1,,,, - Carnegie Department of Global Ecology · components of an aquatic ecos)'siem The choi« of...

14
A"",oioaJ of T..., 10 Prcdi<l 'M E",;"",,,,,,nul 1l<1u,"", of OIo"'Ocab '" P. 5I>«h.on. F. Kon...... K1e.. aao:I Ph Boord<... f' SCOPE. Publi>ll«l'" j""n \\,1<, &: Som LId 4.4 Accumulation in Aquatic Organisms W. EI\);S1 I",,,,", "', .\1"",,,,_,,,,, Am 11 [).lfUQ B""""*""'n I !"«knlll"p.bIi<' nfG<mwln} 4.4 I 4.4." 4.4 .3 I. 11,><1 "e""" T,,. Pro,ocoI. S io<:on""n'rat\<>n 4 4 .3.1 Dc,enni... ion of the elimin","'. role 00.'1".'. k; 4.4.3.2 U.., of poh;<ico-ehemieal dal" to prod;';1 bio<x>tt<e."... "" Sioa"",mIUI.,ioon C<""I",\<>", Ref"e""', N9 251 232 253 4.4.1 1:\'TRODUCTIO:\ A high bioroneenlratJon polenual of an an'hropogenic chemical (xenobio'ic) in biOla in,r.ase, ,h. pTobIlbilit} of '0"••ffe .. , being e1lCQUnlered in man and hi. en' "on men', 11m•. bioconcentralion polential •• hould be as.sc_d in appropriately designed test 'y'teme which a«i<t ,n 'he prediClion of bioaccumulation behaviour In 'he field. EJcperimen1\ .... hich rank Ihe bioroneen,ralion polen,ial of ... riOllS chemicale under similar bUI limiled experimental condilion' are 001 necessard}' meaningful. for 'hey rna} nOI allow for extrapolalion. to nalUral conditions. for clari'y, a lkfinilion 01 the Ierminolog) associated .. ilb biooccumula'ion §I .. di" should be gi.'en, Bw.:oncemrmkm. Bioconcentralion i. Ihe direCl upla.e of a .ubstance by an orgamsm from waler wi,hout consideralicm of Ihe ingestion of contaminated malerial•. E.penmen,ally. ,he result of ,uth a proces.s is reponed as 'he bioconcentralion faClor (BCF). Ihe qUOlICnt of lhe concentration of Ihe '''bstance in 'he organism and Ihe ambienl medium, The BCF can be based On Ihe fresh Or df) weight of Ihe material or on Ihe lipid conlent, The BCF an be delermme<! al anj lime during an exposure period, bUI values derived

Transcript of 1,,,, - Carnegie Department of Global Ecology · components of an aquatic ecos)'siem The choi« of...

A"",oioaJ of T..., 10 Prcdi<l 'M E",;"",,,,,,nul 1l<1u,"", of OIo"'OcabEdo~ '" P. 5I>«h.on. F. Kon...... K1e.. aao:I Ph Boord<...f' ln~ SCOPE. Publi>ll«l'" j""n \\,1<, &: Som LId

4.4Accumulation in Aquatic Organisms

W. EI\);S1

I",,,,", "', .\1"",,,,_,,,,,Am H,",d<I<""~n 11[).lfUQ B""""*""'n I!"«knlll"p.bIi<' nfG<mwln}

4.4 I4.4."4.4 .3

I. 11,><1"e"""T,,. Pro,ocoI.S io<:on""n'rat\<>n4 4.3.1 Dc,enni...ion of the elimin","'. role 00.'1".'. k;4.4.3.2 U.., of poh;<ico-ehemieal dal" to prod;';1 bio<x>tt<e."...""

,~~

Sioa"",mIUI.,ioonC<""I",\<>",Ref"e""',

N9251232253

4.4.1 1:\'TRODUCTIO:\

A high bioroneenlratJon polenual of an an'hropogenic chemical (xenobio'ic)in biOla in,r.ase, ,h. pTobIlbilit} of '0"••ffe.., being e1lCQUnlered in manand hi. en' "onmen', 11m•. bioconcentralion polential••hould be as.sc_d inappropriately designed test 'y'teme which a«i<t ,n 'he prediClion ofbioaccumulation behaviour In 'he field. EJcperimen1\ ....hich rank Ihebioroneen,ralion polen,ial of ...riOllS chemicale under similar bUI limiledexperimental condilion' are 001 necessard}' meaningful. for 'hey rna} nOIallow for extrapolalion. to nalUral conditions. for clari'y, a lkfinilion 01 theIerminolog) associated .. ilb biooccumula'ion §I..di" should be gi.'en,

Bw.:oncemrmkm. Bioconcentralion i. Ihe direCl upla.e of a .ubstance by anorgamsm from waler wi,hout consideralicm of Ihe ingestion of contaminatedmalerial•. E.penmen,ally. ,he result of ,uth a proces.s is reponed as 'hebioconcentralion faClor (BCF). Ihe qUOlICnt of lhe concentration of Ihe'''bstance in 'he organism and Ihe ambienl medium, The BCF can be basedOn Ihe fresh Or df) weight of Ihe material or on Ihe lipid conlent, The BCFan be delermme<! al anj lime during an exposure period, bUI values derived

N~ TI:S1'STO PREDICT THE E'WIRO... ME......Al BEHAVIOUR OFCHE\lICAlS

al oondilion~ reflecting 'teady Slale are mOSt useful for comparative pUll"""s.BCF should ~ determined in an appropriate concentration range ".-here"alue, are Independent of the concentration of the compound andecologically meaningful.

