP(Precision Time Protocol) (IEEE1588v2)

•Clock and data use separate packet connections

•Requires PTP server and dedicated PTP network for precise synchronization

NE NE

IEEE1588v2(slave)

FE/GbE FE/GbE

No phase sync information after converted to Sync Eth or E1

Clock & Data

(recovered from

PWE/RTP packet)

E1 Clock and Data

Clock (within RTP Header)

T1/E1 Data (PWE/CES)

CESoP

FE / GbE

Timing Recovery with RTP(PWE/CES): Not accurate for network synchronization •Clock and data use the same packet connection

•RTP(Real-time Transport Protocol IETF RFC3551): using sequence number and timestamp

information, RTP offers framework that packet receiver can recover clock and timing of the

source.

Backhaul

NE

CESoP

NE

E1

B

S

B

S E1

Page 68: 1 iPasolink Introduction

iPASOLINK Introduction 67

G.8261 Synchronous Ethernet

Sync Ether clock performance is similar to what is available in SDH and PDH timing

Sync Ether clock distribution can be an extension of existing synchronization distribution system

Sync Ether does not impact existing IEEE 802.3 specification

Sync Ether module extract system clock and converts to Sync E clock

Sync Ether module converts Sync E clock to internal synchronous clock

Similar to SSM in SDH based networks Sync E provide SSM message (G.8264)

Sync Ether use the physical layer of the Ethernet

MAC Ethernet

PHY

TX CLK

Conventional

Ethernet line card

MAC Ethernet

PHY

TX CLK

MAC Ethernet

PHY

TX CLK

MAC Ethernet

PHY

TX CLK SyncE

Timing

SyncE

Timing

G.8262

EEC

LO +/- 4.6 PPM

G.8262

EEC

LO +/- 4.6 PPM

LO +/- 100PPM LO +/- 100PPM

Conventional

Ethernet line card

Synchronous Ethernet line card Synchronous Ethernet line card

SDH Sync Ether – G.8261

PRC PRC

Bit Stream Bit Stream

SSM (ITU-T G.707) SSM (ITU-T G.707)

SDH Overhead OAMPDU

8000/Sec 10 / Sec

Page 69: 1 iPasolink Introduction

iPASOLINK Introduction 68

Synchronization method

Synchronous Ethernet

PDHLine Transmit Clk

SDHLine Transmit Clk

G.703 External Clk Output

Radio Clk Output

iPASOLINK can utilize multiple clock sources.

PLL Timing Source 1

Timing Source 2

Timing Source 3

S

E

L

S

E

L

Modem-1

Modem-2

E1 Line CLK

Option Line CLK(STM1)

GbE Line CLK

External CLK IN

SEL

External CLK OUT

Page 70: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

REDUNDANCY SYSTEM

CONFIGURATIONS

Page 71: 1 iPasolink Introduction

iPASOLINK Introduction 70

Possible Configurations – Hot Standby

HYBHLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

M

P

X

F1

F1'

F1

F1'

HYBHLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

M

P

X

F1

F1'

F1

F1'

F1

F1'M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

Single Antenna HS System

HLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

F1

F1'

F1

F1'

HLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

M

P

X

MOD

DEM

ODU-1(TX)

ODU-1(RX)

M

P

X

F1

F1'

F1

F1'

F1

F1'

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

F1' F1

Two Antenna HS System

Space Diversity

Page 72: 1 iPasolink Introduction

iPASOLINK Introduction 71

Single Antenna Twin Path System

Possible Configurations- Twin Path

HL

SW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

F1

F1'

F2

F2'

F1'

F2

F2'

HL

SW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

M

P

X

MOD

DEM

ODU-1(TX)

ODU-1(RX)

M

P

X

F1

F1'

F1

M

P

X

M

P

X

F2'

F2

M

P

X

M

P

X

M

P

X

M

P

X

Two Antenna Twin Path System

HYBHLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

M

P

X

F1

F1'

F2

F2`

HYBHLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

M

P

X

F1

F1'

F1

F1'

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

XF2`

F2

F2

F2'

Frequency Diversity

Page 73: 1 iPasolink Introduction

iPASOLINK Introduction 72

Possible Configurations

OMT

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

F1

F1'

F2

F2'

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

F1

F1'

F2

F2'

F1

OMT

F2'

F2F1'

V

H

V

HM

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

(2+0) System using OMT

HL

SW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

F1

F1'

F2

F2'

F1

F1'

HLSW

MOD

DEM

ODU-2(TX)

ODU-2(RX)

MOD

DEM

ODU-1(TX)

ODU-1(RX)

F1

F1'

F2

F2'

HYBF2

F2'

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

M

P

X

Hybrid Diversity System

Page 74: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

AUTOMATIC TX POWER CONTROL

The Automatic Transmit Power Control (ATPC) function automatically varies the TX output power

according to path conditions. Fading exerts heavy influences on propagation, causing the receive signal

level at the opposite station to vary. The ATPC function operates by controlling the transmit output

power of the opposite station according to the variation of the received signal level at the local station.

