07_3_NEW YORK_09-63_0218

download 07_3_NEW YORK_09-63_0218

of 17

Transcript of 07_3_NEW YORK_09-63_0218

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    1/17

    218

    TOW DETONATION PRESSIJRF: E V TO Tr E S

    M o s t e>q l o s i v e materials im vi-de use to da y m y b e ch,Zrart,er:zed by de toqet lon ?res-sures ranging from a.nnro.rimte1y 150 t o ?;O k i lobn-s . P-me l . l an t nzi:.r?i?.s. on t h eo t h e r ha nd , e xhh.bit c w a r a t i v e l y low n r e s s u r e s t p ? r ? . l of deflagra+.on rennions.T h e d i f f e r e n c e i n p r e s s i r e s e x h i b i t e d by t h e s e t v o c l :~ . s s~ . : : f na.tsr;r.ls lewves .Ini n t e re s t i n g g au, t h e e . ln 3 ora ti o n of vh.rhch m=-y yte1.d vnliiab?.e :nformp.tion on the -hem;

    -cal a n d k i n e t i r l i m i t z t i o n s of d e t o n s . t i n g ma te- ja?s .The re l iab l -e genera t ion of d e t o n a t i o n nres.

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    2/17

    219

    b Formulating Technioues

    O f nr i nar y cons ide ra t ion i n work ing wi th new eq l o s i v e fo rmula t ions a r e the compati -

    b i l i t y of t h e v a ri o us i n g r e d i e n t s and g e ne ra l s a f e t y p r e c au t i o ns . I n i t i a l l y, i n allc a s e s , small nuan t i t i e s ( abou t 1 /10 gram) were used. and i f no adver se r eac t ion r esu l t edt h e q u a n t i t i e s were i n c r e a s e d t o o ne g ram, 10 gram, and 100 gram l o t s .made t o de te rm in e t h e c m a t i b i l S t y a nd s t a b i l i t y of t he c m o s i t i o n s a t t h e lo-graml e ve l . Among the t e s t s used were vacuiun s t a b i l i t y . impact se ns i t iv i t y, d i f f e r e n t i a l -t h e d analysis (DTA), and. i n some c a s e s , e v l o s i o n te m pe ra t ur es .t e s t s are shown in Table 1

    S a f e t y p r e c au t i o ns c m o n t o t h e e m l o s i v e i n d u s tr y were r i g o r o u s l y o bs er ve d d o n g w j t hmany l abo ra to ry p recau t i ons used in th e chemical i ndus t ry . I n a l l cases while workingwi th small q u a n t i t i e s of mater i a l s (under 10 grams) work was conducted behind adequates a f e t y s h i e l d s .out w i t h remote con tro l methods, v iewing th e processes through mir rors . per iscopes orc lo se d c i r c u i t t e l e v i s i o n .t a i n e r s .In t he mix ing bu i ld ings , t h e materials w ere l i m i t e d t o t h e a c t u a l q u a n t i t i e s needed.

    Analyses were

    The resul ts of such

    When working wi th l ar ge r q ua nt it ie s, th e mixing procedures were c a r r i e d

    Explosives were handled and st or ed i n conducting rubber con-The qua nt i ty of explosive ma ter ia l s was l i mi t ed t o 50 grams in th e l abora to ry.

    c . R h e ol o gi c al C h a r a c t e r i s t i c s

    Dur ing the fo rmula t ion o f h igh- so l ids -con ten t c m o s i t i o n s ex t remely v i scous . nu t t y -l i k e systems were encountered. I t was found tha t t he add i t ion o f small q u a n t i t i e s

    ( 0 . 1 t o 1 . 0 p e r c e n t ) o f s n e c i a l s u r f a c t a n t s caused a s i g n i f i c a n t i n c re a s e i n t h e f l u i d -i t y .