Biomagnijkalion. Biomagnification I' the direct uptale of a >ulntance by anorgani,m ,'ja food. In aquatic en"ironments. thi' proce" operatessimultaneou,ly wilh bioroncentralion, Bioaccumulalion is 'herdore definedas 'he up'ake of pollu'an', "ia food and "aler

~.4.2 TFST PROTOCOLS

The majorit}' of experimenlal worl has been carried OU' wilh algae. fi~h,

mussels and worm" Thi' reflects demand for represental;.., of the 'ariouscomponents of an aquatic ecos)'siem The choi« of organism ,dl«ts theanima!". maintenance requirements. size. habitat. reeding beh3"iour andmode of pollutant uplale, The exlenl of bioconcentration of a compound in agi"en speci... depends on cenain chemical and phy'sical propenies of Ihalcompound, On the olher hand, .pecies difference. may exiSl in additiOn todifferences in ph)'sical and chemical conditions of the environment. whichmay rexult in different degrees of bioconeentration for a specific compound.Thu•. a suitable teXt mcthod requires: (a) a reliable d.,cnninatiOn of thcaccumulalion potential,; (b) the choice of a lest organism for which re,ultscan be a«:urate!)' extrapolaled '0 the majori,y of bio,a.

Analy'lical requIrements in Ihe cou"'" of testing need addilionalconsideration, The analytical procedures can be greatly facilitated by the u""of radIo-labelled compounds. but the ..-aiJabiht) of labelled sulntan= islimited and their use usually exdudes f1ow,through ,e,.. because of the highCOStS and saf.,) consideration., In addItion. when radio-labelled sulntancesare used. complicalions may occur ,,'hen metaboliles are formed. In Ihi' C35e.

the i(\en'ity of ,he radiQ21<1i,e wmpound. bas to be determined by' substaneespecific anal},.is, o,he""ise calculation. of Ihe ReF may be highly erroneou'.

Choice of '~Jl organum.<. The selecti"" of the te,t organisms can be madeusing sim~ar cri'eria to Ihose applicd to organisms for monitoring pollutantsin nalural systems (Phillip'. 1978). Some of the mOS' importanl crileria areIhat: (a) Ihe organism should accumulate the compound without being killedor ad"e""ly affected at the wncenlration chosen; (b) Ihe organi,m should beof reasonable me pro"iding sufficient material for anal)'sis; (cj wild animal •.,,-hen used. ~ould be easy to sample and hardy enough to su,,'i"e in thelaboratory; sedemaT)' organisms are preferred. ,in'" Ihe) are mOrerepresentati,e of an area in question; (d) all organisms of a gi"en spede-;e~hib;t the same b,oconeentration factor or at least a .y"ematic pallem ofbioconcentration factors.

4.4.3 BIOCO-':CE",TRATlO:-i

Whcn performing bioconctntration tcm, thc duration of tcst pt<J«du",.is an .ssential faClor, According to .qualion (4). Tabl. 4 .4. L it i. n.ce""r"tocxpose the te.t organisms fo' four half.Ii,"" to approach >~ of thetheoretical BCF (see Figure 4,4, I),

BioconcentratiOn faClOrs at .tead) state can be determined using stallC.semi·static and flo..... through test•. The method chosen "'ill depend Ofl thetype of substance. being tcstcd. thcir ph}'si<:<H'hemi-.1 p'opertie<, such aswalOr ",Iubilily and n'OC1anol :walcr partItion coefficient. thc test organi.ms.Ihe t}'pe of envi,onment for which prediction. h",'e 10 be made. and economicconsiderations.

Fio"'lhrough tests ha"e Ihe ad",ntage. of pro"iding a ",Iativcl) OOnSUlntconcentration of teSt oompound and of flushing from thc aquaria undeSIrable.xc,elion prooucts ....hich can influence the re.ult•. Large batChe. of tc'lanimals are required in ord.r to pH}\-'ide appropriatc subsamples of animalsfo' analysis al differcnl timcs during thc uptale ph"", WilhOllt such asampling regimc. rccognition of the accumuialion pancrn and lhal stcad}Stat. condition. ha'-. been established i. diffICult. particularly for substance.with a higher BCF••uch as DDT. or the higher chlorinated biphcnyl>.

S,atic c.posu", .yst.m, are I... =tl), and. since ,'olum... ar. COm­parat;,·.I) .mall.••periments with radio-labelled compounds are feasible

Tobh4.4.1. Kin..ks <quallOn, d....ibi". up.... and depuralion for the d....min_ation of bioconWltrat;on foctor.

dC. _ • ·C,,_*, C, m _ dC. '"

" " C, '"> "C, >, . C" (1_< .., '" C, -C... < .,'"

C, -!...'. c.. '" BCF· C"In C.. _ In C..-* , n<

" '" "'C, '" C.,(l_<'''') '", --- '">,

"h...C, _C., _C, _

Co­C. _

>, ­>.,

lh. 1., el of«ltnpound in th<animal (nil '1.til< 1<-'<1 of «ltnpound in Ih••nimalalli"", (I).lh< k>'el ofcompound in til< animal und.' ....d)· ...,. <OIIdihons.Ih. I.'·e1 of compound in Ih< ammal al lh. <tid of "'POSut<.lh. con<;<ntration of compound in ",a", (11i.' ').,a1< con".nt for uP1a~. (da)·-;)."1< constant fo' depuration (da)'-'), and

'" half.tif<lime(da)'.),

246 TESB 10 PREDICT TIlE E!<VlRO~ME.'TAL BEllAVI011R OF CHE.'lICALS

->00 ~.