The receive signal level variation at the opposite station is informed to the local station using the ATPC

bits in the overhead. To implement ATPC, the receiving level (RX IN LEV) is detected by the receiver

and passed on to the CPU in the CTRL circuit of the MODEM module. The CPU then determines

whether the transmit output power needs to be controlled. This is based on the transmit output power,

the minimum and maximum values of the output control range, and the receiving threshold level that

were previously specified using the LCT or PNMT.

The function of the control signal (POWER CONT), is to maintain the RX signal level by lowering or

raising the TX output power of the opposite station. This control signal is based on the result of

comparison between the current receiver input level and the preset receiving threshold level.

Transmission level control can be used not only for setting the same operation (ATPC-ATPC) between

own station and opposite station but also for operation in combination of stations with different

operation (MTPC-ATPC, ATPC-MTPC) between own station and opposite station. The station set in

MTPC mode is not controlled by the information from opposite station but is fixed in its transmitting

output level.

Even if the station is set in the MTPC mode, the opposite station is likely to be set in the ATPC mode.

Therefore setting of the RX Threshold (Receiving threshold level) is required for controlling the

transmission level of the opposite station. Between the stations that are respectively set in the MTPC

mode, however, the setting is disabled.

Automatic Transmit Power Control Operation

Page 75: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

ATPC Operation

TX

OU

TR

X L

evel

RX Threshold(-60dBm)

-55dBm

Hyste

resis

(5dB

Fix

ed)

ATPC TX MAX

ATPC TX MIN

Up Mode

Down Mode

The ATPC Control transmits the information

on the receiving level to the opposite station

and controls the transmission level of its

own station in accordance with the receiving

level of the opposite station.

The ATPC Control can be used in several configurations:

ATPC - ATPC

MTPC - ATPC

ATPC - MTPC

Station - A

Station - B

STN - A STN - B

MTPC

RX Threshold = -60dBm

ATPC

When RSL reaches -60dBm at STN –B STN-

A starts to increase the TX power in 1 dB

steps, this process continues until the ATPC

TX MAX level is reached. Any RSL drop

below this point is not compensated. In the

UP Mode ATPC operation starts at -55dBm

because of the fixed 5dB hysteresis.

Fading depth deep shallow

deep shallow

Page 76: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

IF LOOP-BACK

STM-1 NEAR-END LOOP-BACK

STM-1 FAR-END LOOP-BACK

E1 NEAR-END LOOP-BACK

E1 FAR-END LOOP-BACK

Page 77: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

TX1

RX1

O/E

550 + 50ms

TIMER

ALS ENB / DIS

O/E

90 + 10s

TX ON

TIMER

2s

TX ON

TIMER

2/9 + 0.25s

TX ON

TIMER

30/60/180s

TX ON

TIMER

DATA BUS

RX2

TX2Automatic

Reset

Manual

Reset

RLOS

LCT / PNMT

OPT INTFC CTRL 60s

180s

300s

90s

2s

2s

Au

tom

atic R

ese

tM

an

ua

l

Re

se

t

550ms

The STM-1 OPT Interface is provided with Automatic Laser Shutdown Function (ALS), if disable the laser

output is always ON even if the optical cable to RX2 is disconnected. When ALS function is set to enable the

OPT INTFC observe the loss of signal and start a timer (550ms) and generate a control signal to interrupt

the optical output from the TX2 to RX1 subsequently the ALS function in the MUX equipment will switch OFF

the laser output from TX1. When the fault at A is cleared the system can be retorted by controlling the laser

output from TX2 through one of the following methods.

Automatic Control

Manual Restart Short on time (2 sec) Control

Manual Restart Long on time (90 sec) Control

Page 78: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

This function does not apply to the 10/100Base-T INTFC.

STM-1

INTFC

RFCOH

MUX

STM-1

INTFC

RFCOH

DEMUX FSYNC

MODEM

ODU

STM-1

OUTPUT

CONTROL

STM-1

OUTPUT

PASOLINK PLUS

STM-1

LOF LOF

MODEM

ODU

LOS

LOF

RLOS

RLOF

RLOS

RLOF

MUX

INPUT

LOSS

X MUX

STATION-A STATION-B

In the STM-1 configuration, when there is no STM-1 input or any fault in the radio section, or for any fault in the

PASOLINK equipment, MS-AIS is sent out to the MUX equipment.

