1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental...

40
1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona

Transcript of 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental...

Page 1: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

1

Extreme Times in Finance

J. Masoliver, M. Montero and J. PerellóDepartament de Fisica Fonamental

Universitat de Barcelona

Page 2: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

2

Financial Makets:two levels of description

• “Microscopic” description Tick-by-tick data

Continuous Time Random Walk

• “Mesoscopic” description Daily, weekly... data

Diffusion processes

Stochastic Volatility Models

Page 3: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

3

I - CTRW formalism

• First developed by Montroll and Weiss (1965)

• Aimed to study the microstructure of random processes

• Applications: transport in random media, random networks, self-organized criticallity, earthquake modeling, and… now in financial markets

Page 4: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

4

CTRW dynamics

• The log-return and the zero-mean return:

0( )( ) ln

( )

S t tZ t

S t

( ) ( ) ( )X t Z t Z t

1 2

1

1

( ) changes at random times , , ,..., ,...

Sojourns, , are iid random variables with pdf ( )

At each sojourn ( ) suffers a random change ( ) ( ) ( )

with pdf ( )

Waiti

o n

n n n

n n

X t t t t t

T t t t

X t X t X t X t

h x

ng times and increments are governed by a joint pdf ( , )x t

J. Masoliver, M. Montero, G.H. Weiss Phys. Rev E 67, 021112 (2003)

Page 5: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

5

CTRW dynamics (cont.)

Page 6: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

6

Return distribution

0

( , ) ( ) ( ) ' ( ', ') ( ', ') 't

p x t t x dt x t p x x t t dx

[1 ( )] /

( , )1 ( , )

s sp s

s

( , ) Prob ( )p x t dx x X t x dx

• Renewal equation

• Formal solution

joint distribution of increments and waiting times( , )x t

• Objective

Page 7: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

7

Are jumps and waiting times related to each other?

a) If they are independent:

b) If they are positively correlated. Some choices:

( , ) ( ) ( )x t h x t

1/

( , )( )

( , ) ( ) ( )

( , ) ( ) ( ) 1

tt

h

s s h s

s h s

Page 8: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

8

General Results

• Approach to the Gaussian density

• Long-tailed jump density:

Lévy distribution

• At intermediate times:

the tail behavior is given by extreme jumps

22 / 2( , ) e (t )tp t

• Normal diffusion

2 2( ) ( )X t t t

( ) 1h k

| | /( , ) e (t )k tp t

( , ) ( ) ( | | )t

p x t h x x

,t

Page 9: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

9

Extreme Times

• At which time the return leaves a given interval [a,b] for the first time?

• Mean Exit Time (MET):

, 0 , 0( ) ( )a b a bT x t x

J. Masoliver, M. Montero, J. Perelló Phys. Rev. E 71, 056130 (2005)

Page 10: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

10

Integral Equation for the MET

• is the mean time between jumps. • The MET does NOT depend on

– the whole time distribution – the coupling between jumps and waiting times

• Mean First Passage Time (MFPT) to a certain critical value:

0 0( ) ( ) ( )b

a

T x h x x T x dx

0 , 0 0 0 , 0 0( ) lim ( ) if or ( ) lim ( ) if c cc a a x c c b x b cT x T x x x T x T x x x

Page 11: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

11

An exact solution

• Laplace (exponential) distribution: jump variance:

• Exact solution:

| |( )2

xh x e 2 22 /

2 2 20 0( ) 1 1 2 ( ( ) / 2)

2T x L x a b

2(0) 1 1 2

2T L

( / 2)b a L • Symmetrical interval

• For the Laplace pdf the approximate and

the exact MET coincide

It is also quadratic in L

Page 12: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

12

Exponential jumps

Page 13: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

13

Approximate solution• We need to specify the jump pdf• We want to get a solution as much general as

possible• We get an approximate solution when:

– the interval L is smaller than the jump variance– jump pdf is an even function and zero-mean with scaling:

1( )

xh x H

2 3

2(0) 1 (0) '(0 ) / 4 (0)

L L LT H H H O

2( jump variance)