'"eT~ ., n-

"•!• ~-,"

","• 21~. 3',,> .\

"".,. !I>OII- ....1_

Figuf<4.,l.J Le,.) of a coml""'nd in a I." animal duringupta" from ....l.t a. per OOnt of the ".ad) .1... 1...1in relalion'" tim<••xp......:! a. half_)i""

allowing a simple screen for d.gradalion p'odu<"Is. If Ih. con~nml1ionsofcompound. ha". 10 be k.pl conolanl during lh. 'Xperimenl. f<do!.ing of "'aleror exchange of the ".-ale' is n.ce....'Y, Sampling and anal),.i. of animal. ha".10 be mad. according to Ihe same ",hedule al in f1ow-lhrough lem

Anolh.r approach in 'lalic l.m is 10 allow Ihe e.posed organisms 10 lak.up lhe compound umil sleady Slale condilio... are approached ",lhoUIchanging or adding Ihe chemical 10 Ih. ""ler. Sl.ady slat. i' as,um.d 10 becslal>lishe<l when lhe con~mration of the lesl compound in lh. "'''lerbecome5 con51ani. A prerequisite for thil procedure is Ihe use of animal.which rapidly achieve 11ead)' 5lale, e.g, mussel5. An ad..mag. of Ihi. me,hod;, 'hal only wa'er <ampl.. h..,. '0 be analj'sed unlil appropriate 51ead) .lalecondili0<l5 are obsef\ed, Then ,he lOla] I>alch of animal. can be uSl:d '0delermine lhe I>ioconcenuation fa<"lor (Ern". 1977). Thi. pro"ides a moreS1ali51ically .ignificanl sample using a limiled number of animall. Generally.slatie t..t .)'Sl.m, af< reslricled 10 l.ss ,'olatile ""!>slances, Correelion5 forloss of ""!>slances from the waler can be achie,ed 1»' using blank aquaria,

SU!>slances h..'ing high BeF. in lhe range of 10000 or more can be I..ledb) an acceleraled leSt procedure. reponed b) Branwn.t ai, (1975). The leS!.""m;n.. ae<:llmulalion in fi5h mUIICle using kinetic principles and offers lheopportunily 10 ron5id.rably reduce the dura'ion of a single leSt, Someshortcoming> are lhal (a) only lbe initial part of Ihe uptake ruf\'e is taken intocon,ideralion; fim order kineti~ are assumed bUI nO! prov.n; lhe depuralion

rale rna; not be con"ant bUI can decrease with increa,ing depuration time:(b) no tissue sample, are analysed in the proximit) of the 'teady .tate, thusthe "arialion of subslance Incl, in tissues of indi,idual. rna)' be mOrepronounced than in the usual longer test e.posures

~.4.3.1 Dt1erminalioo of the elimillitioo rate constant k,

The mathematical description of the process of depuration or e~mination

(equation, (5)-(8). Table 4.4, I) i. rather ":mplif,ed and can only be "erif,edin ca'Os where the ,ize and phy,iological state of te" species are oplimal andrather non· biodegradable compound! are assessed. The "alidity of equation,(51-(81. ahhough in man) cases fitting the ..pe<1ed """es for the fi...t t,,·ohalf.Ii'e,. has occasionall; been questioned a. a oonsequen<:e of ot>se"'eddecrease. in k 1with in",easing ,ime of depuration. Reason' for thi' beh3"iourare that the elimination or de",ease rate depend. On (a) the actual rate ofrelease of the oomPQund from tissues: (b) the amount to which degradalion ofthe parent comPQund can be accelerated al the beginning of depuraliOll: and(c) Ihe am""nt of binding in deeper compartments. from "'hich the release ofcomPQund, cannot be described b; flJ">1 order kinetics. Short e.posure lime.ha"e been reported to influen<:e depuration rates. becausc the uptake anddi.tribution of the comPQund, are extremely incon,iSlent and unpredictable(e.g, Macek <I ~I.. 1970). These findings and those of Warlen 01 ill. (1977)with DDT at differenl le'·el. in fi5h are contradic'of) to result. rePQrted by'cUgehausen 01 ~I, (1980). The la"er found that afler sllort exposures ofcatfi,h to various comPQunds. the depuration rate, "'ere dependent on theinitialle"el in fish, according 10 second order react,on kinetics. Funherrnore.Ihe lipid pool size ha' been found 10 con.iderably influence the tissue reten·lion in fish. This could be demonSlrated ,n the northern redho... sucker(Jlo.o:o,IO"'" l11<ICrolopidoIUI11) "'here clearance of chlordane from fish "'udire<1lj proportional to the adiposity (Roberts <I ~I.. 1976), Unfortunately.vef) often hpid COmen1! of ti",ue. were either nOt de'errnined Or nol reported"ith the majorit}' of the biocon<:entration facto... prcscntlj in the literalure.

AI",. the chemical composition of the lipid fractionS influen<:e' Ihe pani.tion;ng pattern. of xenobiolics, In bioconccntration te,ts wilh chlorinatedbiphenyll in o),.te.... il WI> found that PCB oon<:entration. in theseanimals did nOi correlat. with h...ne-cxtractable lipid,. For oyste.... it i.kuO""n that 30-60% of their hpids ronsist of more PQlar con'tituents (Vree­land. 1974; Schneider. 1982). Similarl)'. in en"ironmental sample. PQllutantle"els "'ere found higher when l<'la..d to lipids in mus<:le ti"'oe compared toIh()l.C in lipid' in the li,u (Schaefer 01 aI .• 1976; Ernst 0' aI .• 1976).