STATION-A STATION-B

EVENT LED LCT LED LCT STM-1 OUTPUT

STM-1 OUTPUT CONTROL

STM-1 Input Loss at station-A IDU ALM MAIN INTFC LOS -- UNDER EXECUTION AIS/SHUTDOWN

STM-1 L0ss of Frame at station-A IDU ALM MAIN INTFC LOF -- UNDER EXECUTION AIS/SHUTDOWN

RX Level down at station-B -- ODU ALM UNDER EXECUTION AIS/SHUTDOWN

Loss of radio frame at station-B -- IDU ALM UNDER EXECUTION AIS/SHUTDOWN

BER at station B (<= 1 E-4) -- IDU ALM NORMAL N/A

This function is called the MS-AIS generation, and can be “enabled” or Disabled” (default enabled)

When this function is “disabled”, depending on the STM-1 INTFC type used, following actions will be carried

out. Electrical INTFC – output a non- frame (all “1”) signal

Optical INTFC – Shutdown the output optical signal

Status of this function is displayed under STM -1 INTFC ”output control” in the LCT and PNMT

Page 79: 1 iPasolink Introduction

iPASOLINK Introduction 78

XPIC

CRC

A/D

A/D - DEC

A/D

A/D DEC

LO

Canceling

signal

Canceling

signal

Block diagram of XPIC RX signal

Intf. signal

Intf. signal

LO

ref OSC

~ IF OSC

IF OSC

- CRC

EPS

XPIC EPS

Error signal

Error signal

Carrier

Recovery

Carrier

Recovery

MOD

Vertical

Horizontal

~ ~

TX

MOD

~ ~

TX

Transmit Side Receive Side

Page 80: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

TITLE PARAMETER

Radio Redundancy (initial key) 1+0/1+1 usage(1 pair) / (1+1) usage (2pair)

Upgrade key 1+0 1+1 usage(1 pair)

1+0 (1+1) usage (2 pair)

1+1 usage(1 pair) (1+1) usage (2pair)

ETH Traffic aggregation @ N+0 radio Not available/Available

Radio Bit rate (Initial key) fixed/free/AMR

Radio Bit rate (upgrade Key) Fixed>Free / Fixed>AMR / Free>AMR

Radio Capacity1 (initial Key) 10/20/50/100/150/200/300/400 Mbps

Radio Capacity2(Initial Key) parameter Radio Capacity1

Radio Capacity3(Initial Key) parameter Radio Capacity1

Radio Capacity4(Initial Key) parameter Radio Capacity1

Radio Capacity1 (upgrade Key) 10>20/50/100/150/200/300/400

20>50/100/150/200/300/400

50>100/150/200/300/400

100>150/200/300/400

150>200/300/400

200>300/400

300>400

Radio Capacity2 , 3, 4 parameter Radio Capacity1

Page 81: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

TITLE PARAMETER

XPIC function not available/available (1pair)/ available (2pair)

Not available -> 1pair /Not available -> 2pair

1 pair -> 2 pair

Advanced XPIC Function Not available / available

Neo ODU Compatibility not available/available

NEO/c IDU Compatibility Not available / available

RJ45 port usage (main) 2xFE available / 2 GbE available

SFP Port Usage (main) Not available / 2 GbE available

SFP Port Usage (option 1) Not available / 2 GbE available

SFP Port Usage (option 2) Not available / 2 GbE available

SFP Port Usage (option 3) Not available / 2 GbE available

SFP Port Usage (option 4) Not available / 2 GbE available

Additional VLAN Table 256 Table / 4094 Table

QoS Classify 4 lev Classify / 8 lev Classify

LAG / LACP ( line) not available/available

Ethernet Ring Protection not available/available

Page 82: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

TITLE PARAMETER

Ether OAM(CC/LT/LB) not available/available

Ether OAM(DM/LM) not available/available

E1 SNCP not available/available

STM-1 APS Protection not available/available

STM-1 MUX/DEMUX not available/available

SYNC ETH Clock not available/available

IEEE 1588v2 PTP clock not available/available

Additional PWE E1 16 E1 (regular Support) / 32 E1 / 64 E1

16 E1 > 32 E1 / 16 E1 > 48 E1 / 16 E1 > 64 E1

32 E1 > 48 E1 / 32 E1 > 64 E1

48 E1 > 64 E1

ETH over MPLS not available/available

TDM over MPLS not available/available

ATM over MPLS not available/available

ATM / IMA (ATM aggregation) not available/available

Page 83: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Page 84: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

TXPWR ALM Alarm The TX PWR is lower than 3 dB. MJ

TX INPUT ALM Alarm The TX IF signal become out of range from

-29 dBm ± 5 dB.