    Changes in t he rh eo lo g ica l c ha ra c t e r i s t i c s were de termined by the use o f a v a r a l l e lp l a t e p l a s t o m e t e r t e c h n i m e .was placed upon a g l a s s D l a t e and loaded wi th another g la ss pl a t e of known weight. Therad i us t o which th e samole sn read a f t e r 2 0 seconds ' du ra t ion w as t aken as an ind ic a t io nof t h e ap na re nt f l u i d i t y of t he t e s t system.e f f e c t i v e n e s s of t h e s u r f a c t a n t .

    d . Te st ing Procedures

    A s m a l l c y l i n d r i c a l sam nle of t h e a a s t e - l i k e t e s t s m l e

    The F rea te r t he r ad ius , t h e greater t h e

    Detonation Velocity Measurements - Detonation velocity measurements were carriedout us in g two well-known methods, t h e st re ak camera and a i n switch te ch nic ue s.

    A Beckman-Whitley Model 194 st reak camera was u t i l i 7 e d .conjunct ion wi th a mixer c i r c u i t and M o ra Model 10lA r a s t e r o s c i l l o s c m e w ere a l s o u se dt o m as ur e de tonat ion ve lo c i t i e s o f bo th confined and unconfined charges .t i o n p i n swi tches were mounted in special holding devices and distances were measuredw i t h a Gaer tner S ci en t i f i c Corporat ion microcanparator capable of measurement t of0 002 m i l l i m e t e r s .t h e p o i nt o f i n i t i a t i o n .

    I o n i z a t i o n p i n s w i tc h e s i n

    The ioniza-

    A l l velocity measurements were started a t l e a s t f o u r d j a m e t e r s f r o m

    Detonation Pressure Measurements - The det ona tio n p re ss ur e measurements were c a r r i e dout u s i n g a modi f i ed p l a t e den t t e s t . Attempts were a l s o made t o use th e aqiiarium

    technique.

    The modif ied plate dent t e s t cons i s t ed o f 20 grams of explosive material i n a cappertube (3 /4 i n . x 5 i n . x 1/16 i n . w a l l ) .Spe c ia l b l a s t in g cap wi t h a f ive-g ram boos te r of Canpos i tion C-4.p l a t e ( 1 3/4 i n . x 5 i n . x 5 i n . o f 6061-T6 a l l o y ) was used.t o de te rmine t he approx imate de tona t ion p r ess u re r ange o f t h e va r ious formula t- lons .

    A series of c a l i b r a t i o n t es t s us ing s t andard exo los ives of vary ing d en s j t i e s was conduct -ed t o d et er mi ne d e t o na t i o n p r e s m r e as a func t io n o f dep th of inden ta t ion in t he wi tness

    The detonation was i n i t i a t e d by a n E n g in e er ' sA n a lminum wi tness

    This techniaue was used

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    3/17

    220

    p l a t e s .ed from W. R . T d i n s o n ( 1 ) and 0 . E . S h e f f i e l d ( 2 ) .f rom t h e d t o n a t i o n v e l o c i t i e s a t known d en si t i es of th e e m lo si ve s by t he e.nnro- rn%tc

    equation( 37

    Detona t ion ve loc i t i e s 3 s a funct ion of densi ty for each explosive reme ootzjn-Detonation pressures were calcu zted

    p 4 0.01op-G *

    where :

    p = d e t o n at i o n a r e s s u r e i n b a r s= d e n s i t y i n grams D e r cubic centimeter

