1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

47
1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004

Transcript of 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

Page 1: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

1

Formation et Analyse d’ImagesSession 2

Daniela Hall

7 October 2004

Page 2: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

2

Course Overview

• Session 1: – Homogenous coordinates and tensor notation– Image transformations– Camera models

• Session 2:– Camera models– Reflection models– Color spaces

• Session 3:– Review color spaces– Pixel based image analysis– Gaussian filter operators

• Session 4:– Scale Space

Page 3: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

3

Course overview

• Session 5:– Contrast description– Hough transform

• Session 6:– Kalman filter– Tracking of regions, pixels, and lines

• Session 7:– Stereo vision – Epipolar geometry

• Session 8: exam

Page 4: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

4

Session Overview

1. Camera model

2. Light

3. Reflection models

4. Color spaces

Page 5: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

5

Camera model

• Projective model

Ti

Trr

r

Tccc

c

Tsss

s

jiP

yxP

zyxP

zyxP

)1,,(

)1,,(

)1,,,(

)1,,,(

Scene coordinates

Camera coordinates

Image coordinates

Page 6: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

6

Camera model

• Transformation from scene to camera coordinates

• Projection of camera coordinates to retina coordinates

• Transformation from retina coordinates to image coordinates

• Composition (camera model) sis

scs

rc

ir

i

rir

i

crc

r

scs

c

PMPTMCP

wPCP

PMP

PTP

The camera model is the composition of the transformations thattransform Ps to Pi

Page 7: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

7

Transformation Scene - Camera

• (xs,ys,zs) is position of the origin of the camera system with respect to the scene coordinates (translation).

• R is the orientation of the camera system with respect to the scene system (3d rotation).

1000s

s

scsc

sz

y

x

RT

Page 8: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

8

3d rotation

• Around x-axis (counter-clockwise)

• Around y-axis

• Around z-axis

• General )()()(,

1000

1000

0100

00)cos()sin(

00)sin()cos(

)(

1000

0)cos(0)sin(

0010

0)sin(0)cos(

)(

1000

0)cos()sin(0

0)sin()cos(0

0001

)(

aRbRcRRtz

ty

tx

RT

cc

cc

cR

bb

bb

bR

aa

aaaR

xyz

z

y

x

Page 9: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

9

Projection Camera-Retina

• Imagine a 1D camera in a 2D space.

• The transformation MRc can be found by considering

similar triangles

z(xc ,zc )

F

x

xr

O

)()(

)()(

c

cr

c

cr

c

cr

c

cr

zF

Fyy

zF

y

F

y

zF

Fxx

zF

x

F

x

Page 10: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

10

Projection Camera-Retina

1

0

0

/1

0

0

0

1

0

0

0

1

1

,

F

M

z

y

x

M

w

wy

wx

PMP

RC

c

c

c

RCr

rRR

CR

Page 11: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

11

Transformation Retina-Image• A frame: the image is composed of pixels (picture

elements)

• Pixels are in general not squared. There physical sizes depends on the used material.

i columns

j rows

(0,0)

(i-1,j-1)

Page 12: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

12

Intrinsic camera parameters

• F: focal distance

• Ci , Cj : Optical image center (in pixels)

• Di , Dj : Physical size of the pixel on the retina (in pixel/mm)

• i, j : image coordinates (in pixels)• Transformation Retina-Image

jjr

iir

CDyj

CDxi

1100

0

0

1r

r

jj

ii

y

x

CD

CD

j

i

Page 13: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

13

Camera modelSI

SSC

SRC

IR

I PMPTMCP

1S

S

S

IS z

y

x

M

w

wj

wi

SS

IS

SS

IS

SS

IS

SS

IS

PM

PM

mzsmysmxsm

mzsmysmxsm

w

wjj

PM

PM

mzsmysmxsm

mzsmysmxsm

w

wii

3

2

3

1

)(

)(

34333231

24232221

)(

)(

34333231

14131211

Equation:

Image coordinates

Page 14: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

14

Transformation image-scene

• Problem: we need to know depth zs for each image position.

• This process of finding MSI is called

calibration.

• MSI has 12 coefficients.

• MSI is homogenous. 11 degrees of freedom.

