1 F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad ... · ENEA F. Zonca, S. Briguglio, L....

73
ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 1 Energetic particle physics in burning plasmas F. Zonca, S. Briguglio, L. Chen , G. Fogaccia, G. Vlad Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65 - 00044 - Frascati, Italy. Department of Physics and Astronomy, Univ. of California, Irvine CA 92697-4575, U.S.A. May 18.th, 2006 Workshop on ITER Simulation May 15 – 19, Beijing, China * Acknowledgments: G.Y. Fu, S.J. Wang ITER Simul. Workshop 2006

Transcript of 1 F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad ... · ENEA F. Zonca, S. Briguglio, L....

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 1

    Energetic particle physics in burning plasmas∗

    F. Zonca, S. Briguglio, L. Chen †, G. Fogaccia, G. VladAssociazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65 - 00044 - Frascati, Italy.

    † Department of Physics and Astronomy, Univ. of California, Irvine CA 92697-4575, U.S.A.

    May 18.th, 2006

    Workshop on ITER SimulationMay 15 – 19, Beijing, China

    ∗Acknowledgments: G.Y. Fu, S.J. Wang

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 2

    Nonlinear Dynamics of Burning Plasmas

    2 A burning plasma is a complex self-organized system where the crucial process-es to understand are (turbulent) transport and fast ion/fusion product inducedcollective effects.

    THERMAL PLASMA

    FUSION PRODUCTS

    ALPHA PARTICLES

    FUSION PRODUCT

    PROFILES

    (COLLECTIVE EFF.)

    FUSION REACTIVITY

    (TURBULENT) TRANSPORT

    COLLECTIVE EFFECTSEXTERNAL HEATING

    CURRENT DRIVE

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    • Identification of burning plasma stability boundaries with respect to ener-getic ion collective mode excitations and their nonlinear dynamic behaviorsabove the stability thresholds

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    • Identification of burning plasma stability boundaries with respect to ener-getic ion collective mode excitations and their nonlinear dynamic behaviorsabove the stability thresholds

    • Obvious impact on the operation-space boundaries, since collective lossesmay lead to significant wall loading and damaging of plasma facing materialsin addition to degrading fusion performance

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    • Identification of burning plasma stability boundaries with respect to ener-getic ion collective mode excitations and their nonlinear dynamic behaviorsabove the stability thresholds

    • Obvious impact on the operation-space boundaries, since collective lossesmay lead to significant wall loading and damaging of plasma facing materialsin addition to degrading fusion performance

    2 Mutual interactions between collective modes and energetic ion dynamics with driftwave turbulence and turbulent transport should not deteriorate the thermonuclearefficiency:

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    • Identification of burning plasma stability boundaries with respect to ener-getic ion collective mode excitations and their nonlinear dynamic behaviorsabove the stability thresholds

    • Obvious impact on the operation-space boundaries, since collective lossesmay lead to significant wall loading and damaging of plasma facing materialsin addition to degrading fusion performance

    2 Mutual interactions between collective modes and energetic ion dynamics with driftwave turbulence and turbulent transport should not deteriorate the thermonuclearefficiency:

    • MeV ion energy tails introduce a dominant electron heating and differentweighting of the electron driven micro-turbulence w.r.t. present experiments

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    • Identification of burning plasma stability boundaries with respect to ener-getic ion collective mode excitations and their nonlinear dynamic behaviorsabove the stability thresholds

    • Obvious impact on the operation-space boundaries, since collective lossesmay lead to significant wall loading and damaging of plasma facing materialsin addition to degrading fusion performance

    2 Mutual interactions between collective modes and energetic ion dynamics with driftwave turbulence and turbulent transport should not deteriorate the thermonuclearefficiency:

    • MeV ion energy tails introduce a dominant electron heating and differentweighting of the electron driven micro-turbulence w.r.t. present experiments

    • They also generate long time-scale nonlinear behaviors typical of self-organized complex systems

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 4

    The roles of simulation and theory (... continued)

    2 These phenomena can be analyzed, at least in part, in present day experimentsand provide nice examples of mutual positive feedbacks between theory, simulationand experiment.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 4

    The roles of simulation and theory (... continued)

    2 These phenomena can be analyzed, at least in part, in present day experimentsand provide nice examples of mutual positive feedbacks between theory, simulationand experiment.

    2 In a burning plasma, however, unique features not reproducible in existing exper-iments are:

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 4

    The roles of simulation and theory (... continued)

    2 These phenomena can be analyzed, at least in part, in present day experimentsand provide nice examples of mutual positive feedbacks between theory, simulationand experiment.

    2 In a burning plasma, however, unique features not reproducible in existing exper-iments are:

    • energetic ion power density profiles and characteristic wavelengths of thecollective modes

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 4

    The roles of simulation and theory (... continued)

    2 These phenomena can be analyzed, at least in part, in present day experimentsand provide nice examples of mutual positive feedbacks between theory, simulationand experiment.

