1 Introduction1 Introduction Whole milk, skim milk and infant formula emulsions are spray-dried to...

28
1 Introduction Whole milk, skim milk and infant formula emulsions are spray-dried to powder form at large industrial scale in order to accomplish better preservation, reduced bulk volume for economy of transportation and easier processing as food ingredients. However, during spray drying usually an unwanted layer of fat occurs on the particles' surface and this leads to detrimental effects on the powder properties, including reduced solubility in water (Fäldt & Bergenståhl, 1996; Millqvist-Fureby, Elofsson, & Bergenståhl, 2001), faster expiration due to lipid oxidation (Granelli, Fäldt, Appelqvist, & Bergenståhl, 1996; Hardas, Danviriyakul, Foley, Nawar, & Chinachoti, 2000; Keogh et al., 2001) and greater stickiness (Kim, Chen, & Pearce, 2005a; Nijdam & Langrish, 2006). This can mean a deteriorated product quality for the end user and a reduction in efficiency during manufacturing due to significant product loss and the necessity of additional processing steps, such as lecithination. For this reason, it is important to identify the driving forces that cause the formation of surface fat during spray drying of milk powder. A few studies previously speculated that the actual drying stage of the spray drying process might not be primarily responsible, but rather an atomization induced mechanism would already determine the eventual chemical surface composition (Fyfe, Kravchuk, Nguyen, Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan Martin Foerster a [email protected] Chang Liu a [email protected] Thomas Gengenbach b [email protected] Meng Wai Woo a [email protected] Cordelia Selomulya a, [email protected] a Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia b CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia Corresponding author. Monash University, Department of Chemical Engineering, 18 Alliance Lane, Clayton, Victoria 3800, Australia. Abstract The appearance of surface fat during the atomization process in spray drying of milk particles often impairs the functional powder properties. To investigate a possible approach that could minimise the surface fat formation, the interaction between a whole milk model emulsion and λ-carrageenan at various concentrations was studied, as well as how it influences the atomization behaviour and the resulting particle characteristics. Carrageenan can stabilize emulsions in the presence of milk protein by adsorption on the milk fat globule membranes. If too little or too much of the polysaccharide was added, bridging flocculation or depletion flocculation, respectively, occurred inside the emulsions. The best stability and minimal fat globule size were obtained for a carrageenan content of 0.3% w/w. Rheological investigation indicated that the extensional viscosity can be an important factor influencing the emulsion disintegration behaviour during atomization. The λ-carrageenan stabilized emulsions featured a significantly increased extensional viscosity and a better fat encapsulation in the corresponding spray-dried particles, promoting solubility and oxidative stability. Surface fat extraction showed that the most stable emulsion lead to particles with the least amount of surface fat. Though the surface of these particles was still covered by fat according to spectroscopic analysis, this surface fat layer was very thin in comparison to carrageenan-free powder as observed by confocal microscopy. Yet, the addition of carrageenan was also found to have one adverse effect on the intended powder properties, as the strengthened emulsion network translated into denser particles and thus a deterioration of the powder's reconstitution behaviour. Keywords: Milk powder;; Carrageenan; Spray drying; Surface fat; Atomization; Emulsion stabilization

Transcript of 1 Introduction1 Introduction Whole milk, skim milk and infant formula emulsions are spray-dried to...

1IntroductionWholemilk,skimmilkandinfantformulaemulsionsarespray-driedtopowderformatlargeindustrialscaleinordertoaccomplishbetterpreservation,reducedbulkvolumeforeconomyoftransportationandeasierprocessing

as food ingredients.However, during spray drying usually an unwanted layer of fat occurs on the particles' surface and this leads to detrimental effects on the powder properties, including reduced solubility inwater (Fäldt&

Bergenståhl,1996;Millqvist-Fureby,Elofsson,&Bergenståhl,2001),fasterexpirationduetolipidoxidation(Granelli,Fäldt,Appelqvist,&Bergenståhl,1996;Hardas,Danviriyakul,Foley,Nawar,&Chinachoti,2000;Keoghetal.,2001)

andgreaterstickiness(Kim,Chen,&Pearce,2005a;Nijdam&Langrish,2006).Thiscanmeanadeterioratedproductqualityfortheenduserandareductioninefficiencyduringmanufacturingduetosignificantproductlossandthe

necessityofadditionalprocessingsteps,suchaslecithination.Forthisreason,itisimportanttoidentifythedrivingforcesthatcausetheformationofsurfacefatduringspraydryingofmilkpowder.Afewstudiespreviouslyspeculated

thattheactualdryingstageofthespraydryingprocessmightnotbeprimarilyresponsible,butratheranatomizationinducedmechanismwouldalreadydeterminetheeventualchemicalsurfacecomposition(Fyfe,Kravchuk,Nguyen,

Reductionofsurfacefatformationonspray-driedmilkpowdersthroughemulsionstabilizationwithλ-carrageenan

MartinFoerstera

[email protected]

ChangLiua

[email protected]

ThomasGengenbachb

[email protected]

MengWaiWooa

[email protected]

CordeliaSelomulyaa,∗

[email protected]

aDepartmentofChemicalEngineering,MonashUniversity,Clayton,Victoria3800,Australia

bCSIROManufacturing,BayviewAvenue,Clayton,Victoria3168,Australia

∗Correspondingauthor.MonashUniversity,DepartmentofChemicalEngineering,18AllianceLane,Clayton,Victoria3800,Australia.

Abstract

Theappearanceofsurfacefatduringtheatomizationprocess inspraydryingofmilkparticlesoftenimpairsthefunctionalpowderproperties.To investigateapossibleapproachthatcouldminimisethesurfacefat

formation,theinteractionbetweenawholemilkmodelemulsionandλ-carrageenanatvariousconcentrationswasstudied,aswellashowitinfluencestheatomizationbehaviourandtheresultingparticlecharacteristics.

Carrageenancanstabilizeemulsionsinthepresenceofmilkproteinbyadsorptiononthemilkfatglobulemembranes.Iftoolittleortoomuchofthepolysaccharidewasadded,bridgingflocculationordepletionflocculation,

respectively,occurredinsidetheemulsions.Thebeststabilityandminimalfatglobulesizewereobtainedforacarrageenancontentof0.3%w/w.Rheologicalinvestigationindicatedthattheextensionalviscositycanbean

importantfactor influencingtheemulsiondisintegrationbehaviourduringatomization.Theλ-carrageenanstabilizedemulsionsfeaturedasignificantly increasedextensionalviscosityandabetterfatencapsulationinthe

correspondingspray-driedparticles,promotingsolubilityandoxidativestability.Surfacefatextractionshowedthatthemoststableemulsionleadtoparticleswiththeleastamountofsurfacefat.Thoughthesurfaceofthese

particleswasstillcoveredbyfataccordingtospectroscopicanalysis,thissurfacefatlayerwasverythinincomparisontocarrageenan-freepowderasobservedbyconfocalmicroscopy.Yet,theadditionofcarrageenanwas

alsofoundtohaveoneadverseeffectontheintendedpowderproperties,asthestrengthenedemulsionnetworktranslatedintodenserparticlesandthusadeteriorationofthepowder'sreconstitutionbehaviour.

Keywords:Milkpowder;;Carrageenan;Spraydrying;Surfacefat;Atomization;Emulsionstabilization

Deeth,&Bhandari,2011;Kim,Chen,&Pearce,2009;Xu,Howes,Adhikari,&Bhandari,2013).Thehypothesiswassupportedbyrecentstudiesdifferentiatingthe impactof theatomizationstagefromthedryingstage(Foerster,

Gengenbach,Woo,&Selomulya,2016a;Wuetal.,2014).Bycomparingthesurfacecompositionofthespray-driedparticleswiththeatomizeddroplets,whichwerecryogenicallyflash-frozenimmediatelyafterleavingthenozzle,itwas

learntthatthefreshlygenerateddropletswerealreadycoveredbyafatfilmandthatthissurfacefatcoverageremainedrelativelyunchangedthroughoutthefollowingdryingprocess.Itwasconcludedthatthesurfacefatcontentis

hencenotsignificantlyreduciblebymodifyingthespraydryingconditions.Also,fortherangeofatomizationnozzlesinvestigated,theatomizationtriggeredfataccumulationonthedropletsurfaceswasindependentoftheatomization

technique.Instead,apromisingwaytoreducetheamountofsurfacefatseemstomodifytheemulsionpriortospraydryinginordertomoderatethesegregationbetweenthelipidandtheaqueousphaseduringatomization.Further,it

iscrucialtounderstandtheactualmechanismthatcausestheemulsionstodisintegrateinawaythatresultsinthefatbeingpresentatthesurfaceassoonasindividualdropletsareformed.

Therefore,theobjectivesofthepresentstudywere,firstly,tocontributetowardsabetterinsightintothismechanismand,secondly,toinvestigateapotentialmethodtoimprovethepropertiesofmilkpowderbymodifyingthe

emulsiontobespray-dried.Towardsthefirstaim,milkmodelemulsionsofdifferentcompositionswereinvestigatedintermsoftheirbreak-upbehaviourundershearandextensionalstress.Therearevariouspossibleapproachesto

address thesecondaim.Asstudieshaveshown,addingasurfactant, suchaspolysorbate80or lecithin, tomilkemulsionsoroil/milkproteinemulsionsandsubsequentco-spraydryingenhanced theproductpowders'wettability

(Fonseca,Bento,Quintero,Gabas,&Oliveira,2011;Lallbeeharryetal.,2014;Millqvist-Fureby&Smith,2007).Yet,itwasalsoarguedthatsuccessivespraydryingandlecithincoating,astypicallydoneonindustrialscale,stillremains

moreefficient(Tianetal.,2014).Instead,milkemulsioncouldbemodifiedinawaythatstrengthenstheirstabilityinordertobringaboutagreaterfatencapsulationuponspraydrying,thusmakingsubsequentcoatingredundant.

Firstly,byemulsionstabilityanalysesofmilkproteincontainingoil/wateremulsions,heattreatmentattemperaturesabove60°C(Millqvist-Furebyetal.,2001),apHvaluereduction(Dalgleish,1997)andadditionofcalcium ions

(Agboola&Dalgleish,1996a,1996b)wereallshowntobenotsuccessfulinthisregard.However,throughthermalpre-treatmentat80°CWang,Liu,Chen,andSelomulya(2016)attainedacross-linkedemulsionofwheyproteinisolate

andfishoil,whosecorrespondingspray-driedpowdersfeaturedimprovedinhibitionoflipidoxidation.Secondly,thefatglobulesizeinsideoil/wateremulsionsalsoinfluencestheemulsionstabilityandthustheamountofsurfacefat,for

instancebymechanicaltreatmentduringhomogenizationviamicrofluidizationorultrasonication.Yet,theidealsizedependsonthetypeofoil,homogenizationtechniqueandspray-driedparticlediameter(Jafari,Assadpoor,Bhandari,

&He,2008;Munoz-Ibanezetal.,2016;Soottitantawat,Yoshii,Furuta,Ohkawara,&Linko,2003).Thirdly,ithasbeendemonstratedthattheadsorptionofcertainpolysaccharidesonthemembranesaroundthefatglobulesofvarious

emulsionscanenhancethestabilityagainstenvironmentalinfluences,suchasthermalandmechanicalstress(Drusch,Serfert,Scampicchio,Schmidt-Hansberg,&Schwarz,2007;Gharsallaouietal.,2010;Guzey,Kim,&McClements,

2004).Aprominentexampleispectin,whichwasforinstancefoundtoimprovethestoragestabilityofsunfloweroilemulsionwithwheyproteinisolateandsodiumcaseinateasemulsifiers(Einhorn-Stoll,Ulbrich,Sever,&Kunzek,

2005).Serfertetal.(2013)obtainedenhancedfishoilencapsulationandoxidativestabilityofpowdersfromanemulsionthatcomprisedofglucosesyrup,wheyproteinandpectinatpH4.However,whilethispolysaccharidewithits

negatively charged carboxylate groups can adsorb at casein below the latter's isoelectric point (pHof approximately 4.6) and is thus used in stabilization of acid dairy drinks, it is not effective at the pHofmilk itself (6.4–6.7)

(Kravtchenko,Parker,&Trespoey,1995;Surh,Decker,&McClements,2006).Incontrast,carrageenan,alinearsulphatedpolysaccharide,alsoundergoesattractiveelectrostaticinteractionwithκ-caseinatneutralmilieu(Dalgleish&

Morris,1988;Dickinson,1998)andthereforeisusedasstabilizerinpHneutraldairybeveragesthatarecommerciallyavailable(Bixler,Johndro,&Falshaw,2001;FAO,1987;Yanes,Durán,&Costell,2002).TheEuropeanFoodSafety

AuthorityandtheUSFood&DrugAssociation,forinstance,haveconcludedthatcarrageenanasafoodadditiveisconsideredassafe(FDA,2016;SCF,2003).