ISI

IRI

CR

SC

S PMPCMTP

Page 15: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

15

Calibration

1. Construct a calibration object whose 3D position is known.

2. Measure image coordinates

3. Determine correspondences between 3D point RS

k and image point PIk.

4. We have 11 DoF. We need at least 5 ½ correspondences.

Page 16: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

16

Calibration

• For each correspondence scene point RSk and image

point PIk

• which gives following equations for k=1, ..., 6

• from wich MIS can be computed

Skh

IS

Skh

IS

k

kkk RM

RM

w

iwi

3

1

)(

)(

Skh

IS

Skh

IS

k

kkk RM

RM

w

jwj

3

2

)(

)(

0))(())((

0))(())((32

31

Skh

ISk

Skh

IS

Skh

ISk

Skh

IS

RMjRM

RMiRM

Page 17: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

17

Calibration using many points

• For k=5 ½ M has one solution.– Solution depends on precise measurements of

3D and 2D points. – If you use another 5 ½ points you will get a

different solution.

• A more stable solution is found by using large number of points and do optimisation.

Page 18: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

18

Calibration using many points

• For each point correspondence we know (i,j) and R.

• We want to know MIS.

Solve equation with your favorite algorithm (least squares, levenberg-marquart, svd,...)

0))(())((

0))(())((32

31

Skh

ISk

Skh

IS

Skh

ISk

Skh

IS

RMjRM

RMiRM

0

34

33

32

31

24

23

22

21

14

13

12

11

10000

00001

0000000000

0000000000

m

m

m

m

m

m

m

m

m

m

m

m

jzjyjxjzyx

iziyixizyx

Page 19: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

19

Application: Rectifying images

Page 20: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

20

Applications

Page 21: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

21

Homographie: projection from one plane to another

• Homographie HBA is bijective QB = HB

A PA

jj

jjB

jj

jjB

A

j

j

jAB

AB

B

PHPHy

PHPHx

P

H

H

H

PH

w

wy

wx

32

31

3

2

1

/

/

Page 22: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

22

Homography computation

• H can be computed from 4 point correspondences.

Ps1 Ps2

Ps3Ps4

Rd1 Rd2

Rd3Rd4Source image (observed)

Destination image (rectified)

4,3,2,1 and 2,1 with ,0 iSRHPRHP DiSD

SiDiSD

Si

Page 23: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

23

Homography computation

• H is 3x3 matrix and has 8 degrees of freedom (homogenous coordinates)

• gives 8 equations and one solution for H.

4,3,2,1 and 2,1 with ,0 iSRHPRHP DiSD

SiDiSD

Si

Page 24: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

24

Session Overview

1. Camera model

2. Light

3. Reflection models

4. Color spaces

Page 25: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

25

Light

• N: surface normal• i angle between incoming light and normal• e angle between normal and camera• g angle between light and camera

camera

light

N

egi

Page 26: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

26

Spectrum

• Light source is characterised by its spectrum. • The spectrum consists of a particular quantity of photons

per frequency. • The frequency is described by its wavelength• The visible spectrum is 380nm to 720nm• Cameras can see a larger spectrum depending on their

CCD chip

f1

Page 27: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

27

• Albedo is the fraction of light that is reflected by a body or surface.

• Reflectance function:

Albedo

light received

light emitted

Irradiance

Radiance),,( geiR

camera

light

N

egi

Page 28: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

28

Session Overview

1. Camera model

2. Light

3. Reflection models

4. Color spaces

Page 29: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

29

Reflectance functions

• Specular reflection– example mirror

• Lambertian reflection– diffuse reflection, example paper, snow

Page 30: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

30

Specular reflection

else 0,

gei and ei if ,1),,( geiR

camera

lightN

egi

Page 31: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

31

Lambertian reflection

)cos(),,( igeiR

Page 32: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

32

Di-chromatic reflectance model

• the reflected light R is the sum of the light reflected at the surface Rs and the light reflected from the material body RL

• Rs has the same spectrum as the light source• The spectrum of Rl is « filtered » by the material (photons are

absorbed, this changes the emitted light)• Luminance depends on surface orientation• Spectrum of chrominance is composed of light source

spectrum and absorption of surface material.

