08TS0104 Rev. 00 - IEEEewh.ieee.org/conf/tdc/Ronstrom_08TS0104_Rev_00.pdfStep 3. Switching in a 50...

14
1 © ABB Grid Systems - HVDC 8 May 2008 www.abb.com/hvdc VSC HVDC – A Powerful Stand-by Black Start Facility IEEE PES 2008 Leif Ronström, speaker Ying-Jiang Häfner Hugo Duchen Michael Karlsson Bernt Abrahamsson ABB AB, HVDC, Ludvika, Sweden © ABB -2 Summary Basic HVDC Estlink, a VSC HVDC link Black Start, a feature of Estlink Control modes Full-scale Black-start tests in Estonian grid Conclusions

Transcript of 08TS0104 Rev. 00 - IEEEewh.ieee.org/conf/tdc/Ronstrom_08TS0104_Rev_00.pdfStep 3. Switching in a 50...

1

©AB

BG

rid S

yste

ms

-HVD

C8

May

200

8

www.abb.com/hvdc

VSC HVDC –A Powerful Stand-by Black Start FacilityIEEE PES 2008

Leif Ronström, speakerYing-Jiang Häfner

Hugo DuchenMichael Karlsson

Bernt AbrahamssonABB AB, HVDC, Ludvika, Sweden

©AB

B -2

Summary

Basic HVDC

Estlink, a VSC HVDC link

Black Start, a feature of Estlink

Control modes

Full-scale Black-start tests in Estonian grid

Conclusions

2

©AB

B -3

Thyristor equipped HVDC system

6-pulse rectifierbridge

Current source converters

Need live network on both sides

Delay angle α increased Reduced DC Voltage

Ud

6-pulse inverterbridge

Star

winding

0

Id

∼P

©AB

B -4

HVDC Light® – Voltage Source Converter technology by ABB

IGBT equipped HVDC system – VSC HVDC

AC harmonic filters

DC capacitorsIGBT converter valves

Phase reactors

Cables

PWM Switched voltage

After filtering

- No AC network needed- AC voltage is createdfrom DC by PWM control- DC voltage source is the DC capacitance

3

©AB

B -5

Estlink, a VSC HVDC transmission, …is a 350 MW HVDC Light® link crossing the Finnish gulf

interconnects the national grids of Estonia and Finland

has trading of electricity as main purpose

can exchange a maximum of + or – 125 Mvars with each grid, independent of active power

©AB

B -6

Black Start of Estonian grid – an Estlink featureEstonian converter at Harku has a Black Start facility

Purpose: provide fast auxiliary power to power plants after a black-out.

Finnish grid and converter must be in operation

FeaturesKey functions supported by batteries: control system, valve cooling pumps

Automatic or manual re-start after a blackout

Converter is self-supplied with auxiliary power from main transformer

Converter controls voltage amplitude, phase and frequency

Grid operator connects converter to grid, no automatic connections

Power transmission from/to other converter decided by load/generation

Soft, bumpless, return to normal power transmission mode after restoration

4

©AB

B -7

HVDC Light® control overview

uDC1

uAC1

uAC-ref1

DCvoltagecontrol

uDC-ref2

uDC2

+

-

uAC2

uAC-ref2

ACvoltagecontrol

PWMinternalcurrentcontrol

PWMinternalcurrentcontrol

ii

Qref2

Reactivepowercontrol

Uf Uf

uDC

uDC1

uAC1

uAC-ref1

DCvoltagecontrol

uDC-ref2

uDC2

+

-

uAC2uAC2

uAC-ref2uAC-ref2

ACvoltagecontrol

PWMinternalcurrentcontrol

PWM

ii

Qref2Qref2

Reactivepowercontrol

Reactivepowercontrol

Uf Uf

VoltageFrequency

Controlref1f ref1

Normal control

Measured AC voltageis reference for PWM switching

Black start control

Internal, synthetic, AC voltage generator is reference for PWM switching

©AB

B -8

Black-start tests in Estonia 2007A. Network island prepared by grid operatorB. Last line to island was disconnected

∼=

G

Harku

EstlinkM

1. Harku converterin Black Start mode

Balti

∼=

Estonia

Finland

Aux power

C. Estonian converter trippeddue to low voltage

D. Finnish converterremained in service

E. Grid restoration process was started, steps 1 – 8

F. Return to normal control was not possible to test

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

5

©AB

B -9

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 1. Starting up converter in Black-start mode©

ABB

-10

Step 1. Starting up converter in Black-start mode

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

280

300

320

Udc

(kV)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 249.5

50

50.5

F1 (H

z)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

phi (

rad)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-400-200

0200400

ua,u

b,uc

(kV)

0.45 0.5 0.55 0.6 0.65-400-200

0200400

Time (seconds)

ua,u

b,uc

(kV) 0.45 0.5 0.55 0.6 0.65

0

5

10

phi (

rad)

6

©AB

B -1

1

7.