    2 In a burning plasma, however, unique features not reproducible in existing exper-iments are:

    • energetic ion power density profiles and characteristic wavelengths of thecollective modes

    • local power balance dominated by electron heating (fast ions) and self-organization of radial profiles of the relevant quantities: consequence onturbulence spectra and turbulent transport

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 4

    The roles of simulation and theory (... continued)

    2 These phenomena can be analyzed, at least in part, in present day experimentsand provide nice examples of mutual positive feedbacks between theory, simulationand experiment.

    2 In a burning plasma, however, unique features not reproducible in existing exper-iments are:

    • energetic ion power density profiles and characteristic wavelengths of thecollective modes

    • local power balance dominated by electron heating (fast ions) and self-organization of radial profiles of the relevant quantities: consequence onturbulence spectra and turbulent transport

    2 Crucial roles of predictive capabilities based on numerical simulations as well asof fundamental theories for developing simplified yet relevant models, needed forinsights into the basic processes

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 4

    The roles of simulation and theory (... continued)

    2 These phenomena can be analyzed, at least in part, in present day experimentsand provide nice examples of mutual positive feedbacks between theory, simulationand experiment.

    2 In a burning plasma, however, unique features not reproducible in existing exper-iments are:

    • energetic ion power density profiles and characteristic wavelengths of thecollective modes

    • local power balance dominated by electron heating (fast ions) and self-organization of radial profiles of the relevant quantities: consequence onturbulence spectra and turbulent transport

    2 Crucial roles of predictive capabilities based on numerical simulations as well asof fundamental theories for developing simplified yet relevant models, needed forinsights into the basic processes

    2 Importance of using existing and future experimental evidences for modeling ver-ification and validation

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 5

    Energetic particle physics in burning plasmas:

    historic background

    2 Possible detrimental effect of Shear Alfvén (SA) instabilities on energetic ionsrecognized theoretically before experimental evidence was clear.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 5

    Energetic particle physics in burning plasmas:

    historic background

    2 Possible detrimental effect of Shear Alfvén (SA) instabilities on energetic ionsrecognized theoretically before experimental evidence was clear.

    2 Mikhailowskii, Sov. Phys. JETP, 41, 890, (1975)Rosenbluth and Rutherford, PRL 34, 1428, (1975)⇒ resonant wave particle interaction of ≈ MeV ions with SA inst. due to vE ≈ vA(k‖vA ≈ ωE)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 5

    Energetic particle physics in burning plasmas:

    historic background

    2 Possible detrimental effect of Shear Alfvén (SA) instabilities on energetic ionsrecognized theoretically before experimental evidence was clear.

    2 Mikhailowskii, Sov. Phys. JETP, 41, 890, (1975)Rosenbluth and Rutherford, PRL 34, 1428, (1975)⇒ resonant wave particle interaction of ≈ MeV ions with SA inst. due to vE ≈ vA(k‖vA ≈ ωE)

    2 Experimental observation of fishbones on PDX – McGuire et al., PRL 50, 891,(1983) – fast ⊥ injected ion losses . . .

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 5

    Energetic particle physics in burning plasmas:

    historic background

    2 Possible detrimental effect of Shear Alfvén (SA) instabilities on energetic ionsrecognized theoretically before experimental evidence was clear.

    2 Mikhailowskii, Sov. Phys. JETP, 41, 890, (1975)Rosenbluth and Rutherford, PRL 34, 1428, (1975)⇒ resonant wave particle interaction of ≈ MeV ions with SA inst. due to vE ≈ vA(k‖vA ≈ ωE)

    2 Experimental observation of fishbones on PDX – McGuire et al., PRL 50, 891,(1983) – fast ⊥ injected ion losses . . .. . . followed by numerical simulation of mode-particle pumping loss mechanism –White et al., Phys. Fluids 26, 2958, (1983)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 5

    Energetic particle physics in burning plasmas:

    historic background

    2 Possible detrimental effect of Shear Alfvén (SA) instabilities on energetic ionsrecognized theoretically before experimental evidence was clear.

