1 fx 1 f 1 - mnracademy.com

4
DIFFERENTIATION mnracademy.com 1. Let [.] denote the greatest integer function and f ( x ) = tan 2 x then 1) 1 (0) 1 f = 2) () fx is not continuous at x = 0 3) () fx is not differentiable at x = 0 4) 1 (0) 0 f = 2. Let ( ) ().() fx y fx fy + = for all x and y. If (5) 2 f = and 1 (0) 3 f = then 1 (5) f = 1) 5 2) 8 3) 0 4) 6 3. If 1 (0) 0, (0) 2 f f = = then the derivative of ( ( ( ))) y f f fx = at x = 0 is 1) 2 2) 8 3) 16 4) 4 4. Suppose that f is a differentiable function with the property that ( ) () () fx y fx fy xy + = + + and 0 1 () 3 h Lt fh h Æ = , then 1) f is a linear function 2) 2 () 3 fx x x = + 3) 2 () 3 2 x fx x = + 4) None 5. The right hand derivative of () [ ]sin fx x x = p at x = k, k is an integer is 1) ( 1) ( 1) k k - - p 2) 1 ( 1) ( 1) k k - - - p 3) ( 1) k k - p 4) 1 ( 1) k k - - p 6. If x x x x e e y e e - - - = + then dy dx = 1) 2 1 y + 2) 2 1 y - 3) 2 1 y - 4) 1 y 7. If () fx mx c = + and if 1 (0) (0) 1 f f = = , then (1) f = 1) 1 2 ) – 1 3) 2 4) – 2 8. If y = cos 1 5cos x 12sin x 13 , x 0, π 2 , then dy dx is equal to 1) 1 2) – 1 3) 0 4) 2 9. If d dx 1+ x 2 + x 4 1x + x 2 = ax + b then (a, b) = 1) (2, 1) 2) (-2,1) 3) (2,-1) 4) (1,2) 10. If d dx 1+ x 2 + x 4 1x + x 2 = ax + b then 1 (1) f = 1) 1 2) – 1 3) log 2 4) – log 2 11. The function 3 () | | fx x = 1) differentiable at x = 0 2) continuous but not differentiable at x = 0 3) discontinuous at x = 0 4) a function with range −∞, ( ) 12. If 1 1 sinh sinh 1 x y - - + = then

Transcript of 1 fx 1 f 1 - mnracademy.com

Page 1: 1 fx 1 f 1 - mnracademy.com

DIFFERENTIATION mnracademy.com 1. Let [.] denote the greatest integer function and

f (x) = tan2 x⎡

⎣⎢⎤⎦⎥ then

1) 1(0) 1f = 2) ( )f x is not continuous at x = 0 3) ( )f x is not differentiable at x = 0 4) 1(0) 0f = 2. Let ( ) ( ). ( )f x y f x f y+ = for all x and y. If (5) 2f = and 1(0) 3f = then 1(5)f = 1) 5 2) 8 3) 0 4) 6 3. If 1(0) 0, (0) 2f f= = then the derivative of ( ( ( )))y f f f x= at x = 0 is 1) 2 2) 8 3) 16 4) 4 4. Suppose that f is a differentiable function with the property that

( ) ( ) ( )f x y f x f y xy+ = + + and 0

1 ( ) 3hLt f hhÆ

= , then

1) f is a linear function 2) 2( ) 3f x x x= +

3) 2

( ) 32xf x x= + 4) None

5. The right hand derivative of ( ) [ ]sinf x x x= p at x = k, k is an integer is 1) ( 1) ( 1)k k- - p 2) 1( 1) ( 1)k k-- - p 3) ( 1)k k- p 4) 1( 1)k k-- p

6. If x x

x xe eye e

-

--

=+

then dydx=

1) 21 y+ 2) 2 1y - 3) 21 y- 4) 1y

7. If ( )f x mx c= + and if 1(0) (0) 1f f= = , then (1)f = 1) 1 2 ) – 1 3) 2 4) – 2

8. If y = cos−1 5cos x−12sin x

13

⎝⎜⎜⎜

⎠⎟⎟⎟⎟,x∈ 0,π

2

⎝⎜⎜⎜⎞

⎠⎟⎟⎟⎟ , then dy

dx is equal to

1) 1 2) – 1 3) 0 4) 2

9. If

ddx

1+ x2 + x4

1− x + x2

⎣⎢⎢

⎦⎥⎥= ax + b then (a, b) =

1) (2, 1) 2) (-2,1) 3) (2,-1) 4) (1,2)

10. If

ddx

1+ x2 + x4

1− x + x2

⎣⎢⎢

⎦⎥⎥= ax + b then 1(1)f =

1) 1 2) – 1 3) log 2 4) – log 2 11. The function 3( ) | |f x x= 1) differentiable at x = 0 2) continuous but not differentiable at x = 0 3) discontinuous at x = 0 4) a function with range −∞,∞( )

12. If 1 1sinh sinh 1x y- -+ = then

Page 2: 1 fx 1 f 1 - mnracademy.com

1) 2

211

dy ydx x

+=

+ 2)