Carrageenanisanaturalhydrocolloidextractedfromredalgaeandiswidelyusedinfoodapplicationstoformgelsandstabilizebeverages.Itfeaturesone,twoorthreesulphategroupsperdisaccharideinitskappa(κ),iota(ι)

andlambda(λ)form,respectively.Singh,Tamehana,Hemar,andMunro(2003)observedanimprovementincreamingstabilityofasoyaoilemulsionthatcontained3%w/wsodiumcaseinatewithincreasingκ-carrageenancontentfrom

0to0.4%w/w.Foracaseinatecontentof0.5%w/w,however,additionofκ-carrageenanimpairedthestabilityduetoflocculation.Anemulsioncontainingflaxseedoilandwheyproteinreachedsubstantiallybetterstabilitywhenmixed

withanyofthethreemaincarrageenantypes,withthebestresultforλ-carrageenan(Stone&Nickerson,2012).Inskimmilkemulsions,ι-andκ-carrageenanwerefoundtoinducedepletionflocculationattemperaturesabovetheir

coil-helixtransitiontemperature(whichisbelow60°C),becauseonlythechargedensityoftheirhelixstructurewasgreatenoughtoallowadsorptionatthecaseinmembranes(Langendorff,Cuvelier,Michon,Launay,&Parker,2000).

Yet,λ-carrageenanremainsanactivestabilizeratelevatedtemperature,whichmightbeparticularlybeneficialforspray-dryingapplications.Furthermore,thehigherdensityofanionicsulphategroupsintheλ-formbringsalongthe

advantageofgelinhibitionandgoodwatersolubilityevenatlowertemperature(roomtemperature).

Afewreportshavebeenpublishedaboutthestabilizationofoil/wateremulsionsinthepresenceofcarrageenanandonetypeofmilkprotein.However,thereisalackofinvestigationhithertoontheimpactofcarrageenanfora

morecompletemodelsystemthatisrepresentativeofwholemilk,comprisingofallitsmaincomponents(lactose,wheyprotein,caseinandfat).Inaddition,carrageenan'ssubsequenteffectontheatomizationbehaviourduringspray

dryingandthusthepowderproperties,particularlyinrespecttosurfacefatformation,isstilltobestudied.Inthefirstpartofthepresentstudy,amilkmodelemulsionwasinvestigatedtofindtheoptimumλ-carrageenancontentin

termsof fatglobulesizeandemulsionstability. In thesecondpart, itwasstudiedwhether thestabilizationwithλ-carrageenan translated intooptimizedpowderpropertiesafter spraydrying.For thispurpose, thepowders (and

selectedatomizedemulsiondroplets)wereanalysedinrespecttotheircomponentdistributionviaX-rayphotoelectronspectroscopy(XPS),confocal laserscanningmicroscopy(CLSM)andsurfacefatextraction.Powderproperties

includingmorphology,porosity,solubility,wettabilityandoxidativestabilitywerecomparedfordifferentcarrageenanconcentrations.Animportantconnectinglinkbetweenmodifiedemulsionsandspray-driedparticlepropertieswas

theemulsions'behaviourduringatomization.Shearandextensionalviscosityanalysesgavenewinsightsintothedisintegrationprocessandhowitisinfluencedbyfatandhydrocolloidcontent.

2Materialandmethods2.1Emulsionpreparation

Amilkmodelemulsion,whichresembledthecompositionofbovinewholemilk,wasstabilizedwithλ-carrageenanatvariousconcentrations.Theemulsioncontained40.8%w/wlactose,31.1%w/wfatand27.0%w/wproteinin

drymatter(d.m.)andfeaturedasolidcontentof20%w/w.Itwaspreparedbydissolvinglecithinfree,commercialskimmilkpowder(homebrandfromColesSupermarketsAustraliaPtyLtd,Australia)inMilli-Qpurifiedwater(Merck

KGaA,Germany)withstirringat47°Cfor1h.Subsequently,sustainablysourcedrefinedElaeisguineensispalmfruitoil(AuromaPtyLtd,Australia),withaslipmeltingpointof37–39°Candafreefattyacidcontent(aspalmitic)ofless

than0.09%,wasadded.Followingprehomogenizationinahigh-speedcolloidmill(WiseMixHomogenizerHG-15D,DaihanScientific,SouthKorea)at1000rpmfor1min,differentamountsofλ-carrageenan(MelbourneFoodDepotPty

Ltd,Australia)wereaddedtoformcarrageenancontentsof0,0.1,0.2,0.3,0.4and0.5%w/winrespecttothetotalemulsionmass.Theemulsionswerestirredforfurther30minat47°Candthenwerehomogenizedinahighpressure

homogenizser(EmulsiFlex-C5,Avestin,Canada)withthreepassesat1350barandtwosubsequentpassesat650bar.Thehomogenizationtemperaturewasnotdirectlycontrolled,but thesampletemperaturewasmeasuredtobe

between45°Catthebeginningofthehomogenizationprocessand35°Cattheend.Theemulsionswerestoredatroomtemperatureandwerespray-driedandanalysedbythefollowingprocedureswithin3hafterpreparationifnot

statedotherwise.

2.2Emulsionanalysis2.2.1Turbiscanemulsionstability,emulsionmicrostructureandpHvalue

24hinstabilitytestsofeachemulsionwereconductedwithaTurbiscanClassicMA2000multiplelightscatteringinstrument(FormulactionSA,France)withapulsednearinfraredlightsource(wavelengthof850nm).Thebackscatteringfraction

asafunctionoftheemulsionheightinsideacylindricalglassmeasurementcellwasdeterminedevery30min.Theseresultswerecomparedwiththemicrostructureoforiginalemulsionsamplesthatwerestoredat6°Cforuptotendays.Imageswere

takenatvariouslocationsinsideemulsiondropsthatwerecontainedbetweenaglassmicroscopeslideandacoverslipunder10×magnificationwithaconventionalopticalmicroscope(B1-211A,Motic,P.R.China).ThepHvaluewasmeasuredwitha

benchtoppHmeter(H4212,HannaInstruments,USA)afterhomogenization.

2.2.2FatglobulesizedistributioninsideoriginalemulsionsandafteratomizationprocessTheemulsiondropletsize,henceforthdescribedasfatglobulesizeinordertodistinguishfromthedropletsizeofthespraysafteratomizationinthespraydryernozzle,wasanalysedbylaserlightscatteringusingaMastersizer2000apparatus

(MalvernInstruments,UK)equippedwithaHydro2000Gwetcell.Approximately250mlofthepre-dilutedemulsions(oilcontentof0.01%w/w)wereaddedtothewetcell,whichwasfilledwithabout1lofMilli-Qpurifiedwater,toestablishalaser

obscurationlevelof5.2–5.5%toavoidmultiplescatteringeffects.Theinstrumentoperatedatlaserwavelengthsof633and466nm.Thepumpandstirrerspeedsweresetto1000rpmand500rpm,respectively.Thephysicalpropertiesofthefatglobules

weredescribedwitharefractiveindexof1.462andanabsorbanceindexof0.1.Foursamplesweretakenfromeachemulsiontoconductindividualmeasurementsof20sduration,thestandarddeviationwasdeterminedfromthisandtheaveragewas

reportedasthemeandiameterovervolume :

where the particle diameter and number of particles in each size class are expressed by and , respectively. The size distribution and the corresponding volumetric mean diameters were determined for the original emulsions after

homogenization. In addition, theywere alsomeasured for the same emulsions after they had been passed through a spray drying atomization nozzle. The nozzlewas operated outside of the spray dryer and the atomized emulsionswere collected

immediatelyafterleavingthenozzle,andthusnocontactwithdryingairoccurred.Twodifferentatomizationtechniqueswereinvestigated:apressure-swirlsingle-fluidspraynozzle(MTBrassSeries,AmFogNozzleTechnologiesInc,USA)withanorificeof

0.2mmindiameteratafeedpressureof500kPa,andamicrofluidicjetnozzlethatisdescribedindetailinsection2.3.1.

2.2.3ShearviscosityandextensionalviscosityoftheemulsionsDynamic shear viscositiesweremeasuredat 25°Cwith a cone andplate rheometer (HaakeMars, ThermoFisherScientific,USA),whichwas equippedwith aMP60measuringplate and aC60/1 cone rotor.Each sample's viscositieswere

investigatedatsixdifferentshearratesintherangeof50–5001/s,andtheaverageofthreesamplestakenfromthesameemulsionwasdeterminedtogetherwiththerespectivestandarddeviation.

Theextensionalviscositywasofspecialinterestforinterpretationofthejetdisintegrationmechanismofthemicrofluidicjetnozzledescribedinsection2.3.1.ForafluidthatdoesnotfollowNewtonianbehaviour,suchastheemulsionsinvestigated

inthisstudy(seeFig.3b),noassumptioncanbemadeabouttherelationshipbetweenitsviscosityundershearstressanditsviscosityunderextensionalstress.Theviscosityofthemilkmodelemulsionwastoolowforstandardcapillary-breakupextensional

rheometry,however.Therefore,acoustically-drivenmicrofluidicextensionalrheometrywasemployed,whichisdesignedtocapturetheextensionalviscosityoflow-viscositysamples(McDonnell,Gopesh,etal.,2015;McDonnell,Jason,etal.,2015).These

measurementswereconductedatroomtemperature(25°C)at theSchoolofEngineering,RMITUniversity inMelbourne,Australia.Therheometerandthemathematicalanalysisprocedurehavebeendescribedelsewhere(Bhattacharjee,McDonnell,

(1)

Prabhakar,Yeo,&Friend,2011).Inbrief,asessiledropletof1μlinvolume(i.e.approximately1.2mmindiameter)wasplacedontothepiezoelectricsubstratesurfaceofasurfaceacousticwave(SAW)device.ApulseofSAWenergywasthenappliedtothe

droplet,causingittoelongateandtoformastableliquidbridgebetweenthesubstrateandaparallelopposingsurfaceatagaplengthof1.5mm.AtthispointtheSAWpulsewasterminated,allowingtheliquidbridgetothinundercapillaryforcesandthus

creatingauniaxialextensionalflow.Thediameter attheneckofthethinningemulsionfilamentwasrecordedwithahigh-speedcamerauntilithaddecreasedtohalfofitsinitialvalue( )(seeFig.1aaswellasVideo1,whichisavailableintheonline

versionof thesupplementary information).Theevolutionof the filamentdiameterwithrespect to timewasdeterminedwithstandard imageanalysis techniques.Fromthis, theOhnesorgenumberOhcouldbedetermined,allowingcalculationof the

extensionalviscosity bythefollowingexpression:

where was the emulsion density and the initial surface tension of the emulsion at 25 °C as taken fromBertsch (1983). Every samplewas analysed bymeasurement of three individual dropletswith ten runs per droplet, and from these the

averagevaluewastakenandthestandarddeviationwascalculated.Astheintentionofthisanalysiswastostudytheimpactofthefatglobulesonthefilmdisintegration,theemulsionpreparationwasslightlymodifiedforthepurposeoftheextensional

viscositymeasurements.Amixtureoflactose,calciumcaseinateandwheyproteinpowderwasusedinsteadofskimmilkpowder.Otherwiseitwouldnothavebeenpossibletoprepareemulsionswithverylowfatcontent,asskimmilkpowderitselfstill

containsasignificantamountoffat.Thus,alow-fatemulsionthatcontainedhardlyanyfat(0.3%w/wind.m.)couldbecomparedwithregular-fatemulsionsfeaturing31.1%w/wfatind.m.(and0or0.3%w/wcarrageenan).Alloftheseemulsionshada

solidcontentof20%w/w,andtheirratiooflactosetoproteinaswellastheirproportionbetweencaseinateandwheyproteinwereequivalenttotheearlierdescribedstandardemulsions.

(2)

Supplementaryvideorelatedtothisarticlecanbefoundathttp://dx.doi.org/10.1016/j.foodhyd.2017.04.005.

2.3Powderanalysis2.3.1Powderproductionwithmicrofluidicjetspraydryer

Amicrofluidicjetspraydryer,comprehensivelydescribedelsewhere(Foersteretal.,2016a),wasusedtodrytheemulsionsunderproductionofmonodisperseparticleswithuniformdryinghistory.Inshort,theutilizedatomizationnozzleconsisted

ofaglasstubewithanorificeof100μmindiameter.Apiezoelectricceramicjacketsurroundedthenozzletiptoimposeasinusoidalpulseof12kHz,causingdisintegrationofthefeedemulsionjetintoindividualdropletswithuniformsize(seeFig.1b).The

feedwaspushedthroughthenozzlebypneumaticpressureof34–53kPaforrespectivecarrageenancontentsof0–0.5%w/wtoaccountfortheincreasingviscosity.Thenozzlewaseitheroperateddetachedfromthespraydryingapparatusforcryogenic

flash-freezingoftheatomizeddroplets(describedinsection2.3.2)orwaspositionedontothedryingtowerforspraydrying.Thetowerwas3.2minheightandcontainedaconcurrentdryingairflow.Thetemperaturesofthedryingairatthetopandbottom

ofthedryingchamberwere200°Cand88°C,respectively.