    2 Mikhailowskii, Sov. Phys. JETP, 41, 890, (1975)Rosenbluth and Rutherford, PRL 34, 1428, (1975)⇒ resonant wave particle interaction of ≈ MeV ions with SA inst. due to vE ≈ vA(k‖vA ≈ ωE)

    2 Experimental observation of fishbones on PDX – McGuire et al., PRL 50, 891,(1983) – fast ⊥ injected ion losses . . .. . . followed by numerical simulation of mode-particle pumping loss mechanism –White et al., Phys. Fluids 26, 2958, (1983). . . and by theoretical explanation of internal kink excitation –Chen, White, Rosenbluth, PRL 52, 1122, (1984)Coppi, Porcelli, PRL 57, 2272, (1986)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 6

    2 Existence of gaps in the SA continuous spectrum (due to lattice symmetry break-ing) ω ≈ vA/2qR – Kieras and Tataronis, J. Pl. Phys. 28, 395, (1982)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 6

    2 Existence of gaps in the SA continuous spectrum (due to lattice symmetry break-ing) ω ≈ vA/2qR – Kieras and Tataronis, J. Pl. Phys. 28, 395, (1982)

    2 Existence of discrete modes (TAE) in the toroidal gaps – Cheng, Chen, Chance,Ann. Phys. 161, 21, (1985)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 6

    2 Existence of gaps in the SA continuous spectrum (due to lattice symmetry break-ing) ω ≈ vA/2qR – Kieras and Tataronis, J. Pl. Phys. 28, 395, (1982)

    2 Existence of discrete modes (TAE) in the toroidal gaps – Cheng, Chen, Chance,Ann. Phys. 161, 21, (1985)

    2 Possible excitations of TAE by energetic particles . . .Chen, “Theory of Fusion Plasmas, p.327, (1989)Fu, Van Dam, Phys. Fluids B 1, 1949, (1989).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 6

    2 Existence of gaps in the SA continuous spectrum (due to lattice symmetry break-ing) ω ≈ vA/2qR – Kieras and Tataronis, J. Pl. Phys. 28, 395, (1982)

    2 Existence of discrete modes (TAE) in the toroidal gaps – Cheng, Chen, Chance,Ann. Phys. 161, 21, (1985)

    2 Possible excitations of TAE by energetic particles . . .Chen, “Theory of Fusion Plasmas, p.327, (1989)Fu, Van Dam, Phys. Fluids B 1, 1949, (1989).

    2 KBM excitation by fast ions: Biglari, Chen, PRL 67, 3681, (1991)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 6

    2 Existence of gaps in the SA continuous spectrum (due to lattice symmetry break-ing) ω ≈ vA/2qR – Kieras and Tataronis, J. Pl. Phys. 28, 395, (1982)

    2 Existence of discrete modes (TAE) in the toroidal gaps – Cheng, Chen, Chance,Ann. Phys. 161, 21, (1985)

    2 Possible excitations of TAE by energetic particles . . .Chen, “Theory of Fusion Plasmas, p.327, (1989)Fu, Van Dam, Phys. Fluids B 1, 1949, (1989).

    2 KBM excitation by fast ions: Biglari, Chen, PRL 67, 3681, (1991)

    2 Experimental evidence . . .Wong et al., PRL 66, 1874, (1991)Heidbrink et al, Nucl. Fusion 31, 1635, (1991)Heidbrink et al, PRL 71, 855, (1993) ⇒ BAE ω ≈ ωti ≈ ω∗pi

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 6

    2 Existence of gaps in the SA continuous spectrum (due to lattice symmetry break-ing) ω ≈ vA/2qR – Kieras and Tataronis, J. Pl. Phys. 28, 395, (1982)

    2 Existence of discrete modes (TAE) in the toroidal gaps – Cheng, Chen, Chance,Ann. Phys. 161, 21, (1985)

    2 Possible excitations of TAE by energetic particles . . .Chen, “Theory of Fusion Plasmas, p.327, (1989)Fu, Van Dam, Phys. Fluids B 1, 1949, (1989).

    2 KBM excitation by fast ions: Biglari, Chen, PRL 67, 3681, (1991)

    2 Experimental evidence . . .Wong et al., PRL 66, 1874, (1991)Heidbrink et al, Nucl. Fusion 31, 1635, (1991)Heidbrink et al, PRL 71, 855, (1993) ⇒ BAE ω ≈ ωti ≈ ω∗pi

    2 TAE modes are predicted to have small saturation levels and yield negligibletransport unless stochastization threshold in phase space is reached: H.L. Berkand B.N. Breizman, Phys. Fluids B 2, 2246, (1990) and D.J. Sigmar, C.T. Hsu,R.B. White and C.Z. Cheng, Phys. Fluids B, 4, 1506, (1992).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 7

    2 Excitation of Energetic particle Modes (EPM), at characteristic frequencies ofenergetic particles when free energy source overcomes continuum dampingL. Chen, Phys. Plasmas 1, 1519, (1994). [ . . . also RTAE excitation C.Z. Cheng,N.N. Gorelenkov, C.T. Hsu, Nucl. Fusion 35, 1639, (1995).]

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 7

    2 Excitation of Energetic particle Modes (EPM), at characteristic frequencies ofenergetic particles when free energy source overcomes continuum dampingL. Chen, Phys. Plasmas 1, 1519, (1994). [ . . . also RTAE excitation C.Z. Cheng,N.N. Gorelenkov, C.T. Hsu, Nucl. Fusion 35, 1639, (1995).]