MJ

RXLEV ALM Alarm The reception level become lower than -72dBm ~ -94dBm level.(It

depends on the modulation system and bit rates).

MJ

ODU CPU / Cable

Open Alarm

CPU of ODU is faulty or IF CABLE between IDU - ODU of ODU is broken

or is not connected.

MJ

MUTE STATUS Status Indicates the control status of the ODU TX power output. When the TX

power is set to Mute, Status is issued. -

LO REF Alarm Loss of Ref LO signal of ODU. MN

TX SW Status Status Radio interface TX SW usage state in 1+1 HS Redundant configuration -

ODU ALM Alarm Indicates one of the TXPWR ALM, ODU PS ALM, APC ALM, TPC ALM,

ODU SELF CHECK ALM occurrence MJ

ODU TOTAL ALM Alarm Indicates one of the TXPWR ALM, TX INPUT ALM, RX Level ALM, ODU

CPU/CABLE OPEN ALM, LOREF, ODU ALM occurrence.

Highest

severity will

be displayed

ATPC Power

Mode Status

ATPC control signal fault (90sec) as well as MAX Power continuation

90sec -

ODU TYPE

MISMATCH Alarm

Indicate connected ODU type is not supported at iPASOLINK system, or

ODU type cannot use in provisioned modulation setting. MJ

ODU PS ALM Alarm ALM in a case of Power supply interruption to ODU. MJ

ODUPS SET

STATUS

Status Status indication of the protection switch for ODU power supplies -

Page 85: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

Unequipped (MODEM-A) Alarm Reserved and installed optional package is removed from optional slot. MJ

Type Mismatch(MODEM-A) Alarm The equipped type of interface is different from configured type. MJ

Communication FAIL(MODEM-A) Alarm Communication failure of equipment internal control communication. MJ

Module(MODEM-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ

BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ

RXSW STATUS Status Radio interface RX SW usage state in Redundant configuration -

LOSS OF FRAME Alarm Loss of Frame at radio side. MJ

FRAME ID Alarm Frame ID (route differentiation ID) MJ

HIBER ALM Alarm Radio signal degradation (High BER threshold detection). (Threshold :1E-3/1E-4/1E-5) MJ

LOBER ALM Alarm Radio signal degradation (Low BER threshold detection). (Threshold. :1E-6/1E-7/1E-8/1E-9) MN

EARLY WARNING Alarm Radio signal degradation (Early Warning threshold detection). (Threshold :1E-9) MN

MOD Alarm Indicates the operating status of the MOD. When any failure occurs in the modulator section, “Alarm” is issued. MJ

IF CABLE SHORT Alarm IF cable between IDU - ODU is in short condition. MJ

INPHASE. Status In - Phase indicates the received signal DADE status between No.1 and No.2 MODEM interfaces are in Phase

condition. In this condition, hitless switch over is available.

-

L2SYNC LOSS Alarm Loss of frame synchronization of GFP frames on MODEM port. MJ

RDI Alarm RDI indication reception alarm on MODEM port MJ

UAE. Alarm UAE alarm. Indicates the occurrence of an Unavailable state. MN

TDM/AMR Range Mismatch Alarm Mismatch condition when the mapping number of E1 channels are different between TX and RX modem ports or

mismatch condition of selected RX AMR modulation range and TX AMR modulation range.

MJ

TX SW Reverse Request Status TXSW request signal receiving condition from the opposite station: -

TX SW Lock in Status Status TXSW Lockin state -

Unlocked Alarm Wireless synchronization status of the local side. MJ

MODEM PS OFF Status Indicate power off condition of power switch which is in front of MODEM-A card. -

Page 86: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

Unequipped (STM1-A) Alarm Reserved and installed optional package is removed from optional slot. MJ

Type Mismatch(STM1-A) Alarm The equipped type of interface is different from configured type. MJ

Communication

FAIL(STM1-A) Alarm Communication failure of equipment internal control communication. MJ

Module(STM1-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ

BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ

SNCP PPS-FAIL Alarm. SNCP Path Protection Failure MJ

SNCP Protection Status Status SNCP Path Protection Status indication which indicates [FS, SF, SD, MS, NR] condition. -

APS Protection Status Status APS Line Protection Status indication which indicates {FS,SF,SD,MS,NR} condition. -

APS Lock-in Status Status APS protection Lock-in Condition. -

SFP_Type Mismatch

(STM1) Alarm Mismatch between SFP on LCT and installed SFP. MJ

SFP Unequipped (STM1) Alarm A SFP is removed. MJ

STM-1LOS Alarm LOS detection on STM-1 Optical port. MJ

STM-1 TF Alarm Transmit Failure detection on STM-1 optical port. MJ

RS LOF Alarm SDH Frame synchronization lost in RS (Regenerator Section) on STM-1 port. MJ