2.3.2Cryogenicflash-freezingofatomizeddropletsTofacilitatethestudyofthechemicalsurfacecompositionandinternalcomponentdistributionofemulsiondropletsaspresent immediatelyafteratomization,amodifiedmethodologyofRogersetal. (2008)wasapplied.Milkmodelemulsion

dropletswith0.3%w/wcarrageenancontentwereflash-frozeninliquidnitrogenatadistanceof10cmfromthemicrofluidicjetnozzle,whichwasoperatedoutsideofthespraydryer.Afterwards,thedropletswerekeptinfrozenstatebycoolingwithdry

iceuntilfreeze-dryingwascarriedoutfor48hat0.1mbarandwithacollectortemperatureof−80°CinaFreeZone2.5lbenchtopfreeze-dryer(LabconcoCorp,USA).Asthemicrofluidicatomizationtechniquegeneratedmonodisperseparticles,themean

sizeoftheatomizeddropletsaswellofthecorrespondingspraydriedparticlescouldbedeterminedbysimpleimageanalysisofasmallpowdersample(100particles)withalightmicroscope(B1-211A,Motic,P.R.China)under4×magnification.

2.3.3SurfacefatextractionAmodifiedmethodofthegentlesurfacefatextractionmethodproposedbyWangetal.(2016)wasapplied.Thisapproachavoidedfatremovalfromtheinnerpartoftheparticlesbylimitingthetimeexposedtothesolventmedium.Whilethefree

fatonthesurfaceofapowderparticleisquicklydissolvedbyorganicsolvents,thefreefatintheinnerpartoftheparticlesisextractedconsiderablyslower(Kim,Chen,&Pearce,2005b).1gofpowderwasweighedoutonafilterpaperwithaporesizeof

2.5μm(Grade1803,FiltechPtyLtd,Australia),whichwassubsequentlytransferredintoaBüchnerfunnel.Thefunnelwasfilledwith30mlofpetroleumether(boilingpointof40–60°C,Sigma-AldrichPtyLtd,Australia),whereinthepowderrestedfor

2min.Afterwards,vacuumfiltrationwascommencedandthepowderwaswashedthreetimeswith20mlofpetroleumetherperpass.Thepowderfilledfilterpaperwasthenkeptinadryingovenat33°Cfor24hforevaporationofanyremainingether

residue,priortoasecondweighingtodeterminetheextractedamountofsurfacefat.Thestudywasconductedimmediatelyafterspraydryingandtheoriginalpowdersampleswerealsostoredat33°Caheadofthefatextractionprocesstoeliminateany

impactofadsorbedairhumidityonthemassmeasurements.Thesurfacefatcontentwasdeterminedforthreepowdersamplesthatwerecollectedforabout20mineachduringthesamespraydryingrunat40,60and80minaftera steadycolumn

temperatureprofilehadbeenreached,andthestandarddeviationwasdetermined.Theamountofextractedfreefatwaspresentedaspercentagerelativetotheparticles'originaltotalfatcontent.

2.3.4SpectroscopicsurfacecompositionmeasurementsThechemicalsurfacecompositionofselectedpowderswasestimatedbyXPSinvestigationwithanAXISNovaspectrometer(KratosAnalyticalInc.,UK).Thespray-driedparticlesofallcarrageenancontentswereanalysed,aswellastheatomized

dropletswith0.3%w/wcarrageenanaftercryogenicflash-freezing/freeze-dryingandthespray-driedpowdersfromemulsionswith0.1and0.3%w/wcarrageenanaftersurfacefatextraction.TheinstrumentwasequippedwithamonochromatedAlKαX-ray

sourceandahemisphericalanalyserthatwasoperatedinthefixedanalysertransmissionmodewiththestandardaperture(0.3mm×0.7mmanalysisarea).Thepressureinsidethemainvacuumchamberwasoftheorderof10−8mbar.Shallowwellsofa

custom-builtsampleholdercontainedthepowders,andtwodifferent locationswereanalysedforeachsampleatanominalphotoelectronemissionangleof0°withrespect to thesurfacenormal.Theactualemissionangle is ill-defined inthecaseof

particles(rangingfrom0°to90°),andhencethesamplingdepthrangedfrom0nmtoapproximately10nm.Alldetectedelementswereidentifiedfromsurveyspectra.Therespectiverelativeatomicconcentrationsweredeterminedfromtheintegralpeak

intensitiesandsensitivityfactorsprovidedbythemanufacturer.Theconcentrationsinlactose,proteinandfatcanbeinterpretedaslinearcombinationoftheatomicsurfacecomposition(PFäldt,Bergenstahl,&Carlsson,1993).Eachcomponent'sfraction

atthesurface,expressedinatomicconcentration,wasthusestimatedbylinearizationbasedontherepresentativestructuralformulasoflactose,milkproteinandmilkfat,aselaboratedbyChewetal.(2014).

2.3.5ConfocallaserscanningmicroscopyTheproteinandfatdistributionsinsideparticlesobtainedfromspraydryingofmilkmodelemulsionswith0,0.3and0.5%w/wcarrageenancontentwereinvestigatedbyCLSM.Themicroscopytechniqueandtheprecedinglabellingprocesswith

Fig.1Visualcomparisonofelongationaldisintegrationprocesses:(a)timesequenceofanemulsionbridgeduringextensionalviscometryfromcommencementofthinninguntilbreak-up,and(b)break-upofemulsionjetfrommicrofluidicjetnozzle.

alt-text:Fig.1

hydrophilicFastGreenFCF(bondedtoprotein)andhydrophobicNileRed(bondedtothefatphase)havebeenpreviouslydescribed(Foersteretal.,2016a).

2.3.6ScanningelectronmicroscopyThemorphologyofthespray-driedparticleswasimagedwithafield-emissionscanningelectronmicroscope(SEM)(FEINovaNanoSEM450FE-SEM,FEICorp,USA)usinga5kVelectronbeam.Theinternalfeaturesandporosityofparticlesthat

hadbeenintentionallycleavedasunderwithathinrazorbladewerestudiedaswellastheexteriormorphologybeforeandaftersurfacefatextraction.Thesampleswerecoatedwitha2nmthickIridiumlayertopreventthemfromelectricalcharging.

2.3.7PowderdissolutionandwettingbehaviourTwostudiestoevaluatethereconstitutionbehaviourofthespray-driedpowderswereundertaken.First, focusedbeamreflectancemeasurement(FBRM)wascarriedouttomonitorinsituthedissolutionasa functionof time.FBRMusesthe

measuredparticlechordlengthsandtheircorrespondingcountratestoquantifythedecreasingparticlesizeinthecourseofdissolution.TheworkingprincipleoftheFBRMdevice(LasentecD600L-C22-K,MettlerToledoLtd,Australia)andthedetailed

experimentalprocedurehavebeendescribedbyFang,Selomulya,andChen(2010).Inbrief,0.500gofsamplewereaddedonthesurfaceof25°Cwarmwaterthatwascontainedinaflat250mlbeaker.TheFBRMlaserprobewasimmersedintothewater

atawell-definedlocationandanangleof45°,andamagneticstirreroperatedat900rpm.Themeasurementshadbeenexecutedfor20minwithdatacollectionintervalsof2s.TheFBRMmeasurementswereconductedintriplicatewiththreepowder

samplesthatwerecollectedforabout10mineachduringthesamespraydryingrunat10,20and30minafterasteadycolumntemperatureprofilehadbeenobtained.

Second,amodifiedapproachoftheNiroAnalyticalMethodNo.A5a(GEA,2005)wasusedtodeterminethepowders'wettability.Thewettability,expressedintimeinseconds,definesadriedpowder'sabilitytopenetrateastillwatersurface.For

this,0.5gsamplewerepassedthroughafunnelontothequietsurfaceofMilli-Qpurifiedwater(25°C),whichhadbeenfilledintoa100mlmeasuringcylinderuptothe90mlmark.Acamera(DCR-HC36,SonyCorp,Japan)recordedthewettingprocess

fromthetimeofpowderadditionuntilthelastparticlehadovercomethewatersurfacetensionandconsequentlysunkdown.Thewettabilitystudywasruninduplicatewithtwopowdersamplesthatwerecollectedforabout10mineachduringthesame

spraydryingrunat100and110minafterasteadycolumntemperatureprofilehadbeenestablished.

2.3.8PeroxidevalueanalysisforoxidativestabilitystudyTheoxidativestabilityofthefatcontainedinthespray-driedparticlesofdifferentcarrageenanconcentrationswascomparedbymeansoftheirperoxidevaluesatintervalsofsevendays.Thepowderswerestoredfor35daysatacceleratedstorage

conditionsof33°Candambientairinadryingoven.TheperoxidevaluemeasurementswerecarriedoutfollowingtheguidelinesgivenintheOfficialMethodsofAnalysisbytheAssociationofOfficialAnalyticalChemists(AOAC,1990).Inshort,2gof

samplewereswirledfor30sin30mlofafreshlypreparedaceticacid(UnivarInc,USA)/chloroform(MerckKGaA,Germany)mixture(3:2byvolume)thatcontained1mlofasaturatedpotassiumiodate(Sigma-AldrichPtyLtd,Australia)solution.The

mixturewas thenkept indarkenvironment for5minprior toadditionof30mlofwater.Subsequently, titrationwitha0.002Msodium thiosulfate (Sigma-AldrichPtyLtd,Australia) solutionwasconductedunder stirringuntil theyellowcolourhad

disappeared.Lastly,1mlofanaqueousonepercentstarchindicatorsolutionwasaddedanditwasfurthertitratedunderstirringuntilthebluecolourhadvanished.Foreachsetofmeasurements,ablankcontrolwithoutpowderwasalsocarriedout.The

peroxidevalue in[milliequiv.peroxide/kgfat]wascalculatedbythefollowingexpression:

where wastheblankcorrectedtitrationvolumein[ml], thenormalityofthesodiumthiosulfatesolutionin[mol/l]and themassoffatcomprisedby2gofsamplein[g].Theanalysiswasruninduplicatewithsamplesthatwerecollected

forabout40mineachduringthesamespraydryingrunat120and160minafterasteadycolumntemperatureprofilehadbeenreached.

3Resultsanddiscussion3.1Impactofλ-carrageenancontentonemulsionproperties3.1.1Stabilityofthemodelemulsions

Thepreparationof themodelemulsions,asdescribed insection2.1, resulted incompletedissolutionofallcomponents.Thegoodwatersolubilityofλ-carrageenan incomparison to the lesschargedκand ι forms (Langendorff et al., 2000)

permitteditsdissolutionatarelativelylowtemperature,whichcanmeanbettercostefficiencyinindustrialapplicationsandtheavoidanceofproteindenaturationleadingtoreducedemulsionstability(Millqvist-Furebyetal.,2001).

Turbiscanemulsionstabilitymeasurements(Fig.2)wereperformedtoevaluatethecapabilityofλ-carrageenantoalterthestabilityofthemilkmodelemulsionsatdifferentconcentrationsasanindicatorforthenetworkstrengthbetweentheoil

andwaterphase.ThehomogeneityandstabilityorinstabilityoftheemulsionswasevaluatedbyanalysingtheTurbiscanbackscatteringdataoversampleheightasafunctionoftime.Themorepreciselythescansatdifferenttimesoverlapped,themore

stableweretheemulsions.Thelowbackscatteringvaluesatasampleheightoflessthan0.6cmandabove6cmforeventhemoststablesampleswereascribedtolightscatteringattheglassbottomofthemeasurementcellandmorelighttransmissionat

theverysampletopduetothemeniscuscurvature.

(3)

Theemulsionswithoutcarrageenanand0.1%w/wcarrageenanwereleaststable.Theyfeaturedanincreasingbackscatteringpercentageovertimethroughoutthesampleheightduetolargerfatglobulesasaresultofflocculation,anddisplayeda

Fig.2Modelemulsionstabilitiesdependingonλ-carrageenancontent:turbiscanbackscatteringmeasurementsovertime,andcorrespondingrepresentativemicroscopeimagesofthemicrostructuresinthefreshlypreparedemulsions.

alt-text:Fig.2

concomitantappearanceofcreamatthesurface,aswasobservedfromthemorepronouncedbackscatteringatthesampletop(height>6cm)incomparisontotheothersamples.