When e.perimenlS are carried out wilh compound. ha'ing low k, value.,lon8 periods must elapse before sufficient depuration occo.... In these casc,.test animal. main1ained at normal feeding rate'! can exhibil apparentll' (ast.r

stIREWS

LAROC PI>['

flo""" ""l__ m",,"'l)

SMALL ROOEHTS

S/><>I '-'001.. _

..~

'0;0 '5, '~

ANNUAL CHAHG(S

,~

SEASONAL CHANG£S

!',~"",4,~.1 V.m,jo" b<:,wc<:n ~'''''''' "HI yo"'" '" ,I>< rre)' 'a'en by ""'H) m.'I. (.\,ri, ol"co) d"",,~ e,~hll'ear.<Il..,,,..,,,,,, ,n W)lham O<'.le, O.t,,,d, n'e ,,,,,~,,,n"'hly rc,H><h ,,"","e,ed I - 6 'efe' 'n J'"".') !'ebm"y (I), M."ehAp,i1 (2) .",1 "-' 0" (f""" '"""'1><,,,, 19~4)

"'CCU\lt!l.A1l0"; I"; "'Qu...ll<; OIlG ...... IS~IS '"eliminalion caused by gr""1h dilution. For reliable prediclions and for inler_specie. comparison il should be noted thaI k, ma) be Sre-ciei dere-ndemand that the innuence of growlh dilution musl be remo>ed. In "ie'" of lheimponance of lhe depuTation con.lanl k, for e'limaling bi<>COflcentralionfactors and for lhe characterization of the biomagnificalion phenomenon. itse<:m. necessary 10 determine k, "ilh a higher le>'el of precision. Benerpreci,ion has been obtained lhrough a<X\lmulation e~perimenlS with marineanimals that are fed precisely mea,ured amounl' of Ihe compound. on foodpanide~. which subsequenlly are complelely swallo"'ed by the animal (Em.1and Goerke. 1974; Goerke and Ernst. 1977; Goerke. 1979). Animals areheld on limited food rations such thai body weighti are kept constant and theproblem of growth dilution i. eliminated. The oral route of chemical applica·tion has. furthermore. the ad"antage that both highl; '-olatile and insoiubleiul:>stances can be introduced into the animals without the need for correctionfor losses from the ambienl medium.

Vole" oomplete recordings of size. source. lipid contents, lhe conditionsand protocols used in bioeoncentration teiti are a, ailable. il is impo!iSible. Orat least ,-el") difficuh. to ascribe the differences in the reported ,aluei tosre-cific factors. Diffel'<'nces have been repeatedly reported. for uample dif.ference' due to se~ in fish (Defoe .'Ill.. 1978). source of the fish (Veith .,111..1979). and species (Veilh e' <II .• 1979) (for additional details see Table 4.4.2).

4.·U.2 lse of Ph)'sicf>.c....mJaol Dltla 10 Pralict Bioconcentnlilon Facto..

When testing uptake and 10.. 0/ lind.ne. dieldrin and DDTin bluegills{Lepo·mis rruu:roehi..... ) and goldfish (C"r....si... "urat...). both processes "'erefound to be rel.ted '0 waler solubihlies of lhe oompounds (Gachtatler andWeiss. 1967), The inverse relationship of waler solubilities with EM (eoologi.cal magnification factors a, mea,ured in a model eOO5ystem) and BCFs havebeen determined by "arious authors and can be upressed by the equations:

log EM - -0.4732 log S ... 4.4806

log EM - -0.3891 log 5.,. 3.995

log BCF - -0.52310g5 + 4,53

(5 - water solubilil) in I'g.-'I)log aCF - -0.508 log S - 3,41(5 - "'ater solubility in "moL'l)

(Metcalf., III .. 1975)(mosquito fi'h. "'hole)(lu and Metcalf. 1975)(mosquito fiSh. whole)(Ernst. (982)(common musse-L whole tissue)

(Oioue' "I .. 1917)(trout. muscle)

BeSides solubility da,a. the n-octanol: water panition coefficients of organicC{)mpound~ are u<;ed as a measure lor bioconcentration in animal tissues.

250 TESTS TO PREDICT TIlE ESVIRO!'o \tEl'oTAL BEHAVIOUR OF CHHtlCALS

according to thC follow,ng cqualions:

log RCF - 0,542 log P - 0,124 (:"eel) ., ~/.. 1974)(trout, muscle)

log RCF - 0,85 logP - 0,70 (Viclh e, ai" 1979)(falhcad minno...~ ... hole)

log RCF - 0,741ogP - 0,535 (Ernst, 1984)(common mussel. wholc li,sue)

log EM - 0,635 log P + 0,7285 (Lu and Metcalf, 1975)(model a'l",nic ecosyStem)(mosquito fish, wholc)

10gE~1 -1.1587IogP 07504 (Melcalfc'~LI975)

(mosquito fish .... hole)log RCF') - 0,980 log P - 0.063 (Koncmann and van Lccu"'cn, 1980)

(guppies. fal)(log P - log panition coefficicnl n-<>etanol' Watc,

') - calculaled On fat wcight basi,)

RCF-Iog P linear rclalionships in fi'h "-crc reported b}' Veilh .,~/. (1979) up 10log P of 7 and b) )\;ul)' e, al. (1974) up 10 log P of 7.62, Howe,er, morerecent obscp'alion, «lUC" a non-linea' 'el.'ion,hip abo"c log P - 6(Sugiura e, ~/" 1978: K&1cmann and "an Lceu""cn, 1980) resulting in abrea~-down of thc linear correlations bel"'un log P and log ReF. How"er,it 'hould be nOled Ihat Ihe determination of partition coefficients of highlylipophilic substances is vel) difficult and calculaled log P "alues rna) beerroneou, (Tulp and Hultinger, 1978)