    2 Strong energetic particle redistributions are predicted to occur above the EPMexcitation threshold in 3D Hybrid MHD-Gyrokinetic simulations: S. Briguglio, F.Zonca and G. Vlad, Phys. Plasmas 5, 1321, (1998).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 7

    2 Excitation of Energetic particle Modes (EPM), at characteristic frequencies ofenergetic particles when free energy source overcomes continuum dampingL. Chen, Phys. Plasmas 1, 1519, (1994). [ . . . also RTAE excitation C.Z. Cheng,N.N. Gorelenkov, C.T. Hsu, Nucl. Fusion 35, 1639, (1995).]

    2 Strong energetic particle redistributions are predicted to occur above the EPMexcitation threshold in 3D Hybrid MHD-Gyrokinetic simulations: S. Briguglio, F.Zonca and G. Vlad, Phys. Plasmas 5, 1321, (1998).

    2 Nonlinear Dynamics of Burning Plasmas: energetic ion transport in burning plas-mas has two components:

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 7

    2 Excitation of Energetic particle Modes (EPM), at characteristic frequencies ofenergetic particles when free energy source overcomes continuum dampingL. Chen, Phys. Plasmas 1, 1519, (1994). [ . . . also RTAE excitation C.Z. Cheng,N.N. Gorelenkov, C.T. Hsu, Nucl. Fusion 35, 1639, (1995).]

    2 Strong energetic particle redistributions are predicted to occur above the EPMexcitation threshold in 3D Hybrid MHD-Gyrokinetic simulations: S. Briguglio, F.Zonca and G. Vlad, Phys. Plasmas 5, 1321, (1998).

    2 Nonlinear Dynamics of Burning Plasmas: energetic ion transport in burning plas-mas has two components:

    • slow diffusive processes due to weakly unstable AEs and a residual compo-nent possibly due to plasma turbulence (Vlad et al. PPCF 47 1015 (2005);Estrada-Mila et al., submitted to Nucl. Fusion 2006.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 7

    2 Excitation of Energetic particle Modes (EPM), at characteristic frequencies ofenergetic particles when free energy source overcomes continuum dampingL. Chen, Phys. Plasmas 1, 1519, (1994). [ . . . also RTAE excitation C.Z. Cheng,N.N. Gorelenkov, C.T. Hsu, Nucl. Fusion 35, 1639, (1995).]

    2 Strong energetic particle redistributions are predicted to occur above the EPMexcitation threshold in 3D Hybrid MHD-Gyrokinetic simulations: S. Briguglio, F.Zonca and G. Vlad, Phys. Plasmas 5, 1321, (1998).

    2 Nonlinear Dynamics of Burning Plasmas: energetic ion transport in burning plas-mas has two components:

    • slow diffusive processes due to weakly unstable AEs and a residual compo-nent possibly due to plasma turbulence (Vlad et al. PPCF 47 1015 (2005);Estrada-Mila et al., submitted to Nucl. Fusion 2006.

    • rapid transport processes with ballistic nature due to coherent nonlinearinteractions with EPM and/or low-frequency long-wavelength MHD

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 8

    Overview of shear Alfvén spectra

    Energetic Particle Modes (EPM) : resonant modes

    TAE – KTAE ⇒ Transition to EPM

    Energetic Particle Modes (EPM) : resonant modes

    Beta induced Alfvén Eigenmodes (BAE)MHD!!! Kinetic Ballooning Modes (KBM)

    KBM ⊕ BAE ⇒ Alfvén ITG (AITG)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 9

    Linear Stability Issues: Eigenmodes vs. Resonant

    Modes

    2 Linear Theory: sound and well understood. However, most codes still do notinclude nonperturbative particle dynamics

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 9

    Linear Stability Issues: Eigenmodes vs. Resonant

    Modes

    2 Linear Theory: sound and well understood. However, most codes still do notinclude nonperturbative particle dynamics

    2 Numerical simulations: can address realistic equilibrium/geometries for moderatemode numbers. Must assume model fast ion distribution functions

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 9

    Linear Stability Issues: Eigenmodes vs. Resonant

    Modes

    2 Linear Theory: sound and well understood. However, most codes still do notinclude nonperturbative particle dynamics

    2 Numerical simulations: can address realistic equilibrium/geometries for moderatemode numbers. Must assume model fast ion distribution functions

    2 Key issues: 3-D MHD derived codes and Hybrid MHD gyrokinetic codes not alwaysin agreement with kinetic-fluid closure codes. Difference when wave propagationphysics becomes important (KAW)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 9

    Linear Stability Issues: Eigenmodes vs. Resonant

    Modes

    2 Linear Theory: sound and well understood. However, most codes still do notinclude nonperturbative particle dynamics

    2 Numerical simulations: can address realistic equilibrium/geometries for moderatemode numbers. Must assume model fast ion distribution functions