Page 14: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

14

Models and data

4

3

1.70 10 ,

(0) 4.45 10 ,

'(0 ) 1.54

H

H

2

2(0) 1 (0) '(0 ) / 4 (0)

L LT H H H

Page 15: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

15

Some Generalizations

• Introduction of correlations by a Markov-chain model. Assuming jumps are correlated:

1( | ') Prob | 'n nh x x dx x X x dx X x

• Integral equation for the MET:

0 0 0 0 0| | ( | ) |b

a

T x x x h x x x T x x dx

M. Montero, J. Perelló, J. Masoliver, F. Lillo, S. Miccichè, R.N. MantegnaPhys. Rev. E, 72, 056101 (2005).

Page 16: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

16

A two-state Markov chain model

|2 2

c ry c ryh x y x c x c

c c

r = correlation between the magnitude of two consequtive jumps

1

1

cov ,

var var

n n

n n

X Xr

X X

Integral equation Difference equations

0 0 0

1| 1 | 1 |

2T x c c T x c c c T x c c

0 0| 0 if T x c c x b c 0 0| 0 if T x c c x a c

Page 17: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

17

2

1 2 12 1 1

1 2 1 2

r L r LT L

r c r c

( )L b a • Solution mid-point:

• Scaling time

21

1sc

T LrT L

r

Large values of L

( )L c 2scT L L Stock independent

Page 18: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

18

tick-by-tick data of 20 highly capita-lized stocks traded at the NYSE in the 4 year period 95-98;more than 12 miliontransactions.

L b a

2 2 2| y x h x y dx c

Page 19: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

19

• “Low frequency” data (daily, weekly,...)

Diffusion models

( )dS

dt dW tS

Geometric Browinian Motion(Einstein-Bachelier model)

• The assumption of constant volatility does not properly account for important features of the market

Stochastic Volatility Models

II – Stochastic Volatility models

Page 20: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

20

2( ) ( ) ( )dY F Y dt G Y dW t

i ii( ) ( ') ( '), 1, j ij ijt t t t

1( ) ( )dS

dt t dW tS

( ) ( )t Y t

Wiener processes( ) ( 1,2)iW t i ( ) ( )i idW t t dt

Two-dimensional diffusions

Page 21: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

21

1. The Ornstein-Uhlenbeck model

2

( ')2

, ( ) ( ), ( )

( ) ( ) ( )

( ) ( ')t

t t

Y F Y Y m G Y k

d t Y m dt kdW t

t m k e dW t

E. Stein and J. Stein, Rev. Fin. Studies 4, 727 (1991).J. Masoliver and J. Perelló, Int. J. Theor. Appl. Finance 5, 541 (2002).

Page 22: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

22

2. The CIR-Heston model

22

2 ( ')2

, ( ) ( ), ( )

( ) ( ) ( )

Y( ) ( ') ( ')t

t t

Y F Y Y m G Y k Y

dY t Y m dt k YdW t

t m k e Y t dW t

Cox, J., Ingersoll, J., and S. Ross, (1985a), Econometrica, 53, 385 (1985). S. Heston, Rev. Fin. Studies 6, 327 (1993).A. Dragulescu and V. Yakovenko, Quant. Finance 2, 443 (2002).

Page 23: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

23

3. The Exponential Ornstein-Uhlenbeck model

2

( ')2

, ( ) ( ), ( )

( ) ( )

Y( ) ( ')

Y

tt t

me F Y Y m G Y k

kdY t Ydt dW t

m

kt e dW t

m

J.-P. Fouque, G. Papanicolau and K. R. Sircar, Int. J. Theor. Appl. Finance 3, 101 (2002).J. Masoliver and J. Perelló, Quant. Finance (2006).