A comparison of the correlations reporled by vanous authors cannot bemade. ,ince differenl species and ranges of compounds hav'e b«n used, B) farthe mosl extemi"e data for one test species ha"e been reported b) Vcilh el "I(1979) using falhead minnuw, fur the lesting of 30 urg.nic chemicals wilh logP values ranging from about 3 to 6.5, From the", RCF-Iog P correla'ion, ,helog RCF can be eS'imated '0 within an order of magnitude from log P ,'alues.It should, howe,e,. be noted that some oornpounds. such as hexachloTOC}'C­lopentadiellC ar>d tri ..2,3·dibromo-prop)lphosphale, did nOl fit into lhe cor­relations reponed b) Veilh e' ai, (1979). presumabl) because of Iheir unusualbeha,'iour. On the other hand, ,he correlations a,e high I}' dependent On 'hequality of panilion coefficient mcasurements, a factOT which is nol firml)established.

Although good correlations can be demonStra'ed belwe~n log BCF and theph}'si<:<Khemical parameters for an arra} of compound, and for a specifiedgroup of te.t animals maimained mosl li~el) unde' lhe same condition., ageneralization of finding, ,,'ill n01 be possible unless all e.semial e~perimemalfaCtors are completel) recorded.

Because of the abov'e uncertainties, one has to be 'ery camiou. in lhe use of

AceuMUlJl.T10~ I" AQUAnCORGA~ISMS

RCF predi"ion. f,om the,., co,,..,latlons as a replacement for bioron<:entra·tion te.IS, At thiS time it ,.,ems ,ha, the estimat,on of bioroncentralion factorsfrom physic<>-chemical data rna) be ju.tified for compounds having log P".lue. of up 10 about 4,5 and water solubilities in exces. of SOO /,g L \. Bothquanti'ies rorre.pond 10 a RCF of _ fOOO in f,e<!llis>ue, offishe' or mu.... I•.

Howe'er, the u.... of tbi' tecbnique "'ithin the,., range. bas to be bettere.tablisbed in fulU,.., <Iudies before its universal application Bioroncentrati""potenlials "' measured in laborato') le.tS or as calculated from ph)'si~

cbemical dala should. in final anal).is. provide reliable eSlimate. dfec'i,'el)translatable 10 ,..,al populations under natural en,ironmenta] condilion•.

4.H BiOACCIJ~llJLATlOS

Riooccumulation ,n nature in"ohes both uptake of .en<>biolic> from "",'erand from food, Various laboralOI)' experiments h.,-e been reported whichdemonstrate the importance of Ihe food vector. Possibly Ihe facl that biomag·nificalion factors associated ,,-ilb the food '-ector are "e')' low "'hen compared";Ih RCf associa'ed with Ihe wale, ,'eCIO' has led '0 tlie conlro'-er1y O'-erthe significance ofbiomagnification, Ne"ertheless. assuming a steady Slate con·cemration for a pollutant rompourKI in the food organism, significanlamounts of lhe compound Can be inrorpora'ed 'ntO 'he predatOr at appropri_ate feeding rale,_

The diversit) and complexit), of food cliain r"'ationShips in addition to the"al)'ing phy.ical and chemical conditions of the en' ironmenl do not allow aneu" quanlitali,," descriplion of .ubstance tran'fers. In order to approacbthis problem of Ibe contribution of biomagnification "'ithin Ihe accumulalionprocess. some simplificatiOns mal' be adopled, (a) COnstant substance COn·<:entration in "'aler; (b) same BCf·,'a!ues for consumer and food; (c) quan·titali'-e aboo,p'ion of the 'ubstance associaled with food b)' consumer; (d)petSi"ence of the compound and (e) a cormanl feeding rate, If conlaminaledfood i.the onl)" SQUrce of the .ubstance. the concemration of the compound inthe predator may be de"'ribed by:

.cd/"k"BCFf·C~-k,.C,

"-here k, i. the feeding rate constant (da)' _1). C; i. Ihe le"el of compound inthe consumer animal. and BCf, is the bioroncentra'ion factor for lhe foodorganism (uptake from water)_

Tho'

c~ - "k,·BCf"C.·(l-e"')

252 ~ TO PR.EDICT THE E.' vIRm'.'IE''TA,L llEIlA "lOUR OF CHE.\l1CALS

at lime 1 and a 'tUdy Slale

c;,- "k,'BCFr'C~Maximum anainable Ie'els at fleady I,a'e COndili<>nf. con.idering bothuplake from waler and from food. will then be described by

For fi.h wilh a daily feeding Talc of 2'!lo of body weighl (k, - 002 day L). 'hebiomagnifioation fac'orl<.,'I<,for DDT (I<, _ 0.02 day ') i. I. Le., uptake viafood equal. that from ",..ter, By' comra't. for a compound exhibiling a high k '"such a, lindane (I<, - 0.8 day' '). a biomagnification fa<lor k,/I< ,of onl) 0,025indioate. Ihal nearly no biomagnification might be expected. The maximumauainable le"el ~ magnificalion will be limited by 'he feeding rate COn'lanl1<, and the elimination conslam 1<, or half·life (T, ,). ""'I"'C1i,cly' (Erns!.1980). Om<idering only ,he firs' consumer level. 'ignificant biomagnification",11 be apparent for .ub.tanoe. having T" of aboUl 20 day, or more. or k,values lower lhan 0.03 al fe<:ding rale. of 2-3'!lo of body ""eighl I"'r day.Parallel conclusions "'ere de"eloped b) Roberts el ai, (1979). Thi' trend ofhalf·life del"'ndc~ i. confinned by a number of analy'SC"l of marine samplesand by labora'orj e'l"'riment. (Ja"'inen ef al,. 1977).

