1. If a particle’s position is ... -...

18
1. If a particle’s position is described by the polar coordinates =4 1 + sin m and = 2 rad, where t is in seconds and the argument for the sine is in radians, determine the radial and transverse components of the particle’s velocity and acceleration when t = 2 s.

Transcript of 1. If a particle’s position is ... -...

Page 1: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

1. If a particle’s position is described by the polar coordinates 𝑟 = 4 1 + sin 𝑡 m and𝜃 = 2𝑒−𝑡 rad, where t is in seconds and the argument for the sine is in radians,determine the radial and transverse components of the particle’s velocity andacceleration when t = 2 s.

Page 2: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

2. The slotted link is pinned at O, and as a result

of the constant angular velocity ሶ𝜃 = 3 𝑟𝑎𝑑/𝑠 itdrives the peg P for a short distance along thespiral guide 𝑟 = (0.4𝜃) 𝑚 where is 𝜃 in radians.Determine the radial and transversecomponents of the velocity and acceleration ofP at the instant q = p/3 rad.

2

222

/2.732.1202

/77.334189.002

smrra

smra

eaeaa

r

rr

qq

q

q

qq

smrsradrr dt

d

/2.134.0/34.04.0 qqq

mrradat 4189.03

4.03

ppq

qq 4.04.0 rr dt

d

00 rcst qq

smrv

smrv

evevv

r

rr

/26.134189.0

/2.1

qq

qq

SOLUTION

Velocity Acceleration

Page 3: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

3. The sphere P travels in a straight line with a constant

speed of v=100 m/s. For the instant shown, determine

the corresponding values of as measured

relative to the fixed Oxy coordinate system.

qqq ,,,,, rrr

+ r+ q

Position

Velocity

o

m.r

45

137113280

q

v

rv

qv

s/rad..

.

r

v

s/m.sinvrv

s/m.cosvrv

evevv

r

rr

2290137113

88225

8822515

5939615

q

q

q

q

qq

SOLUTION

Page 4: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

The sphere P travels in a straight line with a constant speed of v=100 m/s.

+ r+ q

Acceleration

v

rvqv

2

222

22

39102

02

9250

00

s/rad.r

rrra

s/m.rrrra

aaaaaacstv

r

rr

q

qqq

qq

q

qq

Page 5: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

4. The particle P moves along the parabolic surface shown.When x =0.2 m, the particle speed is v=5 m/s. For this

instant, determine the corresponding values of

Both x and y are in meters..,, qq andrr

Page 6: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

5. At the bottom of a loop in the vertical (r-q) plane at an altitude of 400 m,

the airplane P has a horizontal velocity of 600 km/h and no horizontal

acceleration. The radius of curvature of the loop is 1200 m. For the radar

tracking at O, determine the recorded values of and for this instant. r q

Page 7: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

+ r+ q

qo.tana

m.r

8211000

400

0310774001000 22

q

Position

Velocity

s/rad.r

vrv

s/m..sin.sinvv

s/m..cos.cosvrv

s/m..

v

r

05750

8966182167166

7515482167166

6716663

600

qq

q

q

qq

q

vq

q

qv

rv

Page 8: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

+ r+ q

q

222

15231200

67166s/m.

.va

o.

m.r

821

031077

q

s/rad.

s/m.r

05750

75154

q

v

a

Acceleration (no horizontal acceleration)

a

1200 m (radius of curvature – in normal & tangential coordinates)r= 1077.03 m (radial distance measured from a fixed point (pole) to particle – in polar coordinates)

22

2222

2

/036.02

2/49.218.21cos15.23cos

/158.120575.003.1077597.8

/597.88.21sin15.23sin

sradr

rarrasmaa

smrarrra

smaa

rr

r

qqqqq

qq

q

qqq

q

q

Page 9: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

6. The hydraulic cylinder gives pin A a constant velocity v=2 m/s along its axis for

an interval of motion and, in turn,causes the slotted arm to rotate about O.

Determine the values of and for the instant when q=30o . q ,, rr q

Page 10: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

v = 2 m/s (cst), determine when q = 30°.q ,, rr +r

r

+q

q

=30°

b

vvr

vq

b

Geometry:

B

s/rad..r

vs/msinsinvrv

s/m.coscosvrvr

33330

11302

7321302

qq qbq

b

Acceleration:

2

2222

453830

333732122202

323333300

00

s/rad..

..

r

rrrrra

s/m.r..rrrra

aaa

r

r

qqqqqq

qq

q

q

Velocity:

Pin A: (Piston: rectilinear motionAO: in polar coordinates)

3012030180 b

r

300 mm

30°

r = 300 mm

30°O B

A

isosceles triangle

Page 11: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

7. The partial surface of the cam is that of a logarithmic spiral (r = 40e0.05q ) mm, where q is in

radians. If the cam has an angular acceleration ሷ𝜃 = 2 rad/s2 when its angular velocity is ሶ𝜃 = 4 rad/s

at q =𝜋

6rad. Determine,

a) the velocity and acceleration of point C on the cam that contacts the follower rod,

b) the radius of curvature of the path,

c) the time rate of change of the speed at the instant q =𝜋

6rad.