    D = detona t ion vel oc i t y i n meters per second

    A review of oth er pos sibl e methods of measuring detonation or es si re s of l ar ge s r.ml es( 2 in . d iameter x 8 . l eng th ) ind ica t ed tha t the "aquarium" technique o i p i n a l l ydevel.o?ed by Holton($? and l a t e r described by Cook. Keyes and U rs en ba ch (5 j a p e a r e d t oo f f e r good p o s s i b i l i t i e s f o r a oc 3. ic at io n i n t h i s t e s t program. I n t h i s method e s t r e a kcamera i s used t o measure th e de tona t ion ve loc i ty of the 9 l as t j . c em los ive and a l so theve loc ity of t h e re su lt an t shock wave throuRh water.shock wave together with the eauation of state of water, it i s p o s s i bl e t o c a l c u l a t eth e shock press ure in wate r. However, a considerable number of nroblems were encounter-ed in a tt empts t o measure p ressu r es by th i s t echn ique . The o r i nc i na l ob jec t ion l a y inth e ambiguity of the slope of t h e shock a t t he exn los ive fwate r in t e r f ace .i t y seemed t o be more pronounced a t lower shock pressures.w a s abandoned and a l l of th e n ressu re data repor te d here a re based on p la te dent and114 p D2 an pro xi mt io ns .

    e .

    a n a l y s i s .

    f i e d Bureau of Mines machine u si ng a two-kilogram weight and f l a t a n v i l and s t r i k e r .I t w a s foiind tha t n i t r m o l y u r e t h a n e (NPU)/PL N and NPUfRDX formulations, containingconcentrations of 2 percen t b y weight of explosive or lar ge r q ua nt i t ie s? were cans e n s i t i v e t o Nmber 8 b l a s t i n g c a ps . C q o s i t i o n s c on ta in in g smaller q u a n t i t i e s ofthese exp los ives r equ i r ed th e use of a b o os t er t o i n su r e i n i t i a t i o n .of t h e f i r i n g t e s t s a f ive-gram booster charge o f C m o s i t i o n C-4 t oge ther wi th anhg in ee r ' s Specia l de tona tor were employed t o insu re in i t i a t i on .

    EXPERIMENTAL RESULTS

    a Comosi t ions - The comuositions of t he u l as t i c exn los ive formula tions s tud iedcons i s t ed o f Dolyurethane , n i t ropo lyure thane , and d in i t ro pr my l ac ry la t e mat r i ces

    (continuous phase) t o which v ar io us ex-@osives (d ls c re te phase ) were added. The poly-urethanes were ccmrposed of d i o l s f t r i o l s or o ther cross- l i nking agen tsfdi is ocyana te , i n70/30/107 mole percents, tog eth er wi th 2 p e r c e n t n l a s t i c i z e r . The n i t rono lp re thaneswere composed of d iolsf t r to ls o r o t h e r crosslinkersfnitrodiisocyanate ogether wf th upt o 50 o e r c en t by w ei gh t of n i t r o p l a s t i c i z e r. I n t h e pll fo rmula t ion , t he d jo l . / t r i o l /i s o c y a n a t e r a t i o wa f i 80/x)/107 mole percents.

    b. Chemical a nd P h y s ic a l P r q e r t i e s - The chemical and n h y s i ca l p r m e r t i e s were d e t e r -mined for each o f the compositions and a r e given i n Table I .

    and IypA s were determined t o a s c e r t a i n t h e s t a b i l i t y of s e ve r al c om uositions t o t h e m 1decomposition.f a ct o ry s t a b i l i t y .

    The DTA s f o r NPU and NPU/Pm formulations ar e given i n Figs. 5, 6 and 7 and similarinformat ion for Pu/PbN6 mixtu res is given i n Figs. 8, 9 and 10.

    From the measured veloci ty of t h e

    This ambigu-Accordingly, t h i s technia:Je

    S e n s i t i v i t y Te st s - Se ns i t iv i t i e s and conpa t ib i l . i t i e s o f t he . va r ious exp los iveformulations were determined by inpac t, vacuum st a b i l i t y and di ff e re n ti al thermal

    These methods are discussed i n Ref. 2. The impact tests were run on a modi-

    However, 5.n most

    The vacuum s t a b i l i t k s

    The vacuum s t a b i l i t y d a t a s h ar ed t h a t i n a l l cases th e mixtures had S at is -

