1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON...

24
1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric Bacour, Sébastien Leonard, Vladislav Bastrikov, Fabienne Maignan, Sylvain Kuppel, Diego Santaren, Frédéric Chevallier, Patricia Cadule, Philippe Ciais, Jonathan Barichivich, Catherine Ottle Laboratoire des Sciences du Climat et de l’Environnement, Paris, France. & CARBONES / GEOCARBON projects & DATA providers

Transcript of 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON...

Page 1: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

1

A Carbon Cycle Data Assimilation System

at LSCE using

multiple data streams (CARBONES / GEOCARBON EU-project )

Philippe Peylin, Natasha MacBean, Cédric Bacour, Sébastien Leonard, Vladislav Bastrikov, Fabienne Maignan, Sylvain Kuppel, Diego Santaren, Frédéric Chevallier, Patricia Cadule, Philippe Ciais, Jonathan Barichivich, Catherine Ottle

Laboratoire des Sciences du Climat et de l’Environnement, Paris, France.

& CARBONES / GEOCARBON projects

& DATA providers

Page 2: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

2

The LSCE - CCDAS

The need for Carbon Cycle

Data Assimilation Systems

Page 3: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

3

Fate of Anthropogenic CO2 Emissions (2000-2008)

Le Quéré et al. 2009, Nature-geoscience; Canadell et al. 2007, PNAS, updated

1.4 PgC y-1

+7.7 PgC y-1

3.0 PgC y-1

29%

4.1 PgC y-1

45%

26%2.3 PgC y-1

Page 4: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

4

JENA_s96

LSCE_var

LSCE_an

CTrac_US

CTrac_EU

C13CCAM

C13MATCH

TRCOM

RIGC

JMA

NCAM

Land Ocean

Atmospheric inversions: IAV

Comparison

of 11 inversions

(RECCAP)

Peylin et al. 2013 BG

Page 5: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

5Peylin et al.2013 BG

Comparison

of 11 inversions

(RECCAP)

JENA_s96

LSCE_var

LSCE_an

CTrac_US

CTrac_EU

C13CCAM

C13MATCH

TRCOM

RIGC

JMA

NCAM

Land Ocean

Atmospheric inversions: IAV

Strengths:• Include all processes• Acurate at large scale

• Land inter-annual variability appears robust

Weaknesses:• No insight on the processes

• Poor regional constraint• Land / ocean partition is not robust

• No prediction capabilities

Page 6: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

6

Role of land surface modelsIPSL

LPJ

Jones 2013

<-u

ncer

tain

ty->future

Change in global biomass

Land surface models and dynamic global vegetation models are used to:

• Monitor long-term trends in carbon, water, energy, vegetation

• Attribute the causes of trends and variability

• Predict changes into the future under new climate and greenhouse gas regimes

historical

Page 7: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

7

Data streamsAtm.data

C f

lux

to a

tmos

ph

ere

(GtC

/yr)

Large uncertainty from land topredict global C-balance (C4MIP)

Improve: Process understanding Uncertainty estimates

Future climate predictions

Optimizedecosystem models

reduce the spread ?

Data Assimilation

Needs for C-Cycle Data Assimilation System

Page 8: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

8

The LSCE - CCDAS

Description of the ORCHIDEE

LAND SURFACE MODEL

Page 9: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

9

Dynamic Global Vegetation Model ORCHIDEE

Simulates the Energy, Water and Carbon balanceLand component of the IPSL Earth System Model

Page 10: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

10

Main processes

Net Photosynthesis

Growth & MaintenanceRespiration

Allocation of the assimilates

litter

Carbon Budget & nutriments

CO2

Flux

CO2 Concentration

Interception by the canopy

Infiltration, storage, drainage

Surface runoff

Evapotranspiration

Air Humidity Precipitation

Solar andinfra-red

Radiation Wind Speed

Air Turbulence

Temperature

Con

vect

ion

of

dry

he

at

SurfaceTemperature

Page 11: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

11

Surface description : a tile approach

Land cover map

• 13 different Plant functional types

A mosaïc of vegetation

Page 12: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

12

Example of dominant PFT map

Page 13: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

13

Plant Functional Types

The same set of equations governs C/W/E dynamics But parameter values differ among PFTs

Page 14: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

14

“Slow biogeochemical” Processes

Page 15: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

15

“Slow biogeochemical” Processes

• Phenology - Budburst based on GDD, soil water...

• Senescence: Based on Leaf age, Temp...

• Carbon Allocation: • 8 pools of living biomass

• 4 litter pools and 3 soil carbon pools (CENTURY)

• Autotrophic respiration: Maintenance & Growth

• Heterotrophic Respiration

• Fire module (SPITFIRE)

• Turnover : death of plants, etc.

Page 16: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

16

Biomass allocation

Page 17: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

17

Hydrological Processes in ORCHIDEE

Page 18: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

18

Hydrological Processes in ORCHIDEE

• Partition of throughfall between infiltration and runoff

• Water fluxes in soils (soil moisture and drainage)

• Routing of runoff into river discharge

• Human pressures, e.g. irrigation

• Interactions with floodplains (fluxes and storage)

• Wetlands

• Snow pack processes

• Permafrost (freeze/thaw in the soil)

• Interactions with groundwater tables (fluxes and storage)

Page 19: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

19

Driving data

• Meteorological forcing (temp., precip., air humidity, surface

pressure, wind speed, short- and longwave radiation)

• Atmospheric CO2

• Vegetation type (PFT) (when not using DGVM)

• Soil Type

• Land Cover Change

Page 20: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

20

Parameters

Page 21: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

21

ORCHIDEE model: current status

Natural grass

Bare soil / desert

Multi-layer soil hydrology’

AssimilationOf variables

Modules implementa

tion

Forest

Crops

Managed grass Temperate Crops

grassland

Tropicalcrops

Forest management moduleNitrogen

cycle

- Generalization of PFT concept (number not limited)- A 11-layer hydrological scheme

- Scientific documentation

Fires

Page 22: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

22

The LSCE - CCDAS

Description of the

LSCE - CCDAS

Page 23: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

23

Optimized model parameters

Carbon fluxes & pools

(values & uncertainties)

CCDAS Carbon Cycle Data Assimilation System

Meteo. dataIGBP LC

Satellite data

Atmos. Conc.

Fossil Fuel & Biomass

Burning fluxes

Flux Tower

Assimilation data Forcing data

LAND

ORCHIDEE

Ocean fluxModel OCVR AtmosphLMDZ

Validation data

CO2 vertical Profiles

Forest & SoilC stock

Satellite data

Ocean pCO2data

Structure of the LSCE CCDAS

Page 24: 1 A Carbon Cycle Data Assimilation System at LSCE using multiple data streams (CARBONES / GEOCARBON EU-project ) Philippe Peylin, Natasha MacBean, Cédric.

24

Structure of the LSCE CCDAS

Optimizer BFGSJ(X) and dJ(X)/X

flux tower measurements

PFT compositionecosystem parameters

initial conditions

parameters(X)

J(X)M(X)

Yflux

satellitefAPARYfAPAR

J(X)J(X)

climate NEE, LE, (H)

)()()()(2

1)( 11

bbt

bt xxPxxxMyRxMyxJ Cost function:

Iterative minimization using either: - Variational approach (with Tangent Linear model for DJ/dx)

- Monte Carlo approach

biomass data

Atm CO2