Page 12: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

8. When the yoke A is at the position d = 0.27 m, it has a velocity of v = 2 m/s towards

right which is increasing at a rate of 0.6 m/s each second. Pin P is forced to move in the

vertical slot of the yoke and the parabolic surface. For the instant depicted, determine

the velocity and acceleration of pin P in

a) Cartesian Coordinates,

b) Normal and Tangential

Coordinates,

c) Polar Coordinates.

Page 13: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

A

x = 2 m x (m)

y (m)9. Particle A is moving along a parabolicpath. At the instant when the abscissa of itsposition is x = 2 m, its velocity is 6.45 m/sand it decreases at a rate of 15 m/s persecond. Determine the velocity andacceleration of the particle for this instant in

a) Cartesian coordinates,

b) Normal and tangential coordinates,

c) Polar coordinates.

2

16

3xy

Page 14: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

87.364

3

16

6tan

2

bb xdx

dy

x

ttt eaev

1545.6

Solution

(Given)

A

x (m)

y (m)

+n+t

t

tev

45.6

tt ea

15

na

b

b8

3

16

6

2

2

2

xdx

yd

m

dx

yd

dx

dy

2083.5

8

3

4

311

2/32

2

2

2/32

222

/98.72083.5

45.6sm

van

in normal and tangential coordinates

ntt e.eae.v

98715456

Page 15: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

A

x (m)

y (m)

+n+t

t

tev

45.6

tt ea

15

na

b

b

2

16

3xy

222 /99.1698.715/45.6 smasmv

in Cartesian coordinates

jijiv

87.316.5sin45.6cos45.6 bb

2/78.16

87.36cos1587.36sin98.7cossin

sma

aaa

x

tnx

bb

2/616.2sincos smaaa tny bb

jia

616.278.16

in polar coordinates

A

x (m)

y (m)

+r

q

v

ta

na

b

b

my 75.0216

3 2

q

q

q

smvvr /19.6cos qb

x = 2 m

y = 0.75 m

oa 55.202

75.0tan

q

smvv /812.1sin qbq

qeev r

812.119.6

2/638.16cossin smaaa tnr qbqb

2/443.3sincos smaaa tn qbqbq

qeea r

443.3638.16

Magnitudes of velocity and acceleration of particle A

Page 16: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

10. The peg moves in the curved slot defined by the equation r2 = 4sin(2q) [m2], and

through the slot in the arm. At q = 30°, the angular velocity and angular acceleration of

the arm are = 2 rad/s and = 1.5 rad/s2, respectively. Determine the magnitudes of the

velocity and acceleration of the peg at this instant,

a) in polar coordinates,

b) in Cartesian coordinates,

c) in normal and tangential

coordinates. Also determine

the radius of curvature

for this instant.

q q

qq ,

Page 17: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

at q = 30° = 2 rad/s , = 1.5 rad/s2q q

qq ,

mrr 86.1302sin42 qq

Solution

qqqq 2cos42cos242 rrrrdt

d

smrsrad o /15.230,/2 qq

smrvsmrv r /15.2,/72.3 qq

smveev r /297.472.315.2 q

in polar coordinates

qqqq 2sin22cos4 22

2

2

rrrdt

d

*

**

22 /77.15/5.1,/15.2,/2,86.1,30 smrsradsmrsradmro qqq

2

22

/39.112

/11.23

smrra

smrrar

qq

q

q

2/85.2539.1111.23 smaeea r q

Page 18: 1. If a particle’s position is ... - kisi.deu.edu.trkisi.deu.edu.tr/binnur.goren/Dynamics2018G/6P_Polar_Coordinates_18G.pdf · 1. If a particle’sposition is described by the polar

smveev r /297.472.315.2 q

in Cartesian coordinates

2/85.2539.1111.23 smaeea r q

A

+r

q

v

b

q

q30o

qvr

vq v

q30o

oa 97.5715.2

72.3tan

b

b

jiv

jiv

294.4152.0

30sin297.430cos297.4

bb

jia

jia

695.179.25

30sin85.2530cos85.25

aq

q30o

ar

a

a

oa 24.2611.23

39.11tan

in normal and tangential coordinates

+t

b+n

tev

297.4

nt

nt

eea

eea

718.25608.2

76.303.2cos85.2576.303.2sin85.25

o76.3

o03.2

ma

v

n

718.0718.25

297.4 22

o03.2

o76.3