Theflocculationcouldbeinhibitedbytheadditionofmorepolysaccharide.Accordingtothewidthofthebackscatteringbands,thestabilityoftheemulsionwith0.2%w/wcarrageenanwasimprovedincomparisontolowerconcentrationsand

greateststabilitywasreachedfor0.3–0.4%w/wcarrageenan.Thisindicatedthattheλ-carrageenanbondedontotheproteinofthefatglobulemembranesandthusstabilizedtheoil/waterinterfacebypreventingcoalescenceofthefatglobulesduetotheir

increasedelectrostaticrepulsion.Theremighthavebeenanelectrostaticattractionbetweencarrageenanandwheyprotein,assuggestedbyStoneetal.(2012).Moreoften,though,thestabilizationofmilkemulsionshasbeenattributedtointeraction

betweencarrageenanandcasein(Dickinson,1998;Gu,Regnier,&McClements,2005;Langendorffetal.,2000),withthelatterrepresenting80%oftheproteincontainedinbovinemilk.ThepHvaluesofthemilkmodelemulsionsweremeasuredtobein

therangeof6.44±0.03,exceedingthecasein'sisoelectricpointof4.6.Whilethecaseinthuscarriedanegativenetcharge,theκ-caseinmoleculesstillfeaturedpositiveaminoacidresidueregions,asgenerallybelieved(Snoeren,Payens,Jeunink,&Both,

1975). This allowed absorbance of the negatively charged sulphate groups of the carrageenan at the positively charged patches of themembranes that surrounded the fat globules. The complexation increased the overall charge of the fat globule

membranestowardsmorenegativevalues.Dalgleishetal.(1988)foundfromζ-potentialmeasurementsusingmicro-electrophoresisthatthenegativechargedensityoncasein/λ-carrageenancomplexesinstronglydilutedskimmilkapproximatelydoubled

withverylowcarrageenancontentsfromabout0.001to0.01%w/w.Higherconcentrationsleadtoafurther,thoughlesssharpincreaseinchargedensitywithintherangeinvestigated(maximumofapproximately0.02%w/w).Theflatteningofthecharge

curveatgreatercarrageenanconcentrationswasascribedtothecationicproteinsurfacesreachingsaturationcoverage,anditwaspresumedthatthiswouldhaveledtocross-linkageanddepletionflocculationifthetotalsolidcontenthadbeenhigher.

InagreementwiththeworkbyDalgleishetal.(1988),inthepresentstudyfurthercarrageenanaddition(from0.4to0.5%w/w)resultedinphysicalemulsiondestabilization.Thebackscatteringprofileoftheemulsionwith0.5%w/wcarrageenan

resembledtheoneof0.2%w/w,beingmoreconstantovertimethanfor0and0.1%w/w.However,theemulsionwaslessstablethanfor0.3and0.4%w/w,whichpresumablywasasaresultofdepletionflocculationuponsaturationsurfacecoverageofthe

positivelychargedproteinareas(seeAppendixBforasupportingtheoreticalcalculationofthesaturationconcentration).Depletionflocculationisoftenobservedincolloidalsystemswhenthedropletsofthedispersedphasearesurroundedbyanadsorbed

layerofpolymer,whichsimultaneouslyexists inexcess inside thecontinuousphase.AsdiscussedbyLangendorffetal. (2000), if thecarrageenanconcentrationexceeds the saturation level toacertaindegree, the freecarrageenanwill repulse the

carrageenan-coveredsurfacesofthefatglobulesandproteinaggregatesandwillconsequentlyinducecoalescenceofthelipidphase.

TheTurbiscanstabilityresultswerecomparedwiththecorrespondingmicrostructuresofthefreshlypreparedemulsionsasvisualizedbythemicroscopicimagesinFig.2.Theemulsionwith0.5%w/wcarrageenanhadrelativelylargepatchesof

darkershade,suggestingphaseseparationthroughouttheemulsionwiththedarkpatchesbeinginterconnectedareasofflocculatedfatglobules.Thesepatcheswerenotobservedatconcentrationsof0.3–0.4%w/wcarrageenan,wherethemicrostructure

appearedmosthomogeneousamongstallsamples.Hereonlyafewdarkspotswereobserved,becausethemajorityoftheflatglobulesdidnotcoalesceandthusweresofinelydispersedinsidethecontinuousphase(thebrighter,greyregionsintheimages)

thattheywerenotvisibleunderthemicroscopeatthegivenmagnification.Incomparison,atlowerpolysaccharidecontentstheappearanceoftheemulsionmicrostructurewasmoreheterogeneouswithsubstantiallymoreandlargerdarkspots,probably

duetotheformationofmoreandlargerclustersbycoalescenceoffatglobules.Thesemostlikelyfurthercoalescedovertime, leadingtotheobservedcreaming.Itwasconfirmedthatthevisualhomogeneityofthemicrostructurecorrelatedwiththe

emulsionstabilitybytrackingthechangesoverseveraldaysinanemulsion(0.3%w/wcarrageenancontent),whichwasstoredat6°C(FigureA.1).Whilebeingrelativelyhomogeneousinitially,afterthefirst24hlargercoalescedlipidglobulesbecame

visibleandaftertendayssomegreypatcheshadeventuallyemerged,similarintheirappearancetowhatwasobservedforthefreshmodelemulsionof0.5%w/wcarrageenancontent.Itcanthusbeconcludedthatthemicrostructureimagessupportedthe

Turbiscanstabilityresults.

3.1.2FatglobulesizedistributionandshearviscosityofthemodelemulsionsFirstandforemost,Fig.3acomparestheimpactoftheλ-carrageenanconcentrationonthesizedistributionofthefatglobulestogetherwiththefreecaseinmicellesinsidetheoriginal,untreatedmodelemulsions.Atthelowestpolysaccharide

concentrationof0.1%w/w,thefatglobulesfeaturedmaximalsizewithameandiameterof1.09±0.0008μm,whichwasslightlylargerthanincaseofthecarrageenan-freemodelemulsion.Thisobservationwasexplainedbybridgingflocculation,where

thepolysaccharidechainsareonly looselyadsorbedon theproteinof the fatglobulemembranesandhencemaydevelopbridgesbetween the fatglobules, leading tophysical instability.Suchabridging flocculationhasalsobeenreported forother

emulsionsatlowpolysaccharideconcentration,suchasbySerfertetal.(2013)forafishoil/β-lactoglubinemulsionat0.05–0.15%w/wpectinconcentrationandbyDickinsonandPawlowsky(1997)foran-tetradecane/bovineserumalbuminemulsionat

0.001–0.04%w/wι-carrageenanconcentration.Inthepresentstudy,doublingtheλ-carrageenanconcentrationto0.2%w/wpreventedbridgingflocculationandthusresultedinasharpdeclineinfatglobulesize.Theglobulesizewasfurtherreducedby

addingmorecarrageenanofupto0.4%w/w,althoughthemeanvolumetricdiametersfor0.3and0.4%w/wonlydifferedslightly.Aminimalfatglobulesizeof0.66±0.0019μmindiameterwasthusachieved.Thisminimumcoincidedwiththepreviously

describedsaturationsurfacecoverageconcentrationandanestablishmentofoptimumemulsionstabilityat0.3–0.4%w/wcarrageenan(AppendixBandsection3.1.1).Thephysicalstabilizationwithcarrageenanpreventedcoalescenceofthefatglobules.

AscanbeseeninAppendixA(FigureA.2),thevolumetricsizedistributionoftheemulsionswasbimodal,consistingoftwomainpeaksatapproximately0.2and1.5μm.Thefirstpeakofthefatglobulesizedistributionoverlappedwiththepeakofthefree

caseinmicelleswiththeiraforementionedvolumetricmeandiameterof0.14μm.Thefirstpeakwasnotrepresentingthecaseinmicellesalone,becauseitsvolumewascloselyrelatedtothevolumeofthesecondpeakasinfluencedbythecarrageenan

content.From0.1to0.3%w/w,thevolumeofthesecondpeakdecreasedmoreandmore(decreaseinheightfromapproximately6.5%–to4.5%and3.5%).Themassofthefatphasewasconservedwithacorrespondingincreaseinvolumeofthefirstpeak

(increaseinheightfromapproximately5.5%–to8.7%and9.6%).Thisoccurredbecausecoalescenceofthesmallerfatglobuleswasinhibitedbygreaterelectrostaticrepulsionduetoλ-carrageenanadsorption.Comparingtheemulsionof0.1%w/wwiththe

carrageenan-freeemulsion,thesizedistributionshiftedtowardsthelargerfatglobulesofthesecondpeakduetobridgingflocculation.

Additionally,Fig.3aalsoillustratesthechangesinfatglobulesizeduringfilmdisintegrationinthetwoinvestigatedatomizationnozzles.Inbothcasesandindependentfromthecarrageenanconcentration,thefatglobulesdidnotcoalesceduring

atomization,butunderwentadecreaseinmeandiameterby6%inaverage.Themechanicalstress insidethenozzlescausedabreak-upofsomeofthelargerfatglobules,ascanbededucedfromaslightreductionofthesecondpeakinallatomized

emulsionsincomparisontothesizedistributionoftheoriginalemulsions(seeFigureA.2).

Asidefromtheobservedreductionindropletsizeofthedispersedphase,hydrocolloidscanprimarilyenhanceemulsionstabilitiesbymeansoftheirthickeningeffect.Despiteλ-carrageenanbeingnon-gelling,thedynamicshearviscosityofthe

modelemulsions increasedconsiderablywithcarrageenancontent,particularly in therangeof0.2–0.4%w/w(Fig.3b).An increase incarrageenanconcentration to0.5%w/w lackeda furtherappreciable rise in shearviscosity.The increasingshear

viscositywithhighercarrageenancontentpresumablywasaconsequenceoftheabsorbanceofcarrageenanonthemilkfatglobulemembranes.Thisleadtobridgingflocculationatlowcarrageenanconcentrationandtoelectrostaticemulsionstabilization

athigherconcentrationsuntilthesaturationleveloftheproteinsurfaceareasofthefatglobulemembranesandcaseinmicelleshadbeenreachedatabout0.4%w/wcarrageenancontent.Variationoftheshearraterevealednon-Newtonian,shearthinning

behaviour,beingmoredistinctatgreatercarrageenanconcentrations.Assuch,theviscosityunderextensionalstresswasnotcomputablefromtheshearviscosity,buthadtobedeterminedexperimentally.

3.1.3ImpactoffatandcarrageenancontentonshearandextensionalviscositiesItwashypothesizedthattheextensionalviscositycanbeacrucialfactorofinfluenceontheatomizationbehaviourofemulsionsduringspraydrying.Theatomizationtechniqueofthemicrofluidicnozzleemployedinthisstudywasnotbasedon

shearstress,butitimposedanormalstressontheemulsionjetviaasinusoidalcontractionoftheorifice.Fig.1visualizesthesimilaritiesbetweenthemicrofluidicjetatomizationandtheacoustically-drivenmicrofluidicextensionalviscometry.Ineither

case,theemulsionfilmwasformingafinethreadthatthinnedmoreandmorewithdistancefromthenozzleorificeorwithmeasurementtime,respectively.Atsomepoint,dependingontheviscousforces,excesssurfaceenergywasthenreached,causing

thethreadtobreakupintoanindividualdroplettoregainminimalsurfaceenergy.Tobetterunderstandtheimpactofadispersedfatphaseandtheemulsionstabilizationwithcarrageenan,theextensionalandshearviscositiesofselectedemulsionswere

compared(Table1).TheextensionalviscositiesweredeterminedaccordingtoEquation(2)fromthedataillustratedinAppendixC(FigureC.1).