    The data i n d i c a t e t h a t

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    4/17

    221

    t h e f i n a l c om po si ti on s i n b o t h c a s e s a r e a s thermally stab1.e 8,s t h a t of t h e l e a s t s t a b l ecomonent .was determined f o r each of the fomv1at :ons.compat ible wi th the ingredients of t h e PlJ and hFL1 o l a s t i r formulat ions.us ing NPU and PU systems wi th le ad and ot he r azides showed th at th e n i t r p subst i .t i itedplas t ic iz img agents and n i t r o s ub st i t u t ed d i i socyanates were incomnat ible wi th a.7:des:however, it w a s found that the components of the U system w e r e c o m a t i b l e with t h e nzi.de

    The d e n s i t i e s of t h e v a ri o u s f o r m u l at i o ns v a ri e d f rom t h a t o f t h e pi ir e n l a s t i c b h d e rsystem up t o t h a t of t h e p u re d i s c r e t e a h a s e.de ns i t i e s were found t o va ry f rom 1 . 2 g / c d u n t o about 1.15 g/cm? dene ndi ng upon th econcen t r a t ion o f the d i sc r e t e phase .between that of th e binder system un t o ?.I g/rm? denending upon th e Con centrati on o rmN6.

    I n h ig h- so li ds -c on te nt r l a s t i c explosive c om no si ti on s. t h e r h e o l o g i c a l c h a r a c t e r l s t i ? sa r e jmportant. In one system composed o f 30 o e r c e n t DNPA ( d i n i t r a n r o a y l a r rg l a t e ) b i n d e rsystem and 70 percent RDX. i t w a s found necessary t o add 10 nerr lent c a l c i u m s t e a r a t e .impalnable g r ade , by weight t o p r even t d i l a t a ncy whil e ex t rud ing th e n l a s t i c comosi . t i onunder pr es su re . The l a rg e amount of calcjum s tearate (CS) a c t s a s a ph legmi t i r ing agen tmaking it more d i f f i c u l t t o p r o pa g a te a de tona t ion .fo r r educ inthe p l as t i c$exp los ive mix tu re .

    Ea r l i e r s tu d ie s wi th Drope l l an t f o rmula t ions had sh am that pre t r ea tmen t wi th smal lamounts of surface a ct iv e age nts caused a l a r g e i n cr e a se i.n f l u i d i t y . I n a r e li m i na r ys t u d i e s w i t h RDX and PETN, t h e de si re d amount of surfa.ce agen t w a s d i sso lved in methy la l coho l ov chloroform and th e em lo s i ve t r ea t e d wi th the so lu t io n . The so lven t w a sevaporated and the ex-plosive wa s d r i e d i n va cu o, l e a v i n g a f i l m of s u r f a c t a n t o n t h e sur-f a c e of t h e e m l o s i v e .

    Tests showed that SPAN 60 (Atlas Chemical Company) and calcium stearate, inmalFable grade:were t h e most e f f ec t i ve f lu id i z i ng agen t s t e s t ed . Using th e above p ret , rea tment t echn iaue .the max b m i nc r ease i_n f l u i d i t y o c r u r r ed when us i n g c a l ri um s t e a r a t e a t a concentrat ionof 0.5 percen t by weigh t, and the f l -u id i ty de r r eased wi th f u r t he r inc r eas e i n roncen t r a -t i on . SFmil.ar ly. th e maximum advantage of SPAN 60 a lone w a s f oun d t o b e a t 0 2 5 percen tby weight.SPAN 60 a t similar concen t r a t ions .f l u i d i t y a f t e r s ta nd in g for t h r e e h o i r s .l oaded p las t i c exp los ive systems.