·U.S CO:-CLUSIO:\S

Biooonceniration fac,ors can be delennined in laboratory tem ,..jlhrea"'nable precision if eXl"'rimemal condilion. are 'triclly .tandafdi~edwilhregard to lhe choice of le,1 animal'. sl"'cie. and sex; sour<:<: of animals:mainlenanoe of animals including temperature. feeding regime. "'..Ierexchange. age. waler: biomass ratio: ,ub>lanoe conoenlration includingadditives; waler qualit~,; mode of applica,ion. Correl31ion5 obscn.'ed belweenlog BCF and "-OClanol : "'aler panilion cocff>ci<:nt have been e.tablishedu,ing variou' melhod. of exposure .ugg..ting parti,ioning of the compoundsbelween lissue componem. and water. [t>COnsi'tent re5uh. reponed in Ihelilera'ure. $Oll1e of which ar. presented in Tabl. 4.4.1. rna)' be due '0 'hedifference. of One Or mOre of these paramelef',

It i. al", neoe....')' 10 d.fine the .oosy".m for ",hich bi<JCQncenlrationprocesse. h3\'e 10 be prediOled, In a ri"cr, fot example, the par.nl compoundmay be 'horoughly degraded Or modified by chemi(al reaction, Or mOlabohclranstormation by microbes and higher plants; and there may be changes inIhe compound'. bio3\ailabUity due 10 adsorp,ion 10 paniculale matler andbottom sedimenl5, Funhermo,..,. nuctu31ion5 in the bio.availabJ. COncen·

153

tration of lhe subtUnce in question ....}' co...., oe>oe", diocrq>ancies 10

pttdJ<1ed <bu., npeaaJl) for~ ...bs!ance<; "'" IIIJ ,maD *,-,alues.. TIlewob!;<,ruOOll. abo bold tnIt for eu~; """" ....er. ba>ing enlned oounil:emirl>rllMnl... man) oompound> ill't' pl'CKnl al oomparati'ell _<:onCt'nlr&UOM .... a defined area due lO h,o.tros:raJlhil: "'latiomJlips and adnstil: reduction cI the ",irn:IlqJ deJra<A00lI -.:ti>,.,. Thll$. llu> emlrort­_nl lPJ'fOf'dles <;:losel} 'ideal' eond>lions for ~n, biokcumub·non paue~

'lore prerite pred>I:tiom of lotal ;occumulalion ""f";rt' the <:omoder&UOfI ofbiorn;;Iv"rJCl\uon poIenl;alal Ieasl for rornpoull\b ha, ,"g "'" elimwlIo" raleconstanlS, Ind of Olher ecolog;caJ par-liMIer< such as spece. <pecific feed11llbeha,;our lnd bioenergel;e, data. For bouom li"na animals. >edimenlS Irelihl) to be lhe ....,.,,"" of pollul.nl! and lheir elfem ,hould be lloS<'loS<'d.

Bioenerllellc>·baled modeh allow lbe de:.:npliun of poIiUlanl.ccumul.lion ifm.laboli. rat•• and factur< affeeting melaboli!m are known; for ..ample. infish, bod' .i~e. growlh rat. and ambi.nt tomperalU'e ha"e lU be considered(~orslrom rt al.. 1976),

For manlX organ"m, bioamccnlrallOd 'e,,,l,, from laboralO'} le.l. forlhose compounds '"lh "'" BeF, _h ... d-HCH, .,..HCH IndpentadlJorophenol. Ire comparable 10 \e"els octumng UJKIcr nalura!en' ironmenlll cond'lions (Em<l ft <11 .• 1982). For PCBs. similar ",lllion$lI'f"Ire .u~ from e",ironment,,] analj.... Biomagnilialliotl mil besignifio:;anl,n lh" co~ t>ou ob\-iousI' cion r>oI ba>e aftlnflue<>a: 011 the oNe.of rDai'llllllk of the .....b found;o~ Ifl their Datura! en,,~nl

StaDdartIIu.uon of IabonIlor\ JlI'lXa;Iures Ind ,en6o:anon e:rpenmmullDder IUllIBI conditions ..i11 be .......lial .... fulure...,,-);

4.4.6 R£nRE..'CES

Br2MO<l. 0 R. 8la... G E- AIe......xr. II C. _ 'ttl), .... B (19"}).8XJI:ooo<'nt'.0011 cI 2.1' ,;.; .te'~n)lIn .oin_'uou, .._~ ~

OD """""'"ted tal. 1'....... A",. FuJ<. $«.. 1(101, n,'-~onCbiO<l, C. T , ftttd. V H., Sd""w.1ina. D, ....... and "-ohncn. R L, (1917). I'."moo

cocffi"",ot atlll bioIo<cum~I.,"'" of "'lec1ed orpni< ....mi<.I>. eM>"""'. S<iT«h=J., 11. n,_478

Del<><. D, L" V.i,h. 0. D., .nd Ca,I""•• R..... (1978), Eff«" of A,oclor 1248.nd1~60 OIl the f.,he.d minnow (Bi""pn.I'J pro",~lar).J. Fur,. R... Boo,d ("n .• 35,997-100~

E1lgcha..""n, H.• Golh. J. A...nd E...r, H O. (198UI· FOC1O<> determ,n,... ,hehioaoounlul.,,,,,, po"nt'" of p<>tridc. in lbe jnd;,id'Ul compon.... nts of "'Iu.ti<food ell.,.. U-X. EA,·""". Sal"". 4. n4_1~".