Table1Rheologicalimpactoffatphaseandλ-carrageenan:composition,dynamicshearviscosity(atshearrateof199.1s−1)anduniaxialextensionalviscosityofalow-fatemulsionwithoutλ-carrageenan,aregular-

Fig.3Propertiesofthemodelemulsionsatdifferentλ-carrageenancontents:(a)meanvolumetricparticlesizesinoriginalemulsionandincollectedemulsionafterdisintegrationbyoneoftwoatomizationnozzlesasmeasuredwithlaserlightscattering,and(b)dynamicshear

viscositiesobtainedfromconeandplaterheometermeasurements(25°C).

alt-text:Fig.3

fatemulsionwithoutλ-carrageenanandsimilarfatcontenttothestandardmodelemulsions,andastandardmodelemulsionwith0.3%w/wλ-carrageenan.alt-text:Table1

Carrageenancontent[%w/w] Fatcontent[%w/wind.m.] Solidcontent[%w/w] Shearviscosity[mPa·s] Extensionalviscosity[mPa·s]

0 0.3 20 3.75±0.07 25.9±1.5

0 31.1 20 3.17±0.02 11.5±0.8

0.3 31.1 20 10.20±0.05 30.7±2.8

Thelow-fatemulsionwithalipidcontentofonly0.3%w/wind.m.andtheregular-fatemulsionwithafatcontentsimilartothestandardmodelemulsions(31.1%w/wind.m.)werecomparedtoevaluatetheimpactofthefatglobules.Their

presencecausedastrongdecreaseinextensionalviscositytolessthanhalfthevalueofthefat-freeemulsion(from25.9to11.5mPas).Therewasalsoadropindynamicshearviscosity,which,however,wasmarginalbycomparisonwith15%from3.75to

3.17mPas.Thesharpdecreaseinextensionalviscosityprovidesanexplanationforthereductioninmilkdropletsizewithhigherfatcontentuponatomizationwithamicrofluidicjetnozzleasobservedinapreviousstudy(Foersteretal.,2016a),where

similaremulsionswereinvestigated.Whiletheregular-fatemulsionhadasolidcontentof20%w/wintheaforementionedstudy,thelow-fatemulsioncontainedonly14%w/wsolidsandthusfeaturedalowershearviscosity(2.4mPas)thantheregular-fat

emulsion.Therefore,considerationoftheshearviscositiescouldnotexplainthemeasurementofsmallerdropletsizesinthepresenceoffat,asagreaterviscositytypicallyfavourstheformationofbiggerdroplets(Lefebvre,1989).InlightofTable1,not

onlytheshearviscositybutinparticulartheextensionalviscosityneedstobetakenintoaccounttodescribethedropletdisintegrationmechanismduringatomizationinspraydryingapplications.Aperforationmechanisminducedbythefatglobulesis

proposedtoexplaintheobservedsharpdropinextensionalviscositywiththeexistenceofasignificantlipidcontent.Theintrinsicmilkemulsionstabilitymightbelocallyreducedalongtheoil-waterinterfacesformedbythefatglobules.Withmorefat

globulesbeingdispersedthroughouttheregular-fatemulsion,theemulsionbecameperforatedbytheseareasoflowerstability.Duringatomizationunderelongationalstress,thefilmhencedisintegratedpreferablyalongthefatglobules,followingthe

lowest viscous resistance, figuratively speaking, like the ‘zipper of a jacket’. Such a perforation mechanism had already been briefly discussed several decades ago, when Dombrowski and Fraser (1954) and Zakarian and King (1982) undertook

photographicstudiesofthedisintegrationoffan-shaped,flatliquidsheetsthatweregeneratedwithasingle-holefan-spraynozzle.Thefilmsbrokeearlier,thatisatgreaterfilmthickness,inthepresenceofadispersedoilphase.Furthermore,recent

investigationsreportedthatduringthespraydryingofmilkemulsionssurfacelayersoffatexistedonthedropletsimmediatelyafteratomizationforvariouskindsofatomizationtechniques:microfluidicjetnozzlesofdifferentorificesize,pressureswirl

nozzlesofdifferentorificesizeandoperatedatdifferentfeedpressures,anddropletgenerationwithamicro-volumetricsyringe(Foersteretal.,2016a;Foerster,Gengenbach,Woo,&Selomulya,2016b;Wuetal.,2014).Afilmdisintegrationlocalizedalong

thedispersedfatphasewouldexplainwhythedropletsurfaceswerecoveredbyfatassoonasindividualdropletshadbeenformed.Iftheemulsionpreferablybreaksupalongtheinterfaceofthefatglobules,thefatglobuleswereimmediatelypresenton

thesurfaceoftheformeddroplets,presumablyinformofamoreorlessconsistentmonolayeroffatglobulesthatmighteitherruptureorstayintactuntilcompletionofthespraydryingprocess.Inviewofthat,itwasanticipatedthattheamountofsurface

fat on spray-driedmilk particles should be reducible by decreasing the size of the fat globules inside the emulsionswith the addition of λ-carrageenan. In addition, the emulsion stabilizationwith carrageenanwas hoped to shift the disintegration

mechanismawayfromthefatglobules.

Investigationoftheimpactofλ-carrageenan(0.3%w/w)ontheviscosityofthestandardregular-fatemulsionshowedthatthecarrageenanincreasedtheextensionalviscositysignificantly(Table1).Themilkmodelemulsionwith0.3%w/wλ-

carrageenanfeaturedanextensionalviscosityof30.7mPas,whichwasbyafactorof2.7greaterthantheoneofthepolysaccharide-freeemulsionofidenticalfatcontent.Thelossinextensionalviscosityduetoadditionofthelipidphasewasconsequently

overcomeandtheextensionalviscositywasevengreaterthantheoneofthelow-fatemulsion.Accordingly,thediameterofthemonodispersedroplets immediatelyafteratomizationwasslightlylargerfor0.3%w/w(122±2μm) incomparisontothe

carrageenan-freeemulsiondroplets(115±2μm).Thisindicatedthatthestabilizedemulsionsmighthavelesspreferablydisintegratedalongthedispersedfatphase.

3.2Impactofλ-carrageenancontentonthespray-driedparticles'properties3.2.1Chemicalsurfacecomposition

Theamountofsurfacefatonthespray-driedparticleswassignificantlyreducedatcertaincarrageenanconcentrations,asdeterminedbysurfacefatextraction(Fig.4a).Thesurfacefatamountedto4.7%for0.3%w/wcarrageenan,incontrastto

13.8%forthecarrageenan-freepowder.Theextentofsurfacefatformationduringspraydryingwasapproximatelyinverselyproportionaltotheemulsionstability,asthelowestamountwasobservedatintermediatecarrageenanconcentrations.Beingat

0.2–0.3%w/w,thiswasslightlyoffsetfromtheoptimumemulsionstabilityandfatglobulesizevaluesat0.3–0.4%(Fig.2andFigure3a).Inagreementwiththisfinding,amoreefficientfatencapsulationwithdecreasingfatglobulesizeinsidetheemulsions

tobespray-dried,indicatinggreateremulsionstability,wasalsoreportedinotherstudies(Jafarietal.,2008;Sarkar,Arfsten,Golay,Acquistapace,&Heinrich,2016).Astrengthenednetworkbetweenthelipidandaqueousphasesthroughstabilizationof

themilkfatglobulesbyadsorptionofλ-carrageenan,asalsoreflectedbythesubstantial increase inextensionalviscosity,possibly ledtoareductionofthe insection3.1.3discussedperforationmechanism.Asthenetworkalongthefatglobuleswas

reinforced,itisbelievedthattheemulsionfilmdisintegratedlesspreferablyalongthephaseinterfacesandthusasmalleramountoffatemergedonthesurfacesupondropletformation.Theemulsionstabilityseemedtoentailadecisiveinfluence,sincethe

fatproportionatthesurfacewentupagainto10.0%fortheemulsionwiththehighestcarrageenanconcentrationof0.5%w/w,whichpresumablywassubjecttodepletionflocculation.Otherthanthat,thereductioninfatglobulesize(discussedinsection

3.1.2)inthestabilizedemulsionspossiblycontributeddirectlytotheobservationoflesssurfacefat.Fromthefatextractiondata,thethicknessofthesurfacefatwasroughlyestimatedundertheassumptionofacontinuousfatlayerthathadthesame

compositionasmeasuredfortheverysurfacebyXPS(albeitthisisnotthecaseinreality).Surfacefatthicknessesof1.0,0.9,0.4,0.4,0.6and0.6μmwerecalculatedfortherespectivepowdersfromemulsionswith0–0.5%w/wcarrageenan.Interestingly,

theseestimationsapproximatelycorrespondedtotherespectivesizesofthefatglobulesasmeasuredinsidetheemulsions(Fig.3a).Thissuggestedthataboutamonolayeroffatglobules,albeitpresumablytosomeextentinrupturedform,mighthavebeen

presentonthespray-driedparticlesurfaces.Thisisinconformitywiththeproposedsurfacefatformationmechanisminconsequenceofpreferreddisintegrationalongthedispersedfatphaseduringatomization.Inviewofthis,asmallerfatglobulesizeled

tolessthicksurfacefatonthegenerateddropletsandthusonthespray-driedparticles.

XPSanalysisofthesurfaceconcentration(Fig.4b)onlyshowedminordifferencesbetweenthepowdersamples.AstheXPSsurfaceconcentrationinlactose,proteinandfatonthevariousspray-driedpowderswasalinearestimationderivedfrom

theatomicconcentrations, thesmalldifferencesbetweenthesampleswerenotstatisticallysignificant.Moregenerally, theXPSresultsshowedthat thepowderconsistedalmostcompletelyof fat (approximately88–94%v/v)at theirverysurfaceand

additionofcarrageenancouldnotinhibitthecreationofadominantfatcoveragealongtheoutmostparticlesurface.Assuch,XPSanalysisdidnotreflectthestronginfluenceofthecarrageenancontentontheextentofsurfacefatthatwasrevealedby

surface fatextraction.Proteintookuptheremainingvolumeof theanalysedsurface layer,whichwasdepleted in lactose.For0.3%w/wcarrageenan insidethemodelemulsion,Fig.4balsocompares thesurfaceconcentrationofspray-driedpowder

particleswiththeoneofthecorrespondingdropletsimmediatelyafteratomizationfor0.3%w/wcarrageenan.Apparently,asurfacefatlayerhadalreadybeenformedduringatomization(77%v/vfat)andtheXPSsurfaceconcentrationdidnotchange

Fig.4Impactofλ-carrageenancontentofthemodelemulsionsonthecorrespondingspray-driedparticles'surfacecomposition:(a)freesurfacefatfromextractionstudy,and(b)estimatedXPSsurfacecompositionofthespray-driedparticlesforallcarrageenanconcentrations,ofthe

dropletswith0.3%w/wdirectlyafteratomizationandofthespray-driedparticlesfromemulsionswith0.1and0.3%w/waftersurfacefatextraction.

alt-text:Fig.4

significantlythroughoutthesucceedingdryingstage.Furthermore,itwasconcludedthatatleastsomeofthefatglobulemembranesgotrupturedatthedropletsurfacesbymechanicalorthermalstressduringatomizationordrying,andthefreefatcould

spreadoverwideareasof thedroplet surface. If themajorityof themembraneswasstill intact, theXPSmeasurementwouldmost likelyhave indicatedgreaterproteinsurfaceconcentrations,because the thicknessof theadsorbedcasein layers in

homogenizedmilkmodelemulsionsaretypicallyintherangeofapproximately5–11nm(Dalgleish,Srinivasan,&Singh,1995;Fang&Dalgleish,1993),whichcoincideswiththeXPSmeasurementdepthoflessthanabout10nm.Instead,asaresultofthe

presumedmembraneruptureofatleastsomeofthefatglobulesatthesurface,primarilythelipidphasewasdetectedbyXPS.Thefatsurfaceconcentrationdidnotreach100%v/v,nevertheless,becausenotallglobulesgotrupturedatthesurface(see

section3.2.2)andsomeproteinoftheoriginalmembranesmighthaveremainednearthesurfaceorotherproteindiffusedtothesurfaceduringthedryingstageduetoitssurfaceactivity.Regardingtheextentofglobulerupture,theadsorbedcarrageenan

layerspresumablyhadanindirectinfluenceonthemembranestability:themembranesofthesmallerfatglobules,asforinstanceobtainedbyemulsionstabilizationwithcarrageenanatintermediateconcentrations,werelesssusceptibletorupturethan

theonesofthelargestglobules(Xuetal.,2013).

Theproteinandfatdistributionsobtainedfromconfocallaserscanningmicroscopyshowedthatthesurfacesofallspray-driedparticleswerecoveredbyafatlayer(Fig.5aandb).Moreover,thethicknessofthefatsurfacelayersstronglyvaried

withcarrageenancontent.For0%w/w,thesignalofthesurfacefatwasstrongerandreachedfurtherintotheinneroftheparticleincomparisonto0.3%w/w.Thecomponentdistributionintheatomizeddropletsof0.3%w/wcarrageenancontentappeared

toalreadyfeatureahardlyvisiblefatsurfacelayer(Fig.5c).ThelowvisibilityofthisthinsurfacelayerwasascribedtothelimitedresolutionoftheCLSMimageandtheporoussurfacestructureoftheatomizeddropletsafterfreeze-drying.Thevariationof

thethicknessofthesurfacefatobservedfromCLSMthusexplainedwhythesurfacefatextractiondemonstratedastrongdependenceoftheamountofsurfacefatonthecarrageenancontent.Additionally,asevenforlowsurfacefatcontentstheoutmost

surfacewascomprisedpredominantlybyfat,theCLSMimagesalsoexplainedwhytheXPSmeasurements,whichaccountedonlyforthecompositionattheveryparticlesurfaceduetotheshortsamplingdepth,detectedafatdominanceatthesurfaces

throughoutallspray-driedpowdersandontheatomizeddroplets.