    The reduct ion i n the amount of calcium st ea ra te i n th e explosive composi t ion f rom 10p e rc e nt t o 0 . 5 p e r c e n t r e s u l t e d in i n c re a s e d f l u i d i t y a nd ease o f e x t r u s i o n t og e t h e r w i t ha s i g n i f i c a n t i n c r ea s e i n d e t o n a t i on v e l o c i t y.

    c . E m l o s i v e P r o p e r t i e s - Tes t s were conducted t o de termine the e f f e c t o f so l i ds con-cen t r a t ion , confinement and d iamete r on th e exp los ive ch ara c t e r i s t i c s (de tona t ion

    ve l oc i ty and p re ssu re ) of t h e p l a s t i c exp los ive compos i tions. The camoosi t ions, d i a -meter and confinement of samples tested a r e sham i n Table 11 Detonat .on v e l o c i t ymeasurements were c a r r i e d o u t on a t l e a s t f iv e charges fo r each diameter except with3.58-inch diameter charges, where on ly three were t e s t e d . The e f f e c t s of explosive con-centrat ion and charge diameter on de tona t ion ve loc i ty a r e shown in F igs . 11 and 12. Thed a t a i n F i g. 11 show that t h e d e to n a ti o n v e l o c i t y i n c re a s es i n t h e usual f ash ion w i t h a nincrease in d i amete r. It i s of i n t e r e s t t o no te t h a t 1/16 inch copper confinement hadn o a p p ar e n t e f f e c t on d e t on a t i o n v e l o c i t i e s i n the charge diameter range from 1 . 0 i n c ht o 1,875 inch.v e l o c i t y a t a diameter of 3 . 4 inches, compared w i t h 3 i nches fo r t h e 25 Dercent PETN -75 percen t NPU formulat ion.

    The c m a t i b i l i t y of t h e individ ual ingre dient s and combinations thereofI t w a s found t ha t bo th PE7TJ arld RDX % r e

    S i m i l a r s t u d i e s

    I n t h e c a se o f t h e IVJ/PETN systems, the

    I n t h e d a s t i r / P b N 6 s ys te ms . t h e d e n s i t i e s va?;.ed

    It was adv isa ble t o fZnd methodst h e re qu ir ed amount of CS and a t t h e same ti me t o i n c r e a s e t h e f l u i d i t y of

    In some systems a s y n e r qi s t i c e f f e c t w a s observed with calcium s teara te andThe DNpA/RDX mixtctures shared a marked incr ease i n

    S imi la r resi i l ts were o b t a i n e d w i t h o t h e r h i g h l y

    The X percen t PETN - 80 percen t NPU fo rmula t ion r eaches i de a l de tona t ionThe data in Fig . 1 2 show t h a t t h e d e t o na t i on v e l o c i t y

    I\

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    5/17

    222

    i n c r e a s e s as e v e c t e d w i t h i n c r e a s e i n e m l o s i v e c o n t e nt .the approximate minimum dinmeters a t which detonation i s sus t a ined fo r the va r iouscconpositions ei th er unconfined o r confined in 1/16-inch w a l l copuer tubing.

    d. Detonation Pressure - In prel iminary emer iments the cal ibarated plate dent method

    pressu re fo r the va r ious composi t ions.w e r e determined, it w a s considered adequate for present purposes to calculate theapproximate detonation pressure from the 114 P D 2 r e l a t ionsh ip .c a l c u l a t e d i n t h i s f a s h i o n a r e shown as a func t ion of exnlos ive composition i n Fig. 13.These data show that the detonat ion pressures range f rom 25 t o anproximately 160 k i l o -bar s fo r t he compos i t ions t e s t ed .

    Prel iminary s tudi es wi t h PIJ/PbN6 systems indicated that a system containing 40 percentm/60 percent PbN6 by weight w i l l j u s t s u s t a i n d e t o na t i on . P l a t e d en t t e s t s i nd ic at e dt h a t th e detonat ion v re ss ur e would be under 1 0 ki lo bars .PbN6 com pos ition had a deto nat i on pres sure of approximately 22 k i l o b a r s as determinedb y t h e p l a t e d en t t e s t .Fig. 14.be o bta ine d wit h PU/PbN6 sys tem s.

    e .

    primary explosives t o t h e PU or pu binder systems resulted in compositions mch l e s ss e n s i t i v e t o impact.