Ernsr, .... 11977), o.telll>inl_ of tile tHo<:on<:<-n'",_ potenti.ol of ...." ...O<pn>oIDO-......to ,.....Pf'l'OOdl I. B"""""",,Mtno""" data for,...en elllono.atedpc>U<:>Iin In Iflusodo t'l,m... ,dwhs) .ad l!le1r "'_ to "'uIliIll) dataCl,. i ~ ... , 6. 1]1_".!iI.

254 , ESTS TO PREDK'T THE E!';VIRO"ME",At. BEHA IflOl;R OF CHEMICALS

Ermt, W. (1979). Factor> 'ffoeting 'he .,·.I,,",ion 01 ohemical' i" I.b<><atoryrIpI'rillll'ntl uling marine organisms ErmOl. Em'iron. SIlfny. l.90-98

Ernst, W. (1980), Efl<et. of p<st;o;ue••nd related "'&ani< tompound' in the ...H,lr"'lind<r If<<rt1~nle,",. 33. 301_312,

Em>!, W (1982) Ani",al••• indica'''' "'g.ni>ms f'" <>rj:ani< poll",.n",D«~nia,",-fHJttfre(Be""!. Ui. SS-()6 (in Gtrman)

E'n". w. (19~4\. Pe"lci<I<, .Dd I«hnical <><pni<: chemical. In Klnll<. O. (Ed.)If.,in< EtoIo~j'. V",. \' Ou.n .'o1.n.~,m,nl, P." II' 1627_1709. John Wile) .ndSon•• t'ew Yo,k,

Em". W", 'nd G<>e'ke. ll. (1974). An,"iche<"ng. V.".;I,,"g, l'm..·.ndl"ng "ndA"""....,dunl "OIl DDT·"C boi SoI<t1 wI<t1 (Pi>c<>: SoleidH)..\10'. 8i"'., Z-l,287-J04 (in G<:""."),

Elml. W.• Goerke. H.. E<I<,. G .• and S<:haefer, R G. (1976), R..idue. of cblorinatedh)d'"",,"""";n n>a',,'" org.";"", In ,<lotion to ,i>e.nd e«>Iovieal ""'"""'"".. IPCB. DDT. DDE and DDD In fish•• and moll""", from the Engl;sh O ..nel. Buil,En";",", C.nI.m. Toxiro<.. 1S. 55_6S

Ernst, W" G<>c:rke. H., Eder. G .• and Webe,. K (1982). Compari"", 0(hioto....."trat;"" dotl obl.ined "ooer l.houtOt)· or><! natural condition,. Prt..nredin' 'Principl<s lor 'bo Interp<.tI"on of the ,,,,,I,, 0( te"ina proo<dur<s in<COI"'icoIOS' . Sep'. Oct. 1980. Sophoa-An'ipoli" V.lbonne:. Fro.....lUJlemhou'!. Off"" lor Official PlIhliation' of the Eu,,,,,,,,n Communi,i«,ECSC-EEC-EAEC. B"'....."

Gack".tttr, J II .• and W.i.., C, M (1%7), The elimination of DDD·"C.dieldrin·L'C 'nd Iindo",,·''C lrom fi,h following a .,ngle 'uhlethal <>posu" inaq ... ri., TrooJ, A",. FiJh, Soc" 96,301_307,

Goerke, H. (1979)..\enls "U<m (PoI)·chat.. ) in marine: poIltJlion " ..arch. Cul,u"mttbo<ls .nd oral .dmini"....lion of a poI)'chlorinllt<d bip/len)L VeroH. loJ'If,,,,,pT$Ch. 8r<mefft.. 11. 151-161

Goe,k•. H .. and Em". W. (1971), Fare of ''C-Iohelle<! di·. lri·••0<1ptntachloroblphen)1 in the marine annelid \'e"iJ ";"oJ, I, Acc"mulation .ndelimination aher oral admlnis,ra,ion. Ch'moJph,,,, 6. S51_S58,

Goerke. H .. and Em". w. (1980). ACCUm"'ation and ehmination of ''C.y-HCH(lindo"") in \eTt;, .'iTtoJ (PoI)'chat..) .. "h consideration of metabolite.,IfdgolJnde' .11""""n"',", 33. 313_326

ja"ine:n. A. W .. IIoffmo". \1. L.nd lhotil"nd, T- W. (1971), loog.terrn t",i<dl«u of DDT IlIO<l or><! ",.IOf <>posurt on fathead min""'" (f'lmeplwl"pro",eI",). I. F<>h. Re>. Board un., 3-1. 2089-2103

K6nc:mann. H.,.0<1 V.n l«:u,,·en. K, (1980), Toxicoki""t"" in li.h: Acrum"lotionand elimlOation of m chlorobenzcnts h)' guppies. Che"''''ph"e. • , 3-1 <J

Lo-.-.:. J, L Parrillb. P. R.• P.trick. J. \1 .r><! Fort>!tr. I. (1972). Elf,,,,, of lhepoIJdllorinlled hiphenJI A"""'" 1254 On the American 0)-'''' CTdllD$,TtQ"iT/finl<"Q, .Wor. Bio/.. 17,209-214

lu, P. J.• aDd )"ttlcal/. R. L (1975). En""onmen..1 fatt and hlo<levadabih,) ofbenz,,,,, deri....'i.·.. as "udied in a model aquatic eoos)-."m. En"i"'" HtollhPer5p<t"' .• IG. 269_284