2

21 01

dy ydx x

++ =

+ 3)

2

21 01

dx ydy x

++ =

+ 4)

2

211

dy ydx x

-+

-

13. If tan2xy x= , then (1 ) sindycosx x

dx+ - =

1) xy 2) y 3) 0 4) x 14. If ye xy e+ = , then 2(0)y =

1) 31e

2) 21e

3) 1e

4) 1

15. 2 22 2tan ,sin1 1t ty xt t

= =- +

then dydx

=

1) 0 2) cosx 3) tanx 4) 1

16.

ddx

sin−1(3x−4x3), 12

< x≤1⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟=

1)2

11 x-

2)2

31 x-

3)2

31 x--

4)2

11 x--

17. Derivativeof 100logx w.r.t 2x is

1) 21

2 log10x 2) 2

14 log10x

3) 12x

4) 14x

18. If 1f isdifferentiablefunctionand 11( )f x iscontinuousatx=0and 11(0)f a= ,thenthe

valueof 20

2 ( ) 3 (2 ) (4 )x

f x f x f xLtxÆ

- + is

1)a 2)2a 3)3a 4)None

19. If 1 1tan tan2

x y- - p+ = then

2

2d ydx=

1) 21x- 2) 3

2x

3) 32x- 4) 2

2x

20. If ( )f x y+ , ( ) ( )f x f y and ( )f x y- areinA.P, " x&yand (0) 0f π ,then1 1(7) ( 7)f f+ - =

1)7 2)0 3)6 4)1

21. Let ( ) [ ]22g x x x⎡ ⎤= −⎣ ⎦ ,where[x]denotesthegreatestintegerfunctionthen

Page 3: 1 fx 1 f 1 - mnracademy.com

1)g(x)iscontinuousonlyatx=1

2)g(x)isdiscontinuousonlyatx=0,1

3)g(x)isdiscontinuousforallintegralvaluesofx

4)Noneofthese

22. Thevalueoff(0),sothatthefunction ( )2 2 2 2a ax x x ax af x

a x a x− + − + +=

+ − −iscontinuousfor

allx,isgivenby

1) 1/2a− 2) 3/2a− 3) 1/2a 4) 3/2a

23. Inorderthatthefunction ( ) ( )cot xf x x 1= + iscontinuousatx=0,f(0)mustbedefinedas:

1) ( ) 1f 0e

= 2) ( )f 0 0= 3) ( )f 0 e= 4)Noneofthese

24. Thefunction { }f : R 0 R− → givenby ( ) 2x

1 2f xx e 1

= −−

canbemadecontinuousatx=0

bydefiningf(0)as:

1)-1 2)0 3)1 4)2

25.

2/22 3sin cos , 0

3 0( )

ab xx x xa b

e xf x

⎛ ⎞⎛ ⎞⎜ ⎟+ ≠⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎧⎪⎪⎪= ⎨⎪⎪⎪⎩

iscontinuousat 0,x b R= ∀ ∈ then mina is

1)-1/8 2)-1/4 3)-1/24)0

Page 4: 1 fx 1 f 1 - mnracademy.com

26. If ( )1/4

11 1log1 2xy Tan xx

−⎧ ⎫+⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟−⎝ ⎠⎪ ⎪⎩ ⎭ then dy

dx=

(1) 21xx−

(2) 2

41xx−

(3) 41xx+

(4) 41xx−

27. If 3 33cos 2cos , 3sin 2sinx yθ θ θ θ= − = − then dydx

=

(1) tanθ (2) cotθ (3) cot2θ (4) tan

28. ( )( )( )( ){ }2 2 4 4 8 8d x a x a x a x adx

+ + + + =

(1) ( )

16 15 16

215 16x x a a

x a− +

− (2)

( )

16 15 16

2x x a a

x a− +

(3) 16 16x ax a−−

(4) none

29. 1 1 0 dyx y y xdx

+ + + = ⇒ =

(1) ( )21

1 x+ (2)

( )21

1 x−

+ (3) 2

11 x+

(4) 21

1 x−

30. If ( )2

1 12

log / 3 2log1 6loglog

e x xy Tan Tanxex

− −⎛ ⎞ ⎛ ⎞+⎜ ⎟= + ⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟⎝ ⎠

then dydx

=

(1) 0 (2) 1 (3) 21

1 x+ (4) 2

31 x+

31. If ....

. 0y toy ex e x+ ∞+= > then dy

dx is

(1) 1xx+

(2) 1 xx+ (3) 1 x

x− (4) 1

x

32. If ( )2cos 1 01 2cos 10 1 2cos

xf x x

x= then 1

3f π⎛ ⎞ =⎜ ⎟⎝ ⎠

(1) 5 (2)- 4 (3) 3− (4) -2 1)4 2) 4 3) 2 4) 3 5) 3 6) 3 7) 3 8) 19)1 10) 2 11) 4 12) 2 13) 4 14) 2 15) 4

16) 3 17) 2 18) 3 19) 2 20) 221)122)123)3 24)325)2(26) 2 (27) 2 (28) 1 (29) 2 (30) 1 (31)3(32)3 (33) 3