    DISCUSSION OF RESULTS

    The formulation of explosives composed of a high-energy di sc re te phase i n a continuousmat r ix of combust ible organic mat er ia l necess ar i ly involves an excursion in to a number

    of physical and chemical problems.incorpora t ion of r e l a t i v e l y s e n s i t i v e e q l o s i v e s i n t o a p l a s t i c s u c h t h a t i n t e r - o a r t i c l ed i s t a n c e s were r e l a t i v e l y l a r g e .1 0 t o 7 percent d iscrete phase by weight w i t h corresponding mounts of poly and nitropolyurethanes, and o t he r p l a s t i c s .

    The phy sic al and chemical pr op er ti es of t h i s type of explosive imply a ve rs at i l i t y notnormally encountered with expl osi ve materi als .t i o n s are extrudable under pressure and r e a d i l y assume t h e shape of the container.They bond r eadi ly t o c lean m e t a l su r f aces .irregularly shaped volumes and polymerized i n plac e.t h e y e x h i b i t p r o pe r t ie s r e l a t e d t o t h os e of t h e p l a s t i c s i nv ol ve d.

    A n i n t e r e s t i n g e f f e c t o f average p a r t i c l e s i z e on t h e a b i l i t y o f c e r t a i n f or mu la ti on st o be i n i t i a t e d wa s observed.a t 60 w ei gh t p er ce nt , i n i t i a t i o n was not achieved a t an average pa r t ic le s i ze of onemicron, but was a c h i w e d a t a ve ra ge p a r t i c l e s i z e s r a n gi ng from f i v e t o t e n m i cr on s,u s i n g t h e same i n i t i a t i n g c h a rg e .

    A marked e f f e c t o n t h e e x t r u d a b i l i t y of t h e non-po lymerized c m o s i t i o n s was achievedby the use of surfactants a t concentra t ions of th e order of 1/10 t o one percen t. Thee f f e c t o f s u rf a c e a c t i v e materials on th e rheo log ica l char ac t e r i s t i c s o f exp los ivecompositions was pronounced and se rved t o extend t he usef'ul range of the se materials.

    The incorporation of se ns i t iv e p rimary explosives in to an inert p l as t i c matr ix in t roducesanot her fami ly of expl osiv e compositions.t o pa r t ic le through the cont inuous nhase of t he composi tion men s up o ther a r eas of low

    pressure explosive technology.

    The data in Table 111 show

    fo r dete rmining de tona t ion p res su re w a s us ed t o e s t h a t e t h e a m r o x i m t e d et on at io nIn those exoeriments where detonation velocit ies

    Detonation pressures

    A 30 percen t PU/70 percent

    A t y p i c a l w i tn es s p l a t e f r o m a d a t e dent t e s t i s s h a m i nI t thus appears t h a t de tona t ion p ressu res in t he ve ry low pressure range may

    Imp a c t S e n s i t i v it y - I m p a c t sensi t iv i t ies for the var ious exnlosives were measuredas shown in Table I I t was found th a t th e addit ion of secondary and sens it t ve

    In general , t h i s i n v es t i ga t i on was bui l t around theThe composition of t h e pl a s t i c em los ive s ranged from

    P ri or t o polymerization, the ccrmposi-

    They are canable of being introduced intoOnce the materials ar e polymerized

    When t h e concen tration of PbN6 i n polyurethane was held

    The region above th i s range has not yet been emlored.

    T he ir a b i l i t y t o i n t e r - i n i t i a t e from p a r t i c l e

    4

    /

    f

    I

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    6/17

    ACKNOWI;ED(a4WC

    This w o r k w w nerformed i indv t h e eiisnices of the Uni ted States Atomlc & e r a Commis-s i o nl a t i o n s is r a t e f i i l l y acknow ledged. The t e c h n i c a l a s s i s t a n c e of Messrs. 9. F. Va n C l e mand B . R . Weufer i n t h e f or ni ul at i on o f t h e ex p l o s iv e r m o s i t i o n s . and Mrs. J . T. Knighti n d a t a r e d u pt i o n a nd g r e a a r a t i o n o f t h e m an us cr ip t i s g r e a t l y a p p r ec i a t ed .