RS TIM Alarm Trace Identifier Mismatch detected in RS (Regenerator Section) on STM-1 port. MJ

RS EXC Alarm B1 Byte error occurrence in RS (Regenerator Section) on STM-1 port. MJ

RS DEG Alarm B1 byte error in RS (Regenerator Section) (RS - Degraded) on STM-1 port. MN

MS AIS Alarm AIS detection in MS (Multiplex Section) on STM-1 port. MJ

MS RDI Alarm Remote Defect Indication reception in MS (Multiplex Section) on STM-1 port. MJ

AU AIS Alarm AIS detection in AU (Administrative Unit) on STM-1 port. MJ

Page 87: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

AU LOP Alarm Loss of AU pointer happens on STM-1 port. MJ

HP UNEQ Alarm HOP (Higher Order Path) Unequipped occurrence on STM-1 port. MJ

HP TIM Alarm HOP (Higher Order Path) Trace Identifier mismatch occurrence on STM-1 port. MJ

HP-PLM Alarm Payload Label Mismatch occurrence in HOP (Higher Order Path) on STM-1 port. MJ

HP-RDI Alarm RDI (Remote Defect Indication) reception in HOP (Higher Order Path) on STM-1 port. MJ

HP-LOM Alarm Loss of Multi-Frame on STM-1 port. MJ

TU -AIS Alarm In TU (Tributary Unit), AIS detection on STM-1 port. MJ

TU -LOP Alarm Loss of TU Pointer on STM-1 port. MJ

LP -UNEQ. Alarm LP (Lower Order Path) Unequipped occurrence on STM-1 port. MJ

LP – RDI Alarm Remote Defect Indicate reception by an LP (Lower Order Path) on STM-1 port. MJ

LP – PLM Alarm Payload Label Mismatch Failure occurrence by an LP (Lower Order Path) on STM-1 port. MJ

ALS Status Indication of automatic laser shutdown condition at STM-1 optical port. -

RS UAS Status Status UAS status indication on STM port (Repeater Section) -

STM-1 AIS Generated Status AIS generation condition on STM port. -

PJE Status Pointer justification Event indication at STM port. -

Page 88: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

Unequipped (16E1) Alarm Reserved and installed optional package is removed from optional slot. MJ

Type Mismatch(16E1) Alarm The equipped type of interface is different from configured type. MJ

Communication FAIL(16E1) Alarm Communication failure of equipment internal control communication. MJ

Module(16E1) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ

BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ

E1 LOS Alarm No signal input on E1 port MJ

E1 AIS Status ALARM/Status category can change according to " AIS Received Condition

Setting

MJ / -

Usage Error Alarm Unused E1 CH input signal detection. MN

E1 AIS Generated Status AIS generation condition on every E1 Channels. -

Page 89: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

Unequipped (AUX-A) Alarm Reserved and installed optional package is removed

from optional slot.

MJ

Type Mismatch(AUX-A) Alarm The equipped type of interface is different from

configured type.

MJ

Communication

FAIL(AUX-A)

Alarm Communication failure of equipment internal control

communication.

MJ

Module(AUX-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX

direction from STM-1 Card.

MJ

BUS ERROR RX Alarm Data communication BUS failure condition in RX

direction from STM-1 Card.

MJ

Item Name (Input-x)

Item Name (Cluster-x)

Status/

Alarm

HKA Status Indication {Alarm, Normal} for every

HKA input.

- or

Severity selectable

Item Name (Output-x) Status HKC Status {Alarm, Normal} for every HKC output. -

Page 90: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

Unequipped (GBE-A) Alarm Reserved and installed optional package is

removed from optional slot.

MJ

Type Mismatch(GBE-

A)

Alarm The equipped type of interface is different

from configured type.

MJ

Communication

FAIL(GBE-A)

Alarm Communication failure of equipment

internal control communication.

MJ

Module(GBE-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition

in TX direction from STM-1 Card..

MJ

BUS ERROR RX Alarm Data communication BUS failure condition

in RX direction from STM-1 Card..

MJ

SFP_Type Mismatch

(ETH)

Alarm Mismatch between SFP on LCT and

installed SFP.