Fig.5CLSMimagesofdistributionofprotein(signalfromFastGreenFCFvisualizedingreen)andfat(signalfromNileRedinred):(a,b)cross-sectionofspray-driedparticleswithλ-carrageenancontentsof0and0.3%w/w,and(c)cross-sectionofatomizeddroplet(afterflash-

freezingandfreeze-drying)with0.3%w/wλ-carrageenan.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

alt-text:Fig.5

3.2.2ParticlemorphologyandporosityInadditiontothechemicalsurfacecomposition,alsotheparticlemorphologyandporositycanaffectthefunctionalpropertiesofmilkpowder.SEMinvestigationshowedthattheparticlesurfacesobtainedfromemulsionswithoutcarrageenanor

withlowconcentrationthereoffeaturedconvexbumpsof2–4μmindiameter(Fig.6aandb).Withmorepolysaccharide,theparticlesurfacesbecamesmoother(Fig.6dande).Comparingtheparticlesurfacesat0.1%w/wbeforeandaftersurfacefat

extraction(Fig.6bandc),theconvexbumpshaddisappearedaftertheextractionprocessandinsteadconcavedimplesofapproximatelysimilarsizeanddistributiondensityremained.Itwashenceconcludedthatthebumpsconsistedoffatandwere

formedduringspray-dryingundercoalescenceoffatglobulesonthedryingparticles'surfaces.Accordingly,itappearsthatnotallofthefatglobulemembranesthatwerelocatedatthedropletsurfacesunderwentrupture(comparetosection3.2.1).With

theadditionofλ-carrageenan,thenegativechargeofthefatglobules'membranesroseandthuscoalescenceoffatglobulesonthesurfaceswasinhibitedandlesstonobumpswereobserved.Alternatively,thebumpsmighthavebeenformedbyprotein

aggregates.ComparingtheCLSMimagesbeforeandafterthedryingstage(Fig.5bandc),itappearsthatproteinclustershadbeenformedduringdryingorstorage,atleastintheprotein-richinneroftheparticles.Itiswellknownthatinspray-driedhigh-

caseinpowdersthecaseinhasatendencytoformnetworksofinterconnectedmicelleswithlowsolubilityinaqueousmedia(Crowley,Kelly,Schuck,Jeantet,&O'Mahony,2016;Schucketal.,2007).Also,ithasbeensuggestedinliteraturethat,atelevated

temperature of sufficient height and duration,whey protein exposes hydrophobic amino acid residues that then undergo linkagewith caseinmicelles, leading to hydrophobic aggregate formation (Corredig&Dalgleish, 1999). The reported protein

aggregateformationoccurredforparticlesthatwereveryhighinprotein,whereasinthepresentstudytheparticlesurfacesweredominatedbyfat.It ishencedoubtfulwhetherheresuchhydrophobicproteinaggregatescouldhavedevelopedatthe

particlesurfaces.

Although the external surfaces of all powder samples were non-porous, the internal cross-sections contained macro-porous structures, which were more pronounced at lower carrageenan content (Fig. 6f–i). It is hence believed that the

strengtheningoftheemulsionnetworkbyadditionofcarrageenantranslatedintodenserparticlesuponspray-drying.Thisalsoexplainswhythespraydriedparticlesfromemulsionswith0and0.3%w/wcarrageenanwereofsimilarsize(91±4and

90±3μmindiameter,respectively),despitetheatomizeddropletsbeingabout7μmlargerfor0.3%w/w(seesection3.1.3).Thus,boththeamountofsurfacefataswellastheparticleporosityaretobetakenintoaccountwhendiscussingtheimpactof

carrageenanonthefunctionalpowderproperties.

3.2.3FunctionalpowderpropertiesFig.7aillustratestheresultsofthedissolutionandwettabilitystudies.AttheendoftheFBRMdissolutiontest,theparticlesize,asrepresentedbythemedianchordlength,wasgenerallylargerforanyλ-carrageenanconcentrationincomparison

tothecarrageenan-freepowder.Intherangeof0.1–0.5%w/w,therewasalocalminimuminparticlesizeatanintermediatecarrageenancontentof0.3%w/w.Thecurvesofchordlengthoverfulldissolutiontimewereinagreementwiththisandare

providedinAppendixD(FigureD.1).Thewettabilitystudyrevealedthatthesamplescontaining0.3%w/wpolysaccharidecompletedthepenetrationofthewatersurfacethefastestinatimeofabout17min.Thewettingtimesoftheothersamples(0,0.1,

Fig.6Morphologyandporosityofspray-driedparticlesasinfluencedbyλ-carrageenancontent:(a–e)particlesurfaceswith(c)beingaftersurfacefatextraction,and(f–i)cross-sections.

alt-text:Fig.6

0.2and0.4%w/w),definedastotaltimerequiredforthelastparticleofeachsampletopenetratethewatersurface,didnotvarysignificantlyfromeachother,lyingbetween23and25min.Nowettingtimeforpowdersamplesobtainedfromspray-drying

ofanemulsionwith0.5%w/wcarrageenanaredisplayedinthechart,becausethemajorityofthoseparticleshadstillnotpenetratedthewatersurfaceafter1honehour.Theresultsofthewettingtimewereinlinewithphotographicmonitoringat20,60,

120and300s,whichalsoshowedasuperiorwettabilityfor0.3%w/wandaparticularlylimitedwettabilityfor0.5%w/w(FigureD.1inAppendixD).Forinterpretationoftheseresults,thedissolutionandwettabilitystudiesneedtobeinterpretedin

relationtoeachother.Thepowderwettabilityseemedtoinfluencethepowdersolubility,asthewettabilitycurveovercarrageenancontentwassimilarinshapetothedissolutioncurvewithaminimumat0.3%w/wcarrageenan.Theminimalvalueinchord

lengthandwettingtimeat0.3%w/wisbelievedtobeaconsequenceofthepowders'differentsurfacefatcontents.Astheamountofhydrophobicsurfacefatdecreasedfrom0to0.3%w/wofaddedcarrageenan,thetherebyimprovedwettabilityinaqueous

mediumcounteracted,tosomeextent,thedetrimentalimpactofthedecliningporositythatwasobservedfromSEMimaging.Presumablyasaresultoflowerparticleporositieswithgreatercarrageenancontent,thepowderdissolutionratewasloweredby

anycarrageenancontentincomparisontothepolysaccharide-freepowder.Therefore,anunwanteddeteriorationofthepowderrehydrationbehaviourwascausedbyemulsionstabilizationwithcarrageenan.

Furthermore,theinternalporosityofthepowdersalsoaffectedtheirperoxidevalues(Fig.7b).Thesewereusedasameasureoftheextenttowhichthelipid'sunsaturatedfattyacidchainshadundergoneprimaryoxidation.Directlyafterspray

drying(0days),nodifferenceinthedegreeofoxidationwasobservedbetweenanysample(colouroftheinitialanalytesolutionswasalreadysimilartotheblanktestspriortotitration).Apparently,thefattyacidshadnotbeenappreciablyoxidisedduring

emulsionpreparationorspraydryingforanypowdersample,andtheperoxidevalueshencewereapproximatedasbeing0milliequiv/kg.Themostsignificantchangesinperoxidevalueandthemostdistinctdifferencesbetweentheindividualpowder

sampleswerefoundtooccurduringthefirstsevendays.Thegreaterthecarrageenancontentofeachsamplewas,thelessstronglyincreasedthecorrespondingperoxidevalue,indicatinganimprovedoxidativestabilitybytheadditionofcarrageenan.This

was explained by the decreasing internal powder porosity at higher carrageenan concentration, which impeded oxygen diffusion inside the particles. Therefore, the peroxide values of the 0.5% w/w powder samples were by far the lowest (6–17

milliequiv/kg)overthewholestoragestudy.Itshouldbenotedthatthedifferenceinpowderdissolutionrateandwettabilitymighthavealsoaffectedtheperoxidevaluemeasurementitselfbyinfluencingtheaccessibilityofthetitrantandthesample

Fig.7Functionalpropertiesofspray-driedpowdersindependenceofλ-carrageenancontent:(a)wettingtimeonaquiescentwatersurfaceaswellasmedianofthefinalparticlechordlengthattheendoftheFBRMdissolutionanalysis,and(b)peroxidevalueforquantificationofthe

oxidativestabilityoverstoragetime.

alt-text:Fig.7

solutionintotheparticles.Inaddition,asmalleramountofsurfacefatmostlikelysupportedlowerperoxidevalues,too.Forinstance,therewasaconsiderabledifferenceintheperoxidevaluesattheendofthestoragestudy(35days)betweenpowders

withacarrageenancontentof0or0.1%w/w(approximately33milliequiv/kg)and0.2–0.4%w/w(27-22milliequiv/kg).Thiscorrespondedwellwiththesharpdropinextractedsurfacefatfrom0.1to0.2%w/w(Fig.4a).Thatthelipidcontainedinparticles

canbeprotectedfromahighrateofoxidationbyreducingtheamountofsurfacefatwaspreviouslydemonstratedbyGranellietal.(1996).

4ConclusionsThis studygave anunderstanding about the effect of λ-carrageenan, a linear sulphatedpolysaccharide, onmilkmodel emulsions in termsof stability anddisintegrationbehaviourduring spraydrying for thepurpose of

improvedmilkpowderpropertiesbyareductionofsurfacefat.Frominvestigationofemulsionsatdifferentcarrageenanconcentrations,itwaslearntthatcoalescenceofthedispersedlipidphasecanbeinhibitedbyadsorptionofλ-

carrageenan'ssulphategroupsonthemilkfatglobulemembranesandaconsequentincreaseinnegativechargeoftheseoil-waterinterfaces.Optimumelectrostaticemulsionstabilizationandminimumfatglobulesizewereobtained

withinacertainrangeofcarrageenanconcentrations(0.3–0.4%w/w)forthegivenmodelemulsions,whichagreedwithatheoreticalestimationofthesaturationcoverageofthecationiccaseinsurfacearea.Theemulsionstabilization

translatedintoaconsiderablythinnersurfacefatlayeronthespray-driedparticles.Thefatinpowdersobtainedfromacarrageenan-freeemulsionconsistedof13.8%freesurfacefat,incontrasttoonlyathirdofthis(4.7%)fora

carrageenan content of 0.3%w/w. These fat extraction results were confirmed by confocal laser scanningmicroscopic images. It was concluded that the emulsion stabilizationwith carrageenan possibly reduced the proposed

perforationmechanismalong the dispersed fat phase anddecreased the volumeof the fat globules that appeared at the droplet surface through this disintegration process, contributing to the observation of less surface fat at

intermediatecarrageenanconcentrations.Rheologicaldatasuggestedthatduringatomizationthemilkemulsionspreferablydisintegratedalongthedispersedfatglobules.Theextensionalviscositywasverysensitivetotheadditionof

oilandλ-carrageenan.Whiletheadditionofasignificantfatphaseatconstanttotalsolidcontentresultedinadecreasefrom25.9to11.5mPas,thepresenceofcarrageenan(0.3%w/w)avertedthistrendbyraisingtheextensional

viscosityup to30.7mPas.Thenew insights into the connectionbetweenemulsionproperties, atomizationbehaviour and resulting surface compositionof the correspondingparticles is of importance for industrial spraydrying

applications,sincesurfacefatcoverageaffectsthefunctionalpowderpropertiesdetrimentally.Inlightoftheseresults,andascarrageenanisalreadybeingusedincommerciallyavailabledairydrinks,theadditionofcarrageenaninto

milkemulsionsforreductionofthepowdersurfacefatcoverageuponspray-dryingseemstobefeasiblefromaneconomicalandconsumerpointofview.Besidesareductioninsurfacefat,theemulsionstabilizationwithλ-carrageenan

alsoinducedadecreaseininternalparticleporosity.Withregardtotherehydrationbehaviourinwater,atrade-offwasnotedbetweenthepositiveimpactofreducedsurfacefatandthenegativeinfluenceofagreaterparticledensity

withcarrageenan.Sincetheeffectof increaseddensitywasmoredominantonthewatersolubility,methodstoavoida loss inpowderporosityshouldbeexplored in futurestudies for thepurposeof ideal functionalmilkpowder

propertiesinindustrialapplications.Yet,thehigherpowderdensityappearedtoalsohaveafavourableeffect,asthepowder'soxidativerancidityafterstoragewasreducedwithgreatercarrageenancontent.Inafuturestudy,itcould

beinvestigatedhowtheimprovedemulsionstabilityandincreasedextensionalviscositybyadditionofcarrageenanimpactsthedisintegrationbehaviourandfatencapsulationefficiencyinspraydryingtechniquesthatarecommonly

applied in industrialmilk powder production. The charge density in emulsions containing skimmilk powder and different λ-carrageenan concentrations could be investigated by ζ-potentialmeasurements to also study how the

electrostaticcarrageenan/caseininteractionisinfluencedbyavariationinsodiumorcalciumcationconcentrations.