Page 24: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

24

In SV models the volatility proces is described by a one-dimensional diffusion

( ) ( ) ( ) ( )d t f dt g dW t

• The OU model: ( ) ( ) ( )d t Y m dt kdW t

• The CIR-Heston model:1

( ) ( )2

md t dt kdW t

• The ExpOU model: ( ) ln ( )d t dt k dW tm

Page 25: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

25

Extreme times for the volatility process

• The MFPT to certain level 0 ( reflecting)

( )( )

20

( ) 2( )

y yx e

T e dx dyg y

• Averaged MFPT0

1( ) ( )T T d

2

( )( ) 2

( )

f xx dx

g x

( )( )

20 0

2( )

( )

y yx e

T xe dx dyg y

Page 26: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

26

• Scalingst

L

st stp d

1 - OU model st m

2 - CIR-Heston model

2

1 2

2

1 22

22

st

mk

kmk

3- ExpOU model2 4k

st me

st normal level of the volatility

Page 27: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

27

Some analytical results

1 - OU model

2 2( 1)

0

( ) erf erf ( 1)L

xT L xe x dxL

Assymptotics 2

22

2( )

3

mT L L

k 1L•

2 22

2( )

2Lm L

T L ek

1L•

m k

Page 28: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

28

2 - CIR-Heston model

2 2

2

21 2

20

2

( ) F 1;1 ;1 22

LmT L x x dx

Lm

2, 1 2m k m k

Assymptotics 2

22

( )3

stT L Lk

1L• 2 2 2

2( )

2Lstm

T L Lek

1L•

F ; ;a c x Kummer’s function of first kind

Page 29: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

29

3 - ExpOU model 1 2

1 2 2ln

2

kx x m

k

Assymptotics

2 2

( )ln

keT L

L m

1L•

2 2ln

3( )

2L m kL

T L ekm

1L•

F ; ;a c x Kummer’s function of second kind

2 2 21 1( ) ; ;

2 2k kx

L

mT L e e U x dx

L

Page 30: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

30

Empirical Data

Financial Indices

1- DJIA: 1900-2004 (28545 points)2- S&P 500: 1943-2003 (15152 points)3- DAX: 1959-2003 (11024 points)4- NIKKEI: 1970-2003 (8359 points)5- NASDAQ: 1971-2004 (8359 points)6- FTSE-100: 1984-2004 (5191 points)7- IBEX-35: 1987-2004 (4375 points) 8- CAC-40: 1983-2003 (4100 points)

Nomal Level (daily volatility)

1- DJIA: 0.71 %2- S&P-500: 0.62 %3- DAX: 0.84 %4- NIKKEI: 0.96 %5- NASDAQ: 0.78 %6- FTSE-100: 0.77 %7- IBEX-35: 0.96 %8- CAC-40: 1.02 %

Page 31: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

31

Page 32: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

32

Page 33: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

33

Page 34: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

34

Page 35: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

35

Page 36: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

36

Conclusions (I)• The CTRW provides insight relating the market

microstructure with the distributions of intraday prices and even longer-time prices.

• It is specially suited to treat high frequency data. • It allows a thorough description of extreme times

under a very general setting. • MET’s do not depend on any potential coupling

between waiting times and jumps.• Empirical verification of the analytical estimates

using a very large time series of USD/DEM transaction data.

• The formalism allows for generalizations to include price correlations.

Page 37: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

37

Conclusions (II)

• The “macroscopic” description of the market is quite well described by SV models.

• Many SV models allow a analytical treatment of the MFPT.

• The MFPT may help to determine a suitable SV model

• OU and CIR-Heston models yield a quadratic behavior of the MFPT for small volatilities that is not conflicting with data. For large volatilities their exponential growth does not agree with data.

• In a first approximation the ExpOU model seems to agree with data for both small and large volatilities.

Page 38: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

38

Page 39: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

39

• The Laplace MET is larger than the MET when return follows a Wiener process:

0 0( ) ( )CTRW RWT x T x

* *2 2

1 1(0) (0)

2CTRW RWT TL L

• We conjecture that this is true in any situation:

• The Wiener process underestimates the MET. Practical consequences for risk control and pricing exotic derivatives.

Comparison with the Wiener Process

Page 40: 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona.

40

* *2 2

1 1(0) (0)

2CTRW RWT TL L

*2 2

CTRWCTRW

TT

L

2*

22RW RWT TL

* (0) 1 8RWT

The Wiener process underestimates the MET