),,(),,(),,( geiRgeiRgeiR LLSs

Page 33: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

33

Color perception

• The retina is composed of rods and cones.• Rods - provide "scotopic" or low intensity vision.

– Provide our night vision ability for very low illumination, – Are a thousand times more sensitive to light than cones, – Are much slower to respond to light than cones, – Are distributed primarily in the periphery of the visual field.

Page 34: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

34

Color perception

• Cones - provide "photopic" or high acuity vision. – Provide our day vision, – Produce high resolution images, – Determine overall brightness or darkness of images, – Provide our color vision, by means of three types of cones:

• "L" or red, long wavelength sensitive, • "M" or green, medium wavelength sensitive, • "S" or blue, short wavelength sensitive.

• Cones enable our day vision and color vision. Rods take over in low illumination. However, rods cannot detect color which is why at night we see in shades of gray.

• source: http://www.hf.faa.gov/Webtraining/VisualDisplays/

Page 35: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

35

Color perception

• Rod Sensitivity- Peak at 498 nm.• Cone Sensitivity- Red or "L" cones peak at 564 nm. - Green or "M"

cones peak at 533 nm.  - Blue or "S" cones peak at 437 nm.

• This diagram shows the wavelength sensitivities of the different cones and the rods. Note the overlap in sensitivity between the green and red cones.

Page 36: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

36

Camera sensitivity

• observed light intensity depends on:– source spectrum: S(λ)– reflectance of the observed point (i,j): P(i,j,λ)– receptive spectrum of the camera: c(λ)– p0 is the gain

400 600 800 1000 nm

S(λ)

λ

vidicon

CCD

0

0 )()(),,(),( cSjiPpjip

Page 37: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

37

Classical RGB camera

• The filters follow a convention of the International Illumination Commission.

• They are functions of λ: r(λ), g(λ), b(λ)• They are close to the sensitivity of the human

color vision system.

Page 38: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

38

Color pixels

0

0

0

)()(),,(0),(

)()(),,(0),(

)()(),,(0),(

),(

),(

),(

),(

dbSjiPbjiB

dgSjiPgjiG

drSjiPrjiR

jiB

jiG

jiR

jiP

Page 39: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

39

Color bands (channels)

• It is not possible to perceive the spectrum directly.

• Color is a projection of the spectrum to the spectrum of the sensors.

0

0

0

)()(0

)()(0

)()(0

dbSbB

dgSgG

drSrR

Page 40: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

40

Session Overview

1. Camera model

2. Light

3. Reflection models

4. Color spaces

Page 41: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

41

Color spaces

• RGB color space

• CMY color space

• YIQ color space

• HLS color space

Page 42: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

42

RGB color space

• A CCD camera provides RGB images

• The luminance axis is r=g=b (diagonal)

Page 43: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

43

CMY color space

• Cyan, magenta, yellow

• CMYK: CMY + black color channel

B

G

R

B

G

R

Y

M

C

max

max

max

Page 44: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

44

YIQ color space

• This is an approximation of– Y: luminance, – I: red – cyan, – Q: magenta - green

• Used US TVs (NTSC coding). Black and white TVs display only Y channel.

B

G

R

Q

I

Y

31.052.021.0

32.028.06.0

11.059.03.0

Page 45: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

45

HLS space

• Hue, luminance, saturation space.

• L=R+G+B

• S=1-3*min(R,G,B)/L

elsex

gbxT

BGBRGR

BRGRx

,2

if ,

)))(()(

))()((5.0(cos

2

1

L

S T

Page 46: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

46

Color distribution

• Color distribution can be studied by histograms.• A histogram is a multi-dimensional table.• We define a function from the continuous color

space to the discrete histogram space.• Then each pixel of the image increments a cell in

the histogram.• Example: We define a histogram of RGB (3D)

with 32 cells/dimension. The pixel value (210,180,100) increments cell (6,5,3)

Page 47: 1 Formation et Analyse d’Images Session 2 Daniela Hall 7 October 2004.

47

Colors of a surface

• A reflection has the color of the light source (Rs)• Which color is near the border of the reflection?

– Rs and Rb are mixed.

– A color histogram can be used to study this mix.

– The histogram should contain two axis (in theory).

– But reflectance in the real world is more complex than only Rs and Rb. You also have inter reflectance between neighboring objects.