AcknowledgementsTheconfocallaserscanningmicroscopyworkwasperformedattheMelbourneCentreforNanofabrication(MCN)intheVictorianNodeoftheAustralianNationalFabricationFacility(ANFF).Theauthorsalso

wishtoacknowledgeuseoffacilitieswithintheMonashCentreforElectronMicroscopy.TheextensionalviscositymeasurementswereconductedbyDrAmarinMcDonnellandProfLeslieYeoatRMITUniversity,

SchoolofEngineering.SvenjaM.Beckisgratefullyacknowledgedforvaluablediscussions.Thisproject ispartofthedairyresearchactivitiesatMonashUniversity,supportedbytheAustralianResearchCouncil

(ARC)throughtheLinkageprogram(LP140100922).

AppendixE.SupplementarydataSupplementarydatarelatedtothisarticlecanbefoundathttp://dx.doi.org/10.1016/j.foodhyd.2017.04.005.

AppendixA.Fatglobulesizedistributionsandchangesinemulsionmicrostructureovertime

Fig.A1Emulsionhomogeneityasafunctionoftime:microscopeimagesofthemicrostructureofamodelemulsion(0.3%w/wcarrageenan)thatwasstoredat6°C.2

alt-text:Fig.A1

Fig.A2Volumetricsizedistributioninmodelemulsionsofdifferentcarrageenancontents:intheoriginalemulsions(firstcolumn)andafteratomizationinamicrofluidicjetnozzle(secondcolumn).3

alt-text:Fig.A2

AppendixB.EstimationofthesaturationcoverageoftheproteinsurfacesbycarrageenanThe emulsion stability investigation (section 3.1.1) indicated that saturation coverage of the cationic surface areas of the protein of the caseinmicelles and around the fat globules, and as such optimum stability that

deterioratesagainforhigherconcentrationspresumablyduetodepletionflocculation,occurredatapproximately0.4%w/wcarrageenan.Thisvaluewasabout30timesgreaterthanthevaluesreportedbyDalgleishetal.(1988).This

seemedreasonable,becausetheemulsionsinvestigatedinthepresentstudycontainedamuchhigherfatcontent,leadingtoagreaterproteinsurfaceareaaroundthelipidglobules,andasignificantlyhigherconcentrationinprotein

(5.4%w/w, in comparison to about0.025%w/w).Theoretical calculation, comparable to (Dalgleishet al., 1988),wasundertaken toprovide further supportingevidence that flocculationoccurreddue to excess carrageenanat a

carrageenanconcentrationabove0.4%w/w.Forthisconsideration,itwassupposedthatatsaturationlevelthepositivelychargedregionsoftheproteinatthesurfaceofthefatglobulesandthecaseinmicelleswerecompletelycovered

byamonolayerofcarrageen.Thefatglobulesfeaturedavolumetricmeandiameterofaround650nm(Fig.3a),andtheirsurfaceareawasthusabout0.64m2/gemulsionforthegivenlipidconcentrationinsidethemodelemulsions.

Estimatingasurfacecaseinconcentrationonthefatglobulesof1.50·10−3g/m2accordingtoanalysesbySrinivasan,Singh,andMunro(1996)ofasoyaoil/caseinateemulsionhomogenizedathighpressure,thenon-adsorbedamountof

caseinwas5.30·10−2g/gemulsion.Togetherwith thevolumetricmeandiameterof thecaseinmicellesbeingpreviouslymeasuredasapproximately140nm, thisamounted toa surfaceareaof caseinmicellesofabout1.82m2/g

emulsion.Hence,thecombinedsurfaceareaavailableforcarrageenanadsorptionwas2.46m2/gemulsion.Thecarrageenanmoleculeswereassumedtospananareaof6.0·102m2/gasadaptedfromDalgleishetal.(1988).Thismeant

anabsolutesurfaceareaof0.60,1.20,1.80,2.40or3.00m2/gemulsionheldbythepolysaccharidemoleculesforrespectiveconcentrationsof0.1,0.2,0.3,0.4or0.5%w/w.Consequently,thesurfaceareaofcaseinmicellesandfat

globuleswasapproximately commensuratewith thepresent carrageenan surfacearea fora carrageenancontentof0.4%w/w,andat0.5%w/w therewasmorecarrageenan inside theemulsion thancouldundergoelectrostatic

interactionwith the positively charged protein regions. The theoretical calculation thus agreedwellwith the observed emulsion stabilities (section 3.1.1) and the results about the fat globule sizes as a function of carrageenan

concentration(section3.1.2).Thecalculatedsaturationsurfacecoveragecorrespondedtoanadsorbedcarrageenanamountof1.62·10−3g/m2.

Annotations:

A1. PleaseremoveFig.B1(thereisnoFig.B1,thisgraphsisforFig.C1)

AppendixC.Timecurvesofneckdiameterduringextensionalviscosityanalysis

Fig.B14

alt-text:Fig.B1

A1

Fig.C1Extensionalviscositymeasurements:bridgeneckdiameterovertimeforlow-fatemulsion,regular-fatemulsion,regular-fatemulsionwithcarrageenan(0.3%w/w)andpurewaterforcomparison.5

alt-text:Fig.C1

Annotations:

A1. PleaseremoveFig.C2(thereisnoFig.C2,thisgraphisforFig.D2)

AppendixD.FullresultsofFBRMdissolutionstudyandimagestakenduringwettabilitystudy

Fig.C26

alt-text:Fig.C2

A1

Fig.D1Impactofλ-carrageenanconcentrationonpowderdissolutionrate:mediandiameteroftheparticles'chordlengthsasafunctionofdissolutiontime.7

alt-text:Fig.D1

ReferencesAgboolaS.O.andDalgleishD.G.,Enzymatichydrolysisofmilkproteinsusedforemulsionformation.2.Effectsofcalcium,pH,andethanolonthestabilityoftheemulsions,JournalofAgriculturalandFoodChemistry44(11),

1996a,3637–3642.

AgboolaS.O.andDalgleishD.G.,Kineticsofthecalcium-inducedinstabilityofoil-in-wateremulsions:Studiesunderquiescentandshearingconditions,LWT-foodScienceandTechnology29(5),1996b,425–432.

AOAC,OfficialmethodsofanalysisoftheassociationofofficialanalyticalChemistsVol.2,1990,AssociationofOfficialAnalyticalChemists;Arlington.

Fig.D2Impactofλ-carrageenanconcentrationonpowderwettability:photographstakenat20,60,120and300safteradditionofpowderontothewatersurface.8

alt-text:Fig.D2

BertschA.J.,Surfacetensionofwholeandskim-milkbetween18and135C,JournalofDairyResearch50(03),1983,259–267.

BhattacharjeeP.K.,McDonnellA.G.,PrabhakarR.,YeoL.Y.andFriendJ.,Extensionalflowoflow-viscosityfluidsincapillarybridgesformedbypulsedsurfaceacousticwavejetting,NewJournalofPhysics13(2),2011,

023005.

BixlerH.J.,JohndroK.andFalshawR.,Kappa-2carrageenan:Structureandperformanceofcommercialextracts:II.Performanceintwosimulateddairyapplications,FoodHydrocolloids15(4),2001,619–630.

ChewJ.H.,LiuW.,FuN.,GengenbachT.,ChenX.D.andSelomulyaC.,Exploringthedryingbehaviourandparticleformationofhighsolidsmilkproteinconcentrate,JournalofFoodEngineering2014.

CorredigM.andDalgleishD.G.,Themechanismsoftheheat-inducedinteractionofwheyproteinswithcaseinmicellesinmilk,InternationalDairyJournal9(3),1999,233–236.

CrowleyS.V.,KellyA.L.,SchuckP.,JeantetR.andO'MahonyJ.A.,Rehydrationandsolubilitycharacteristicsofhigh-proteindairypowders,In:McSweeneyP.L.H.andO'MahonyJ.A.,(Eds.),Advanceddairychemistry.Volume1B:

Proteins:Appliedaspects,4thed.,2016,Springer;Heidelberg,99–131.

DalgleishD.G.,Adsorptionofproteinandthestabilityofemulsions,TrendsinFoodScience&Technology8(1),1997,1–6.

DalgleishD.G.andMorrisE.R.,Interactionsbetweencarrageenansandcaseinmicelles:Electrophoreticandhydrodynamicpropertiesoftheparticles,FoodHydrocolloids2(4),1988,311–320.

DalgleishD.G.,SrinivasanM.andSinghH.,Surfacepropertiesofoil-in-wateremulsiondropletscontainingcaseinandTween60,JournalofAgriculturalandFoodChemistry43(9),1995,2351–2355.

DickinsonE.,Stabilityandrheologicalimplicationsofelectrostaticmilkprotein–polysaccharideinteractions,TrendsinFoodScience&Technology9(10),1998,347–354.

DickinsonE.andPawlowskyK.,Effectofι-carrageenanonflocculation,creaming,andrheologyofaprotein-stabilizedemulsion,JournalofAgriculturalandFoodChemistry45(10),1997,3799–3806.

DombrowskiN.andFraserR.P.,Aphotographicinvestigationintothedisintegrationofliquidsheets,PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesA,MathematicalandPhysicalSciences1954,101–130.

DruschS.,SerfertY.,ScampicchioM.,Schmidt-HansbergB.andSchwarzK.,Impactofphysicochemicalcharacteristicsontheoxidativestabilityoffishoilmicroencapsulatedbyspray-drying,JournalofAgriculturalandFood

Chemistry55(26),2007,11044–11051.

Einhorn-StollU.,UlbrichM.,SeverS.andKunzekH.,Formationofmilkprotein–pectinconjugateswithimprovedemulsifyingpropertiesbycontrolleddryheating,FoodHydrocolloids19(2),2005,329–340.

FäldtP.andBergenståhlB.,Spray-driedwheyprotein/lactose/soybeanoilemulsions.2.Redispersability,wettabilityandparticlestructure,FoodHydrocolloids10(4),1996,431–439.

FäldtP.,BergenstahlB.andCarlssonG.,ThesurfacecoverageoffatonfoodpowdersanalyzedbyESCA(electronspectroscopyforchemicalanalysis),FoodStructure12,1993,225–234.

FangY.andDalgleishD.G.,Dimensionsoftheadsorbedlayersinoil-in-wateremulsionsstabilizedbycaseins,JournalofColloidandInterfaceScience156(2),1993,329–334.

FangY.,SelomulyaC.andChenX.D.,Characterizationofmilkproteinconcentratesolubilityusingfocusedbeamreflectancemeasurement,DairyScience&Technology90(2–3),2010,253–270.

FAO,Productionandutilizationofproductsfromcommercialseaweeds,In:McHughD.J.,(Ed),FoodandagricultureorganizationoftheUnitedNations,chapter3:Productionandutilizationofproductsfromcommercialseaweeds,

1987.

FDA,In:21CFR172.6202016,USFood&DrugAdministration,CodeofFederalRegulations,Title21.Volume3,Part172.

FoersterM.,GengenbachT.,WooM.W.andSelomulyaC.,TheImpactofatomizationonthesurfacecompositionofspray-driedmilkdroplets,ColloidsandSurfacesB:Biointerfaces2016a.

FoersterM.,GengenbachT.,WooM.W.andSelomulyaC.,Theinfluenceofthechemicalsurfacecompositiononthedryingprocessofmilkdroplets,AdvancedPowderTechnology2016b.

FonsecaC.R.,BentoM.S.G.,QuinteroE.S.M.,GabasA.L.andOliveiraC.A.F.,Physicalpropertiesofgoatmilkpowderwithsoylecithinaddedbeforespraydrying,InternationalJournalofFoodScience&Technology46(3),2011,

608–611.

FyfeK.,KravchukO.,NguyenA.V.,DeethH.andBhandariB.,Influenceofdryertypeonsurfacecharacteristicsofmilkpowders,DryingTechnology29(7),2011,758–769.

GEA,In:GEANiroanalyticalmethods.No.A5a-wettability,2005,GEAGroupAG;Germany.

GharsallaouiA.,SaurelR.,ChambinO.,CasesE.,VoilleyA.andCayotP.,Utilisationofpectincoatingtoenhancespray-drystabilityofpeaprotein-stabilisedoil-in-wateremulsions,FoodChemistry122(2),2010,447–454.

GranelliK.,FäldtP.,AppelqvistL.Å.andBergenståhlB.,Influenceofsurfacestructureoncholesteroloxidationinmodelfoodpowders,JournaloftheScienceofFoodandAgriculture71(1),1996,75–82.

GuY.S.,RegnierL.andMcClementsD.J.,Influenceofenvironmentalstressesonstabilityofoil-in-wateremulsionscontainingdropletsstabilizedbyβ-lactoglobulin–ι-carrageenanmembranes,JournalofColloidandInterface

Science286(2),2005,551–558.