    2 Key issues: 3-D MHD derived codes and Hybrid MHD gyrokinetic codes not alwaysin agreement with kinetic-fluid closure codes. Difference when wave propagationphysics becomes important (KAW)

    2 Theory vs Experiment comparisons: mostly refer to active (antenna) or passive(spontaneous) mode excitation with weak drive (easier to measure). But whatabout strong excitations? Bursting behaviors

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 9

    Linear Stability Issues: Eigenmodes vs. Resonant

    Modes

    2 Linear Theory: sound and well understood. However, most codes still do notinclude nonperturbative particle dynamics

    2 Numerical simulations: can address realistic equilibrium/geometries for moderatemode numbers. Must assume model fast ion distribution functions

    2 Key issues: 3-D MHD derived codes and Hybrid MHD gyrokinetic codes not alwaysin agreement with kinetic-fluid closure codes. Difference when wave propagationphysics becomes important (KAW)

    2 Theory vs Experiment comparisons: mostly refer to active (antenna) or passive(spontaneous) mode excitation with weak drive (easier to measure). But whatabout strong excitations? Bursting behaviors

    2 Further developments: global extended MHD codes (NOVA-K, CASTOR-K) orglobal gyrokinetic codes (LIGKA, PENN) need to incorporate SOL model and pos-sibly accurate treatment of plasma free boundary in addition to non-perturbativefast ions

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 10

    Nonlinear Dynamics: local vs. global processes

    2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90, PPR 97)has been successfully applied to explain pitchfork splitting of TAE spectral lines(A. Fasoli et al. PRL 98): local distortion of the fast ion distribution functionbecause of quasi-linear wave-particle interactions.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 11

    Pitchfork splitting of TAE in JET

    Fasoli, Phys. Rev. Lett. 81, 5564, (1998)

    High resolution MHD spectroscopy: Pinches et al, PPCF 46, S47, (2004)

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 10

    Nonlinear Dynamics: local vs. global processes

    2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90, PPR 97)has been successfully applied to explain pitchfork splitting of TAE spectral lines(A. Fasoli et al. PRL 98): local distortion of the fast ion distribution functionbecause of quasi-linear wave-particle interactions.

    2 Compton scattering off the thermal ions (T.S. Hahm and L. Chen PRL 95): locallyenhance the mode damping via nonlinear wave-particle interactions

    2 Mode-mode couplings generating a nonlinear frequency shift which may enhancethe interaction with the Alfvén continuous spectrum (Zonca et al. PRL 95 andChen et al. PPCF 98): locally enhance the mode damping via nonlinear wave-waveinteractions.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 10

    Nonlinear Dynamics: local vs. global processes

    2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90, PPR 97)has been successfully applied to explain pitchfork splitting of TAE spectral lines(A. Fasoli et al. PRL 98): local distortion of the fast ion distribution functionbecause of quasi-linear wave-particle interactions.

    2 Compton scattering off the thermal ions (T.S. Hahm and L. Chen PRL 95): locallyenhance the mode damping via nonlinear wave-particle interactions

    2 Mode-mode couplings generating a nonlinear frequency shift which may enhancethe interaction with the Alfvén continuous spectrum (Zonca et al. PRL 95 andChen et al. PPCF 98): locally enhance the mode damping via nonlinear wave-waveinteractions.

    2 Role of mode-mode couplings recently confirmed by (Todo et al. 2005 and Fu etal. 2006).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 10

    Nonlinear Dynamics: local vs. global processes

    2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90, PPR 97)has been successfully applied to explain pitchfork splitting of TAE spectral lines(A. Fasoli et al. PRL 98): local distortion of the fast ion distribution functionbecause of quasi-linear wave-particle interactions.

    2 Compton scattering off the thermal ions (T.S. Hahm and L. Chen PRL 95): locallyenhance the mode damping via nonlinear wave-particle interactions

    2 Mode-mode couplings generating a nonlinear frequency shift which may enhancethe interaction with the Alfvén continuous spectrum (Zonca et al. PRL 95 andChen et al. PPCF 98): locally enhance the mode damping via nonlinear wave-waveinteractions.

    2 Role of mode-mode couplings recently confirmed by (Todo et al. 2005 and Fu etal. 2006).

    2 EPM is a resonant mode (L. Chen PoP 94), which is localized where the drive isstrongest: global readjustments in the energetic particle drive is expected to beimportant as well.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 11

    Nonlinear self-consistent fast ion dynamics

    2 A burning plasma is a self-organized system, where collective effects associated withfast ions (MeV energies) and charged fusion products may alter their confinementproperties and even prevent the achievement of ignition.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 11

    Nonlinear self-consistent fast ion dynamics

    2 A burning plasma is a self-organized system, where collective effects associated withfast ions (MeV energies) and charged fusion products may alter their confinementproperties and even prevent the achievement of ignition.