MJ

SFP Unequipped

(ETH)

Alarm A SFP is removed. MJ

LAN LINK Alarm LINK of the LAN Port is disconnected. MJ

Speed & Duplex Status LAN Port setting (Speed&Duplex) -

Page 91: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

MODULE (Main Board) Alarm Equipment fault MJ

BUS ERROR Alarm Data communication BUS failure condition. MJ

Unequipped (PS) Alarm Installed Power Supply Module is removed from PS slot. MJ

Power Supply Alarm Alarm in case of power failure. MJ

FAN Fail Alarm FAN failure MJ

Unequipped (FAN) Alarm Installed FAN Module is removed from FAN slot. MJ

Unequipped (CLK2M) Alarm Installed CLK2M Module is removed from Main Card. MJ

Type Mismatch (CLK2M) Alarm The equipped type of interface is different from configured type. MJ

IDU CPU Alarm Alarm. IDU CPU Alarm MN

Memory Failure Alarm Detection of memory failure MJ

USB Failure Alarm USB memory failure indication MJ

Temperature Alarm The temperature is over the threshold MN

Maintenance Status Maintenance declaration. -

CLK FAIL Alarm Reference Clock Failed. MN

CLK Drift Alarm Reference Clock source Frequency drift condition MN

LTI Alarm Loss of all incoming timing source MJ

CLK Status Changed Status Reference clock change status

(1) (Locked Ref1)

(2) (Locked Ref2)

(3) (Locked Ref3)

(4) Holdover

(5) Freerun

-

SSM FAIL Alarm Received Sync Status Message value is in unstable condition. MN

Quality Level Status Received quality level condition of each timing source. -

Squelch Status The condition of External CLK Output is in squelch condition. -

Page 92: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

EXT CLK Condition Status Condition level of External CLK output. -

EXT CLK LOS Alarm Loss of Signal condition of External clock input. MN

EXT CLK AIS Alarm AIS (Alarm Indication Signal) condition of External Clock input. MN

EXT CLK LOF Alarm Loss of frame condition of External Clock input. MN

EXT CLK Loop Alarm Indication of EXTERNAL clock input is used as EXTERNAL clock output. MJ

Item Name (Input-x)

Item Name (Cluster-x)

Status/

Alarm HKA Status Indication {Alarm, Normal} for every HKA input.

- or Severity

selectable

Item Name (Output-x) Status HKC Status {Alarm, Normal} for every HKC output. -

E1 LOS Alarm No signal input on E1 port MJ

E1 AIS Status

PDH – AIS

ALARM/Status category can change according to " AIS Received Condition Setting MJ / -

Usage Error Alarm Unused E1 CH input signal detection. MN

E1 AIS Generated Status AIS generation condition on every E1 Channels. -

ETH LOS Alarm LOS detection at Optical Ethernet port. MJ

ETH TF Alarm Transmit Fail detection at Optical Ethernet port. MJ

SFP_Type Mismatch (ETH) Alarm Mismatch between SFP on LCT and installed SFP. MJ

SFP Unequipped (ETH) Alarm A SFP is removed. MJ

LAN LINK Alarm LINK of the LAN Port is disconnected. MJ

Speed & Duplex Status LAN Port setting (Speed&Duplex) -

ETH-OAM LOC Alarm MJ

ETH-OAM Mismerge Alarm Ether OAM Mismatch Detection notice. MN

ETH-OAM Unexpected Period Alarm Ether OAM Unexpected MEP and Ether OAM Unexpected Period detection notice MN

ETH-OAM RDI Alarm Ether OAM RDI reception detection notice MJ

Page 93: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Indication Category Descriptions Severity

RSTP New Root Bridge Detect Status The notice in which new RootBridge was detected at the time of SpanningTree processing -

RSTP Topology Changed Status The notice in which a Topology change was detected at the time of SpanningTree processing -

RSTP Protocol Migration Status

The notice which received a Bridge protocol Data Units different in classification of RSTP/STP at the

time of SpanningTree processing -

RSTP Invalid BPDU Received Status Invalid BPDU message at the time of SpanningTree processing -

LLF Message Timeout Status

Loss of a conditional signaling in which the LLF control signal should be received continuously from

the opposite radio equipment.

LLF Status LLF force a LINKDOWN status. The Ethernet port under "edge" mode becomes LINKDOWN. -

IDU TOTAL ALM Alarm IDU TOTAL ALM

The highest

Severity will

be reported

Total FDB Full Status The number of DynamicEntryDynamic Entry in L2Switch has reached the maximum number.

FDB Full Status FDB Full indication specified per VLAN basis.