Macek, K J" Rodge", C. R.• S,.lIing, D, l" .nd Kom, S, (1970). The "ptakc,di'lrihtllioo.nd elimi"at;"" of diet.t) ''C·DDT .nd ''C-dieldrin in rainbow troutTrooJ. AlII. Full, Soc., l'9.6!l9---{,9S,

\IOSOfI, J. W.••nd Ro..'O, D. R. (1976). The aeromulation and loss of diel<lri" ondend"n iD lbe e."em O)~ter A",h, En";ro", Co",."" Toxiro<" 4. 349_]60

Metcalf, R L. (1972) A model eoosJ~tem lor 11>0 0',., ...,;"" of pe"i<i<Iebiodel,adahili') and eeolopcal magnLflC3l1"". Ou,l""k AI''''., 1, SS-~9

Ao.::L·~tL'lJ\TIO" I" "'QUATIC OI\G"''' LS~IS

Mot""II, R. L., Sanborn, J, R.. Lu. P. , . and r-;~., D. (1975). Laborato') mo<!el.=~".m ,t"dl" 01 th< d<grada"oo 000 fa,. of ",dlo-lobell<d tn·, .."a-. andpent••hlorot>'phen~·1 romp>.re<l ""h DOE. Mch Em-iTO". Co",,,,,,. 10,iroL J.151-165

N..,lj ...... a .• 11"'0""', D. R., 000 alau. G. E. (1974). P.nnioo _ff",i.nt to m.a,u"bo<:>conceO,r:ollQn pol<otl>l of orgooic cb<mlcal. in fi>h. En,·i"",. Sri. Ttch<lOl" 8.1113_1115

,,"or>trom, R I., McKinnon. A E., and de F"ita., A S W (1916) AISoeIl¢'l"tic-s-ba..d mo<!el lOT poIlu,"nt oo:omul..mo l>j f,,~. "rn"I.""" of PCBand m.th)1 mer"'l) ""do. 1" .1' in 0"'"'0 R,,<. j<lI"", p<fC~ (Pe= fla,'ne,,,,)J. Fi,h. R.,. lIo4,d C"" .. 33. 2~~_~61

Phillips, 0 J H (1918), t;.. of bi<>logicol ioolcator orgoni""" to quanti'at.orgonochlonn. poll",.n" in aquatic <o,i,onmen", • '<>Iew. En'·;TOn. Poilu,.• 16.161-230

Robe'K J. R., de P....... A S. W...nd Gido<). M. A. J. (1976). foft"<nce of lipidpool on l>"",=mulati"" of th< in""l"Ilcid< chlofda"., b~' ... orthem red""r><_l (,110>0"""'" """rokpid_), J, Fi>h, Rts, 8o<Int Can" 34, 89-97

Robert., J. R.. d< Fren... A. S. W. ood GK!I><~, ~l. A, J, (1979), A rno<lel fOT the"pta~< .00 aceumulation 01 DOT and il> m.taholit., b~ r.,h. In A,i",.I, '"110ni"'" ofEn,'ironm<'n",1 Poilu'",," l'otionaJ A""dem) of Sci.nce<, Wa,hiogtoo.DC, pp, 3-14

Schaer." R G., Ern". W.. Go<.~<. fl., .nd 10<1<', G. (1916). R'Sldu.. of chlonoot.dh'd""",_ in North Sea a"' ...." in ..lotion to booloJlcol ro,.m.,.... /k,. d."">s. Kommn ..\I""'for>ch .. U. 125_233

Schimmel, S, C .. Palric~. l. ~L an<! ForeSl.., J. (1971), To,icit~ .11<1 bioconcen'r>tmnol aHC an<! hn<!an< in .. Ie",ed .,tu,rin. anim'h. >1",11. J:n'·;TOn. C"""'m. Toxicol..~. HS~3;,3

SChneide', R. (1982). Pol~chlonoat.d biphco~I' (PCB.) in <>:>d ti"u« from the.....<".rn Bal'ie. R,p, .II., R." 211,69_79,

Sugi",". K .. fto, :0- .. Ma"umoto. ' .. \-!,h.ra. '1" .. ""fata. K., Ts"ka~""",. \...DdGoto. 'I. (1978). Accumul.""" 01 pol)ehlorlna,.d biph<n) I. and poI)'bromioot<dbipheo~'I' in fi;.h: limitation of correlation be'''... n p>.rtition _fflCieot> aDdaccumulation facto". CiI<mo'pil<r<. 7. 731_736

Tulp. M. Th. 'I .. and Huwo,,,. O. (1918). Some though" On aqueou. iOI"biJitic. an<!ronition cocff>ei<n" 01 PCB, and the mathematical correlation be'",.<"b.,.ccumul,""" al><1 ph~sic»-<h<m,,:al P'''I'Ortic', CIrcmo'p~"" 7, 8~9--860,

V<ith, G. D .• Deloe, D. L .nd Berpl<dt. B V. (1979). '1<.... rin'.Dd «timotin, tl,.bioconccntrati"" I....or 01 ch<:mi""" in f"h. J. FIJ1r. Rn. 80<1... Can., 36.1040-II)4S

Vreeland. \' (1914), Uptake ol ehlorob;phcn)IS b~ 0)'....... En.;_, Poll",,, ~.

135_I~O,

Waflen, S. M., Wolf., 0 A., l<,,·i., C W.••OO CoIb)·. 0 R. (1917). ACCIlmulationand retenlion of dicta~ "C·Drn bj AtI.otic menhaden. TT.",. A""F. FISh. Soc106, 9~-10~