    2 Simulation results indicate that, above threshold for the onset of resonant EnergeticParticle Modes (EPM) (L. Chen, PoP 94), strong fast ion transport occurs inavalanches (IAEA 02).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 12

    Avalanches and NL EPM dynamics (IAEA 02)

    |φm,n(r)|

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x 10-3

    r/a

    8, 4 9, 410, 411, 412, 413, 414, 415, 416, 4

    - 4

    - 2

    0

    2

    4

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    δαH

    r/a

    = 60.00t/τA0 |φm,n(r)|

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    x 10-2

    r/a

    8, 4 9, 410, 411, 412, 413, 414, 415, 416, 4

    - 4

    - 2

    0

    2

    4

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    δαH

    r/a

    = 75.00t/τA0 |φm,n(r)|

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    .001

    .002

    .003

    .004

    .005

    .006

    .007

    .008

    .009

    r/a

    8, 4 9, 410, 411, 412, 413, 414, 415, 416, 4

    - 4

    - 2

    0

    2

    4

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    δαH

    r/a

    = 90.00t/τA0

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 13

    Vlad et al. IAEA-TCM, (2003)

    Propagation of the unstable front

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    0 50 100 150 200 250 300

    rmax

    [d(rnH

    )/dr]

    t/τAlinear

    phase convectivephase

    diffusivephase

    0.025

    0.030

    0.035

    0.040

    0.045

    0.050

    0.055

    0.060

    0 50 100 150 200 250 300

    [d(rnH

    )/dr]max

    t/τAlinear

    phase convectivephase

    diffusivephase

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 11

    Nonlinear self-consistent fast ion dynamics

    2 A burning plasma is a self-organized system, where collective effects associated withfast ions (MeV energies) and charged fusion products may alter their confinementproperties and even prevent the achievement of ignition.

    2 Simulation results indicate that, above threshold for the onset of resonant EnergeticParticle Modes (EPM) (L. Chen, PoP 94), strong fast ion transport occurs inavalanches (IAEA 02).

    2 Such strong transport events occur on time scales of a few inverse linear growthrates – 100 ÷ 200 Alfvén times – and have a ballistic character (R.B. White, PF83) that basically differentiates them from the diffusive and local nature of weaktransport.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 11

    Nonlinear self-consistent fast ion dynamics

    2 A burning plasma is a self-organized system, where collective effects associated withfast ions (MeV energies) and charged fusion products may alter their confinementproperties and even prevent the achievement of ignition.

    2 Simulation results indicate that, above threshold for the onset of resonant EnergeticParticle Modes (EPM) (L. Chen, PoP 94), strong fast ion transport occurs inavalanches (IAEA 02).

    2 Such strong transport events occur on time scales of a few inverse linear growthrates – 100 ÷ 200 Alfvén times – and have a ballistic character (R.B. White, PF83) that basically differentiates them from the diffusive and local nature of weaktransport.

    2 Observations on JT-60U (and other tokamaks) have confirmed macroscopic andrapid energetic particle radial redistributions in connection with the so calledAbrupt Large amplitude Events (ALE) (K. Shinohara, NF 01).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 14

    ALE on JT-60U (K. Shinohara, et al., Nucl. Fus. 41, 603, (2001)

    Courtesy of K. Shinohara and JT-60U

    ALE = Abrupt Large amplitude Event

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 15

    Fast ion transport: simulation and experiment I2 Numerical simulations show fast ion radial redistributions, qualitatively similar to

    those by ALE on JT-60U.

    0

    0.01

    0.02

    0 0.2 0.4 0.6 0.8 1

    βH

    r/a

    Before EPM

    After EPM

    G. Vlad et al., EPS02, ECA 26B, P-4.088,(2002).

    K. Shinohara etal PPCF 46, S31 (2004)Courtesy of M. Ishikawa and JT-60U

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 16

    Fast ion transport: simulation and experiment II

    • ALE in JT60-U:• n = 1 mode, βH0 ≈ 3%;• linear growth rate γ ≈ 0.106τ−1A0 ;• half width of the pulse ∆tALE ≈ 64.5µs;• experimental range ∆tALE ≈ 50 ÷ 200µs;• energetic particle profiles compare well before and

    after ALE burst

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 17

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 18

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 19

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    2 Dynamic treatment of the fast ion source build-up: multi-scale approach.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    2 Dynamic treatment of the fast ion source build-up: multi-scale approach.

    2 Multi-mode simulations: so far mostly one (or a few) toroidal mode numbers.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    2 Dynamic treatment of the fast ion source build-up: multi-scale approach.