GuzeyD.,KimH.andMcClementsD.J.,Factorsinfluencingtheproductionofo/wemulsionsstabilizedbyβ-lactoglobulin–pectinmembranes,FoodHydrocolloids18(6),2004,967–975.

HardasN.,DanviriyakulS.,FoleyJ.,NawarW.W.andChinachotiP.,Acceleratedstabilitystudiesofmicroencapsulatedanhydrousmilkfat,LWT-foodScienceandTechnology33(7),2000,506–513.

JafariS.M.,AssadpoorE.,BhandariB.andHeY.,Nano-particleencapsulationoffishoilbyspraydrying,FoodResearchInternational41(2),2008,172–183.

KeoghM.K.,O'KennedyB.T.,KellyJ.,AutyM.A.,KellyP.M.,FurebyA.,etal.,Stabilitytooxidationofspray-driedfishoilpowdermicroencapsulatedusingmilkingredients,JournalofFoodScience66(2),2001,217–224.

KimE.H.-J.,ChenX.D.andPearceD.,Effectofsurfacecompositionontheflowabilityofindustrialspray-drieddairypowders,ColloidsandSurfacesB:Biointerfaces46(3),2005a,182–187.

KimE.H.-J.,ChenX.D.andPearceD.,Meltingcharacteristicsoffatpresentonthesurfaceofindustrialspray-drieddairypowders,ColloidsandSurfacesB:Biointerfaces42(1),2005b,1–8.

KimE.H.-J.,ChenX.D.andPearceD.,Surfacecompositionofindustrialspray-driedmilkpowders.2.Effectsofspraydryingconditionsonthesurfacecomposition,JournalofFoodEngineering94(2),2009,169–181.

KravtchenkoT.P.,ParkerA.andTrespoeyA.,Colloidalstabilityandsedimentationofpectin-stabilizedacidmilkdrinks,1995.

LallbeeharryP.,TianY.,FuN.,WuW.D.,WooM.W.,SelomulyaC.,etal.,Effectsofionicandnonionicsurfactantsonmilkshellwettabilityduringco-spray-dryingofwholemilkparticles,JournalofDairyScience2014.

LangendorffV.,CuvelierG.,MichonC.,LaunayB.andParkerA.,Effectsofcarrageenantypeonthebehaviourofcarrageenan/milkmixtures,FoodHydrocolloids14(4),2000,273–280.

LefebvreA.H.,Atomizationandsprays,1989,Taylor&Francis;USA,11,.

McDonnellA.G.,GopeshT.C.,LoJ.,O'BryanM.,YeoL.Y.,FriendJ.R.,etal.,Motilityinducedchangesinviscosityofsuspensionsofswimmingmicrobesinextensionalflows,SoftMatter11(23),2015,4658–4668.

McDonnellA.G.,JasonN.N.,YeoL.Y.,FriendJ.R.,ChengW.andPrabhakarR.,Extensionalviscosityofcoppernanowiresuspensionsinanaqueouspolymersolution,SoftMatter11(41),2015,8076–8082.

Millqvist-FurebyA.,ElofssonU.andBergenståhlB.,Surfacecompositionofspray-driedmilkprotein-stabilisedemulsionsinrelationtopre-heattreatmentofproteins,ColloidsandSurfacesB:Biointerfaces21(1),2001,

47–58.

Millqvist-FurebyA.andSmithP.,In-situlecithinationofdairypowdersinspray-dryingforconfectioneryapplications,FoodHydrocolloids21(5),2007,920–927.

Munoz-IbanezM.,NuzzoM.,TurchiuliC.,BergenståhlB.,DumoulinE.andMillqvist-FurebyA.,Themicrostructureandcomponentdistributioninspray-driedemulsionparticles,FoodStructure2016.

NijdamJ.J.andLangrishT.A.G.,Theeffectofsurfacecompositiononthefunctionalpropertiesofmilkpowders,JournalofFoodEngineering77(4),2006,919–925.

SarkarA.,ArfstenJ.,GolayP.-A.,AcquistapaceS.andHeinrichE.,Microstructureandlong-termstabilityofspraydriedemulsionswithultra-highoilcontent,FoodHydrocolloids52,2016,857–867.

SCF,Opinionofthescientificcommitteeonfoodoncarrageenan,In:SCF/CS/ADD/EMU/199:Europeancommission-health&consumerprotectiondirectorate-scientificcommitteeonfood,2003.

SchuckP.,MejeanS.,DolivetA.,GaianiC.,BanonS.,ScherJ.,etal.,Watertransferduringrehydrationofmicellarcaseinpowders,LeLait87(4–5),2007,425–432.

SerfertY.,SchröderJ.,MescherA.,LaackmannJ.,RätzkeK.,ShaikhM.,etal.,Spraydryingbehaviourandfunctionalityofemulsionswithβ-lactoglobulin/pectininterfacialcomplexes,FoodHydrocolloids31(2),2013,438–445

SinghH.,TamehanaM.,HemarY.andMunroP.A.,Interfacialcompositions,microstucturesandpropertiesofoil-in-wateremulsionsformedwithmixturesofmilkproteinsandκ-carrageenan:1.Sodiumcaseinate,Food

Hydrocolloids17(4),2003,539–548.

SnoerenT.H.M.,PayensT.A.J.,JeuninkJ.andBothP.,Electrostaticinteractionbetweenkappa-carrageenanandkappa-casein,Milchwissenschaft1975.

SoottitantawatA.,YoshiiH.,FurutaT.,OhkawaraM.andLinkoP.,Microencapsulationbyspraydrying:Influenceofemulsionsizeontheretentionofvolatilecompounds,JournalofFoodScience68(7),2003,2256–2262.

SrinivasanM.,SinghH.andMunroP.A.,Sodiumcaseinate-stabilizedemulsions:Factorsaffectingcoverageandcompositionofsurfaceproteins,JournalofAgriculturalandFoodChemistry44(12),1996,3807–3811.

StoneA.K.andNickersonM.T.,Formationandfunctionalityofwheyproteinisolate–(kappa-,iota-,andlambda-type)carrageenanelectrostaticcomplexes,FoodHydrocolloids27(2),2012,271–277.

SurhJ.,DeckerE.A.andMcClementsD.J.,InfluenceofpHandpectintypeonpropertiesandstabilityofsodium-caseinatestabilizedoil-in-wateremulsions,FoodHydrocolloids20(5),2006,607–618.

TianY.,FuN.,WuW.D.,ZhuD.,HuangJ.,YunS.,etal.,Effectsofco-spraydryingofsurfactantswithhighsolidsmilkonmilkpowderwettability,FoodandBioprocessTechnology7(11),2014,3121–3135.

WangY.,LiuW.,ChenX.D.andSelomulyaC.,Micro-encapsulationandstabilizationofDHAcontainingfishoilinprotein-basedemulsionthroughmono-dispersedropletspraydryer,JournalofFoodEngineering175,2016,

74–84.

WuW.D.,LiuW.,GengenbachT.,WooM.W.,SelomulyaC.,ChenX.D.,etal.,Towardsspraydryingofhighsolidsdairyliquid:Effectsoffeedsolidcontentonparticlestructureandfunctionality,JournalofFood

Engineering123,2014,130–135.

XuY.Y.,HowesT.,AdhikariB.andBhandariB.,Effectsofemulsificationoffatonthesurfacetensionofproteinsolutionsandsurfacepropertiesoftheresultantspray-driedparticles,DryingTechnology31(16),2013,

1939–1950.

YanesM.,DuránL.andCostellE.,Effectofhydrocolloidtypeandconcentrationonflowbehaviourandsensorypropertiesofmilkbeveragesmodelsystems,FoodHydrocolloids16(6),2002,605–611.

ZakarianJ.A.andKingC.J.,Volatileslossinthenozzlezoneduringspraydryingofemulsions,Industrial&EngineeringChemistryProcessDesignandDevelopment21(1),1982,107–113.

Thefollowingisthesupplementarydatarelatedtothisarticle:

AppendixE.SupplementarydataThefollowingarethesupplementarydatarelatedtothisarticle:

MultimediaComponent1

Video1Thinningemulsionbridgeduringmicrofluidicextensionalviscometryofamilkmodelemulsionwith31.1%w/wfatind.m.andnocarrageenan.1

alt-text:Video1

MultimediaComponent2

Video2CLSMstackanimationofprotein(green)andfat(red)distributioninsideaspray-driedparticlefromacarrageenan-freemodelemulsionfromthetoptoaboutitsmiddlein1μmsteps.

alt-text:Video2

MultimediaComponent3

Video3CLSMstackanimationofprotein(green)andfat(red)distributioninsideaspray-driedparticlefromamodelemulsionwith0.3%w/wλ-carrageenanfromthetoptoaboutitsmiddlein1μmsteps.

alt-text:Video3

Graphicalabstract

QueriesandAnswersQuery:Pleasenotethatauthor’stelephone/faxnumbersarenotpublishedinJournalarticlesduetothefactthatarticlesareavailableonlineandinprintformanyyears,whereastelephone/faxnumbersarechangeableandthereforenotreliableinthelongterm.Answer:Ok

Query:Thecitation‘PiaFäldt&Bergenståhl,1996’hasbeenchangedtomatchtheauthorname/dateinthereferencelist.Pleasecheckhereandinsubsequentoccurrences,andcorrectifnecessary.Answer:Ok

Query:Refs.PiaFäldt&Bergenståhl,1996;Rogersetal.(2008);Dalgleishetal.,1988;Stoneetal.(2012)arecitedinthetextbutnotprovidedinthereferencelist.Pleaseprovidetheminthereferencelistordeletethesecitationsfromthetext.Answer:Rogers,S.,Wu,W.D.,Saunders,J.&Chen,X.D.2008.Characteristicsofmilkpowdersproducedbysprayfreezedrying.DryingTechnology,26,404-412.Theothercitationsarealreadyprovidedinthereferencelist.

Query:PleaseprovidecaptionforFig.B1andFig.C2.Answer:Thesefiguresdonotappearintheoriginalmanuscript.FigureC1andFigureD2seemtohavebeenduplicatedbymistakeduringthetypesettingprocess.Pleaseremove.

Query:PleaseprovidethevolumenumberorissuenumberorpagerangeorarticlenumberforthebibliographyinRefs.Chewetal.,2014,Foersteretal.,2016a,Foersteretal.,2016b,Lallbeeharryetal.,2014,Munoz-Ibanezetal.,2016,Snoerenetal.,1975.Answer:Chew,J.H.,Liu,W.,Fu,N.,Gengenbach,T.,Chen,X.D.&Selomulya,C.2014.Exploringthedryingbehaviourandparticleformationofhighsolidsmilkproteinconcentrate.JournalofFood

Highlights

• Stabilizsationofbilayermilkemulsionswithλ-carrageenan.

• Improvedstabilityandsmallestfatglobulesat0.3–0.4%w/wcarrageenan.

• Influenceoftheextensionalviscosityontheatomizationbehaviour.

• Significantreductionofsurfacefatat0.3%w/wcarrageenancontent.

• Enhancedoxidativestability,butlowersolubilityduetolessporouspowder.

alt-text:Image1

Engineering,143,186-194.Foerster,M.,Gengenbach,T.,Woo,M.W.,&Selomulya,C.(2016a).TheImpactofatomizationonthesurfacecompositionofspray-driedmilkdroplets.ColloidsandSurfacesB:Biointerfaces,140,60-471.Foerster,M.,Gengenbach,T.,Woo,M.W.,&Selomulya,C.(2016b).Theinfluenceofthechemicalsurfacecompositiononthedryingprocessofmilkdroplets.AdvancedPowderTechnology,27,324–2334.Lallbeeharry,P.,Tian,Y.,Fu,N.,Wu,W.D.,Woo,M.W.,Selomulya,C.,&Chen,X.D.(2014).Effectsofionicandnonionicsurfactantsonmilkshellwettabilityduringco-spray-dryingofwholemilkparticles.JournalofDairyScience,97(9),5303–5314.Munoz-Ibanez,M.,Nuzzo,M.,Turchiuli,C.,Bergenståhl,B.,Dumoulin,E.,&Millqvist-Fureby,A.(2016).Themicrostructureandcomponentdistributioninspray-driedemulsionparticles.Foodstructure,8,16-24.Snoeren,T.H.M.,Payens,T.A.J.,Jeunink,J.,&Both,P.(1975).Electrostaticinteractionbetweenkappa-carrageenanandkappa-casein.Milchwissenschaft,30,393-396.

Query:Pleaseconfirmthatgivennamesandsurnameshavebeenidentifiedcorrectly.Answer:Yes

Query:Yourarticleisregisteredasaregularitemandisbeingprocessedforinclusioninaregularissueofthejournal.IfthisisNOTcorrectandyourarticlebelongstoaSpecialIssue/Collectionpleasecontactshalini.kumar@elsevier.comimmediatelypriortoreturningyourcorrections.Answer:Yes