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4. 6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 2. Energizing a 250 MVA transformer©

ABB

-12

0 0.5 1 1.5 2 2.5 3

280

300

320

0 0.5 1 1.5 2 2.5 3300

320

340

360

0 0.5 1 1.5 2 2.5 349.5

50

50.5

0 0.5 1 1.5 2 2.5 3-50

0

50

Time (seconds)

Udc (kV)

Uac-ref (kV)Uac (kV)

F1 (Hz)

P (MW)Q (MVar)

Step 2. Energizing a 250 MVA transformer

7

©AB

B -1

3

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 3. Switching in a 50 Mvar shunt reactor©

ABB

-14

Step 3. Switching in a 50 Mvar shunt reactor

0 0.5 1 1.5 2 2.5 3

280

300

320

0 0.5 1 1.5 2 2.5 3300

320

340

360

0 0.5 1 1.5 2 2.5 349.5

50

50.5

0 0.5 1 1.5 2 2.5 3-50

0

50

Time (seconds)

Udc (kV)

Uac-ref (kV)Uac (kV)

F1 (Hz)

P (MW)Q (MVar)

8

©AB

B -1

5

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 4. Switching in a 330 kV line (200 km long) ©

ABB

-16

Step 4. Switching in a 330 kV line (200 km long)

0 0.5 1 1.5 2 2.5 3

280

300

320

0 0.5 1 1.5 2 2.5 3300

320

340

360

0 0.5 1 1.5 2 2.5 349.5

50

50.5

0 0.5 1 1.5 2 2.5 3-100

-50

0

50

100

Time (seconds)

Udc (kV)

Uac-ref (kV)Uac (kV)

F1 (Hz)

P (MW)Q (MVar)

9

©AB

B -1

7

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 5. Energizing a distant 25 MVA transformer©

ABB

-18

Step 5. Energizing a distant 25 MVA transformer

0 0.5 1 1.5 2 2.5 3

280

300

320

0 0.5 1 1.5 2 2.5 3300

320

340

360

0 0.5 1 1.5 2 2.5 349.5

50

50.5

0 0.5 1 1.5 2 2.5 3-100

-50

0

50

100

Time (seconds)

Udc (kV)

Uac-ref (kV)Uac (kV)

F1 (Hz)

P (MW)Q (MVar)

10

©AB

B -1

9

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 6. Switching in a load of 10 MVA©

ABB

-20

Step 6. Switching in a load of 10 MVA

0 0.5 1 1.5 2 2.5 3

280

300

320

0 0.5 1 1.5 2 2.5 3300

320

340

360

0 0.5 1 1.5 2 2.5 349.5

50

50.5

0 0.5 1 1.5 2 2.5 3-100

-50

0

50

100

Time (seconds)

Udc (kV)

Uac-ref (kV)Uac (kV)

F1 (Hz)

P (MW)Q (MVar)

11

©AB

B -2

1

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 7. Synchronized switching in a 250 MVA generator©

ABB

-22

Step 7. Synchronized switching in a 250 MVA generator

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

280

300

320

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6300

320

340

360

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 649.5

50

50.5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6-100

-50

0

50

100

Time (seconds)

Udc (kV)

Uac-ref (kV)Uac (kV)

F1 (Hz)

P (MW)Q (MVar)

12

©AB

B -2

3

∼=

G

Harku

EstlinkM

1.

Balti

∼=

Estonia

Finland

Aux power

8.

2.

4.

7.

6.

5.

3.

200 km

+/- 150 kV DCcontrolled by

Finnish converter

Step 8. Generator delivers active power©

ABB

-24

Step 8. Generator delivers active power

Con

verte

ract

ive

pow

erR

ecei

ves

Del

iver

s

Generator excited

ramped to 40 MW

Trace shows active power at converter’s grid connection point

13

©AB

B -2

5

Conclusions

The tests performed have proven the VSC’sability to absorb and generate power

fast voltage control capability when starting large motors and energizing long HV lines

capability to control the frequency

capability to co-operate with large generator

©AB

B -2

6

Advantages with using VSC for Black Start

Reduced restoration time: A VSC is ready for re-connection as a generator in seconds after a black-out

More safe and smooth restoration process due to fast AC voltage control

Less need to balance generation and load during restoration: a VSC link can supply or consume active power up to its ratings

Less investment in machines and starting motors for emergency situations

Soft energization of load possible, reduces inrush currents

14