    2 Multi-mode simulations: so far mostly one (or a few) toroidal mode numbers.

    • Related to stochastic thresholds and losses in particle phase-space

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    2 Dynamic treatment of the fast ion source build-up: multi-scale approach.

    2 Multi-mode simulations: so far mostly one (or a few) toroidal mode numbers.

    • Related to stochastic thresholds and losses in particle phase-space• Related to non-linear saturation processes and thermal plasma turbulence

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    2 Dynamic treatment of the fast ion source build-up: multi-scale approach.

    2 Multi-mode simulations: so far mostly one (or a few) toroidal mode numbers.

    • Related to stochastic thresholds and losses in particle phase-space• Related to non-linear saturation processes and thermal plasma turbulence• Generation of Zonal Flows and Fields

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 3

    The roles of simulation and theory

    2 Reactor relevant conditions require fast ion (MeV energies) and charged fusionproducts good confinement:

    • Identification of burning plasma stability boundaries with respect to ener-getic ion collective mode excitations and their nonlinear dynamic behaviorsabove the stability thresholds

    • Obvious impact on the operation-space boundaries, since collective lossesmay lead to significant wall loading and damaging of plasma facing materialsin addition to degrading fusion performance

    2 Mutual interactions between collective modes and energetic ion dynamics with driftwave turbulence and turbulent transport should not deteriorate the thermonuclearefficiency:

    • MeV ion energy tails introduce a dominant electron heating and differentweighting of the electron driven micro-turbulence w.r.t. present experiments

    • They also generate long time-scale nonlinear behaviors typical of self-organized complex systems

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 20

    Nonlinear simulation issues

    2 The Hybrid MHD-Gyrokinetic model (Park et al 92) is most suitable for glob-al computations and adequate for the most dangerous class of modes that yieldenergetic particle transports (Zonca and Chen 06).

    2 From linear stability considerations: accurate geometry & B.C.’s and realistic fastion sources to be treated non-perturbatively. (e.g. internal kink excitation byenergetic passing ions: Betti 93, Wang 01, Wang 02).

    2 Dynamic treatment of the fast ion source build-up: multi-scale approach.

    2 Multi-mode simulations: so far mostly one (or a few) toroidal mode numbers.

    • Related to stochastic thresholds and losses in particle phase-space• Related to non-linear saturation processes and thermal plasma turbulence• Generation of Zonal Flows and Fields

    2 Alfvén Eigenmode and EPM NL dynamics is predominantly accompanied by Zon-al Flow generation or fast ion source modulations, depending on proximity tomarginal stability (Zonca et al 00, Chen et al 01).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 21

    Avalanches in fusion product transport

    ITER Simul. Workshop 2006

    n8_9_imirr1_13_light.movMedia File (video/quicktime)

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 22

    Generalized fishbone-like dispersion relation

    2 In general, Chen PRL 94 demonstrated that the mode dispersion relation can bealways written in the form of a fishbone-like dispersion relation (Chen et al. PRL84)

    −iΩ + δWf + δWk = 0 ,

    where δWf and δWk play the role of fluid (core plasma) and kinetic (fast ion) contributionto the potential energy, while Ω represents a generalized inertia term.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 22

    Generalized fishbone-like dispersion relation

    2 In general, Chen PRL 94 demonstrated that the mode dispersion relation can bealways written in the form of a fishbone-like dispersion relation (Chen et al. PRL84)

    −iΩ + δWf + δWk = 0 ,

    where δWf and δWk play the role of fluid (core plasma) and kinetic (fast ion) contributionto the potential energy, while Ω represents a generalized inertia term.

    2 The fishbone-like dispersion relation demonstrates the existence of two types ofmodes:

    • a discrete gap mode, or Alfvén Eigenmode (AE), for IReΩ2 < 0;

    • an Energetic Particle continuum Mode (EPM) (Chen PRL 94) for IReΩ2 > 0.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 23

    AITG: a special case of the fishbone-like D.R.2 BAE/KBM and transition to AITG: the fishbone-like dispersion relation has an

    interesting application for ω ≈ ω∗pi ≈ ωti, i.e. when accounting for the finitecompressibility due to wave-particle interactions with core plasma ions (Zonca etal. PPCF 96, POP 99):

    Ω2 =ω2

    ω2A

    (

    1 − ω∗piω

    )

    + q2ωωtiω2A

    [(

    1 − ω∗niω

    )

    F (ω/ωti)

    −ω∗T iω

    G(ω/ωti) −N2(ω/ωti)

    D(ω/ωti)

    ]

    ,

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 23

    AITG: a special case of the fishbone-like D.R.2 BAE/KBM and transition to AITG: the fishbone-like dispersion relation has an

    interesting application for ω ≈ ω∗pi ≈ ωti, i.e. when accounting for the finitecompressibility due to wave-particle interactions with core plasma ions (Zonca etal. PPCF 96, POP 99):