Page 94: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

Page 95: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

ACAP Adjacent Channel Alternate

Polarization

ACCP Adjacent Channel Co-Polarization

ACK Acknowledgement

AGC Automatic Gain Control

AIS Alarm Indication Signal

ALM Alarm

ALS Auto Laser Shutdown

AMR Adaptive Modulation Radio

ANT, Ant. Antenna

APS Automatic Protection Switch

ATT Attenuator

ATPC Automatic Transmitter Power Control

AU Administrative Unit

AUX Auxiliary

Ave Average

BBE Background Block Error

BER Bit Error Rate

BPF Band Pass Filter

BS Base Station

BSC Base Station Controller

BTS Base Transceiver Station

CAPEX Capital Expenditure

CBS Committed Burst Size

CCDP Co-Channel Dual Polarization

CCM Continuity Check Message

CEPT Conference of European Postal &

Telecommunication Administration

CIR Committed Information Rate

CKT Circuit

CLK Clock

CMF Channel Mismatch Failure

CMI Coded Mark Inversion

CONV Converter

CORBA Common Object Request Broker

Architecture

CoS Class of Service

CPU Central Processing Unit

CR Critical

CRC Cyclic Redundancy Check

CS Channel Separation

CTRL Control

CV near end Code Violation

CW Carrier Wave

DA Destination Address

DADE Differential Absolute Delay Equalizer

DB Database

DC Direct Current

DCN Data Communication Network

DEG Degraded

DEI Drop Eligible Indicator

DEM Demodulator

Des(Dest) Destination

DI Data-in

DL Download

DM Delay Measurement

DMM Delay Measurement Message

DMR Delay Measurement Reply

DO Data-out

DSCP Differentiated Services Code Point

DUP Duplexer

DXC Digital Cross Connect

E1 E-carrier level 1

EBS Express Burst Size

EIR Excess Information Rate

EMC Electro Magnetic Compatibility

EML Element Management Layer

EMS Element Management System

EOW C Order Wire

EPS ETH-Protection Switch

EQL Equalizer

ERP ETH-Ring Protection Switch

ES Errored Seconds

ETH-CC ETH-Continuity Check function

ETH-LB ETH-Loopback function

ETH-LBM ETH-Loopback Message

ETH-LBR ETH-Loopback Reply

ETH-LB ETH-Loopback function

ETH-LT ETH- Link Trace function

ETH-LTM ETH-Link Trace Message

ETH-LTR ETH-Link Trace Reply

ETH-OAM Ethernet Operations, Administration

and Maintenance

Page 96: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

ETH-OAM LB ETH-OAM Loopback

ETH-OAM LT ETH-OAM Link Trace

ETH-RDI ETH-Remote Defect Indication function

ETSI European Telecommunications

Standards Institute

EXC Electrical Cross Connect

E-to-E. End-to-End

Fail Failure

F/B Front Back Ratio

FCS Frame Check Sequence

FDB Forwarding Database

FE Fast Ethernet

FEC Forward Error Correction

FEBBE Far End Background Block Error

FEES Far End Errored Seconds

FESES Far End Severely Errored Seconds

FEUAS Far End Unavailable Seconds

FPGA Field Programmable Gate Array

F/W Firmware

GbE, GBE Gigabit Ethernet

3GPP Third Generation Partnership Project

GUI Graphical User Interface

H Horizontal

HDB High Density Bipolar

HK House Keeping

HP Higher order Path

HYB Hybrid

H/W Hardware

ID Identification

IDU Indoor Unit

IE Internet Explorer

IEC International Electro technical

Commission

IEEE Institute of Electrical and Electronics

Engineers

I/F Interface

IF Intermediate Frequency

IHG iPASOLINK High Grade

IN Input

INTFC Interface

I/O Input/Output

IP Internet Protocol

ITU International Telecommunication Union

ITU-R Radio Communication Sector of ITU

ITU-T Telecommunication Sector of ITU

L2SW Layer2-Switch

LAN Local Area Network

LB Loopback

LBM Loopback Message

LCD Loss of Cell Delineation

LCT Local Craft Terminal

LDPC Low Density Parity Check

LED Light Emitting Diode

Lev. Level

LLF Link Loss Forwarding

LM Loss Measurement

LMM Loss Measurement Message

LNA Low Noise Amplifier

LO Local Oscillator

LOC Loss of Continuity

LOF Loss of Frame

LOM Loss of Multiframe

LOP Loss of Pointer

LO REF Local Reference Signal Loss

LOS Loss of Signal

LP Lower order Path

LPM Link Performance Monitor

LT Link Trace

LTI Loss of incoming Timing Input

LTM Link Trace Message

MAC Media Access Control

MAIN Main

MAINT Maintenance

MAX Maximum

Mdev Mean Deviation

MDCPU MODEM CPU