    Ω2 =ω2

    ω2A

    (

    1 − ω∗piω

    )

    + q2ωωtiω2A

    [(

    1 − ω∗niω

    )

    F (ω/ωti)

    −ω∗T iω

    G(ω/ωti) −N2(ω/ωti)

    D(ω/ωti)

    ]

    ,

    2 An interesting is ω ≫ ω∗pi, ωti, which yields (Zonca et al. PPCF 96):

    Ω2 =1

    ω2A

    [

    ω2 −(

    7

    4+

    TeTi

    )

    q2ω2ti

    ]

    + i√

    πq2e−ω2/ω2

    ti

    ω2

    ω2A

    (

    ωtiω

    − ω∗T iωti

    )

    (

    ω2

    ω2ti+

    TeTi

    )2

    .

    2 This expression for Ω2 describes the formation of the low frequency BAE gap(Heidbrink et al. POP 93) and the fact that ion Landau damping decreases expo-nentially with increasing q2.

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 24

    2 The low frequency shear Alfvén accumulation point is degenerate with the GAMfrequency: but it is an Alfvén wave with (n, m) 6= (0, 0).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 24

    2 The low frequency shear Alfvén accumulation point is degenerate with the GAMfrequency: but it is an Alfvén wave with (n, m) 6= (0, 0).

    2 A new important predicted feature is the excitation of an Alfvénic mode drivenby thermal ion temperature gradients, provided ωω∗T i > ω

    2ti. This is the Alfvénic

    Ion Temperature Gradient (AITG) driven mode (Zonca et al. POP 99).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 24

    2 The low frequency shear Alfvén accumulation point is degenerate with the GAMfrequency: but it is an Alfvén wave with (n, m) 6= (0, 0).

    2 A new important predicted feature is the excitation of an Alfvénic mode drivenby thermal ion temperature gradients, provided ωω∗T i > ω

    2ti. This is the Alfvénic

    Ion Temperature Gradient (AITG) driven mode (Zonca et al. POP 99).

    2 Excitations by both energetic and thermal ions is in agreement with recent DIIIDexperimental observations of Alfvénic fluctuations in a broad range of wave num-bers. (Nazikian et al. PRL 2006).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 24

    2 The low frequency shear Alfvén accumulation point is degenerate with the GAMfrequency: but it is an Alfvén wave with (n, m) 6= (0, 0).

    2 A new important predicted feature is the excitation of an Alfvénic mode drivenby thermal ion temperature gradients, provided ωω∗T i > ω

    2ti. This is the Alfvénic

    Ion Temperature Gradient (AITG) driven mode (Zonca et al. POP 99).

    2 Excitations by both energetic and thermal ions is in agreement with recent DIIIDexperimental observations of Alfvénic fluctuations in a broad range of wave num-bers. (Nazikian et al. PRL 2006).

    2 As for general Alfvénic fluctuations, AITG induced Reynolds and Maxwell stressespartially cancel: slower Zonal flow generation rate Chen et al. NF 2001).

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 24

    2 The low frequency shear Alfvén accumulation point is degenerate with the GAMfrequency: but it is an Alfvén wave with (n, m) 6= (0, 0).

    2 A new important predicted feature is the excitation of an Alfvénic mode drivenby thermal ion temperature gradients, provided ωω∗T i > ω

    2ti. This is the Alfvénic

    Ion Temperature Gradient (AITG) driven mode (Zonca et al. POP 99).

    2 Excitations by both energetic and thermal ions is in agreement with recent DIIIDexperimental observations of Alfvénic fluctuations in a broad range of wave num-bers. (Nazikian et al. PRL 2006).

    2 As for general Alfvénic fluctuations, AITG induced Reynolds and Maxwell stressespartially cancel: slower Zonal flow generation rate (Chen et al. NF 2001).

    2 AITG has even parity, but reconnecting modes can be excited as well: whatrelevance to electron transport?

    ITER Simul. Workshop 2006

  • ENEA F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad 25

    Conclusions and Outlook

    2 A burning plasma is a very exciting nonlinear dynamics system to investigate,with truly peculiar features and many challenging fundamental physics problemsto study

    2 Mutual and positive feedbacks between theory, simulation and experiment arenecessary for significant advances in understanding and new discoveries

    2 Theory faces the big challenge for providing the fundamental grounds for theunderstanding and interpretation of increasingly complex numerical simulationresults

    2 In this respect, plasma theory of burning plasmas can be seen as a natural frame-work for systematically generating interesting and new paradigm problems fornonlinear dynamics. E.g., fusion product avalanches and convective amplifica-tion of wave fronts naturally produce a fractional derivative formulation of theLandau-Ginzburg equation. (Milovanov 2006)

    ITER Simul. Workshop 2006