MDI Medium Dependent Interface

MDIX Medium Dependent Interface

Crossover

MD4 Message Digest Algorithm 4

MD5 Message Digest Algorithm 5

MEG Maintenance Entity Group

MEM Memory

MEP MEG End Point

Page 97: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

MIN Minimum

MIP Maintenance Intermediate Point

MIX Mixer

MJ Major

MMC Multi Media Card

MME Mobility Management Entity

MMG Mismerge

MN Minor

MOD Modulator

MODEM Modulator Demodulator

MON Monitor

MPX Multiplexer

MS Multiplex Section

MSC Mobile Switching Center

MSDU MAC Service Data Unit

MSP Multiplex Section Protection

MTBF Mean Time Between Failure

MTPC Manual Transmitter Power Control

MUX Multiplexing Equipment

N/A Not Applicable

NBI Northbound Interface

NE Network Element

NML Network Management Layer

NMS Network Management System

OAM Operation Administration and

Maintenance

OCR Occur

Octs Octets

ODU Out-Door Unit

OFS Out of Frame Second

OMT Ortho-Mode Transducer

OPEX Operational expenditure

OPP Opposite

OPR Operation

OPT Optical

OSPF Open Shortest Path First

OSS Operation Support System

OUT Output

OW Oder Wire

PA Power Amplifier

PBR Pressurizable Type B, flange profile

square Rectangular

PCP Priority Code Point

PDH Plesiochronous Digital Hierarchy

PDU Protocol Data Unit

PGM Program

PHY Physical

PIR Peak Information Rate

PJE Pointer Justification Event

PJE-N Pointer Justification Event Negative Stuff

PJE-P Pointer Justification Event Positive Stuff

PKG Package

Pkts Packets

PLM Payload Label Mismatch

PMC PASOLINK Management Card

PMON Performance Monitor

PNMSj PASOLINK Network Management

System Java Version

PPI PDH PHY Interface

ppm parts per million

PPP Point-to-Point Protocol

PPS Path Protection Switch

PQ Priority Queuing

PRM Parameter

PROT Protection

PS Power Supply

PSC Protection Switching Counts

PSD Protection Switching Duration

PWR Power

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RCVR Recover

REF Reference

REM Remote

RDI Remote Defect Indication

RF Radio Frequency

RFS Radio Frequency Systems

RL Relay

RMON Remote Network Monitoring

RNC Radio Network Controller

Page 98: 1 iPasolink Introduction

iPASOLINK 400 Introduction (Draft)

RPL Ring Protection Link

RS Regenerator Section

RS-232 Recommended Standard 232

RSL Received Signal Level

RST Regenerator Section Termination

RSTP Rapid Spanning Tree Protocol

RX Receiver

SC Service Channel

SD Space Diversity

SDH Synchronous Digital Hierarchy

SEG Segment

SEP Severely Errored Period

SES Severely Errored Seconds

SFP Small Form factor Pluggable

SGMI Security Gateway Management

Interface

SMS Synchronous Multiplexing System

SMU Source Measure Unit

SNCP Sub-network Connection Protection

SNMP Simple Network Management Protocol

SP Strict Priority

SPD Speed

SRC Source MAC Address

STAT Status

STD Standard

STM Synchronous Transport Module

STP Spanning Tree Protocol

SUB Substitute

SW Switch

S/W Software

SWG Switch Group

SYNC Synchronous

TCI Tag Control Information

TCN Threshold Crossing Notification

TDM Time Division Multiplex

TDMoP TDM over Packet

TEMP Temperature

TERM Terminal

TF Transmit Fail

TIM Trace Identifier Mismatch

TLV Type Length Value

TM Through Mode

TNC Threaded Neil Councilman

ToS Type of Service

TPID Tag Protocol Identifier

TQC Total Quality Control

TTL Time To Live

TU Tributary Unit

TX Transmitter

UAE UAS Event

UAS Unavailable Seconds

UL Upload

UNEQ Unequipped

UNEXP Unexpected

Unicast DMR Unicast Delay Measurement Reply

UNM Unexpected MEP

UNP Unexpected Period

USB Universal Serial Bus

V Vertical

V Volt

VC Virtual Channel

VLAN Virtual LAN

VP Virtual Path

VPN Virtual Private Network

VSWR Voltage Standing Wave Ratio

WDM Wavelength Division Multiplexing

Web World Wide Web

WG Waveguide

WR Warning

WRR Weighted Round Robin

WS Wayside

XCTRL XPIC Control

X-DEM XPIC Demodulator

XFP 10(X) Gigabit Small Form Factor

Pluggable

XIF XPIC IF

XPD Cross Polarization Discrimination Ratio

XPIC Cross Polarization Interference

Canceller

XREF XPIC Reference

Page 99: 1 iPasolink Introduction

iPASOLINK Introduction 98