    Tne coon erat ion of t h e Bureau of EkpLosives j n t h e r l a s s i f i c a t i o n o f n ev formu-

    W. R . Tomlinson. J r . , P ro ne r t ie s of Exolosives of M i l i ~ ~ - y y I > t - e ~ ~ - ~ t - ,i c a t i n n yA rs ena l , Technical R e n < r ~ ~ 6 - . - ? - ? 7 ~ 0 ~ ~ ~ - n ~ - l ~ ~ - - - -

    W. R . Tomlinson . J r . , r ev i sed by 0 . E. S h e f f i e l d . grT-ez:Jes of_ E~la.s~ves--qfP ic a t i nny Arsena l , Techn ica l Renort Mo.1740. Revision No. 1

    M . A . Cook, The Science of Hi& Eml osi ves , Reinhold Publ is hing Cornornt?on,New York, l9f,-y.-377---

    -- ---- - -

    W. C . Holton, The D e t o n a t i o n & - ~ s ~ u r ~ ~G~x~~-~iv;.as MeazF-e>-&y TransmittedShocks jn Water, NAVORD R m o r t 3968. 1 De

    M . A . Cook, R . T. Keyes and W. 0 . Ursenbach, Measurements oT--Etm%tJi,--S3kand Imoact Pressures. Third Symoosium on Detonation, ONR ACR-52, Vol. 2, n. 357,ASTIA No. 242-

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    7/17

    *-R3X A c e s i r e

    5 10 15 20 25 3G 35 40 45 SCP a r t i c l e S i z e - Microns

    Fig. l . - P a r t i c l e Site Distribution of RDX and RfU(200 par t lc lu counted

    J

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    8/17

    I 225

    YLI

    4

    I

    6 5 10 1 5 20 25 30 35 40 45 50

    Fig. 4.-Part i& Si- D F S t r i b u t i a n of TlN-,P u t i c l o S h e - M ic ro n s

    200 partic1.r c e l m t d )

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    9/17

    I

    sampleb m e d

    F ig . S.--OTA - NPU

    Sample Temp.raturrF i g . 6.-DTA - I E T N

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    10/17

    '\

    I1.

    \

    227 '

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    11/17

    b

    Sample TemperatureF i g 9.-DTA - PbNb

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    12/17

    / /

    Ntn. Die. tested

    5 mu/751Iw

    \

    E1 6000

    Y

    I0 2.0 2 .o 3 o L O

    II

    I

    i m t a r - io.Fig 11.-Effect of Dfa. on t h e Dctonntion Velocity

    \

    I

    I

    10 15 20 25 30Percent PETN i n PETti/NPU F m l a t i o n s

    Fig. 1 2 . 4 f f o e t of t h e Percent T T N on the Detonat5on relocity

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    13/17

    230

    2.36 i n , Dla. unconfined

    i n , Pia Conf 1 r r t0 . 0675 In. Copper

    I

    13 1 5 20 25 30Percent PETN in PETA NPU Formulations

    Fig. 1 3 . - E f f e c t of the P e r c e n t TU on t h e Detonatior, Pressure

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    14/17

    \

    Fig. 14.-Test No. 194

    Chg. Dia.3 4

    in.Chg. Lgth. 4-3/8 in.Chg. Density 2 06 e/cc.Depth of brit .145 in.

    'Confinement 1/16 in. thick AluminumWitness Plate 5 in. X in. X 1 3/4 in.

    Approx. Detonation Pressu re - 22 Kb6061-T6 Aluminum

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    15/17

    s/

    8

    L

    4 w 0o w 0

    2 2

    - - L h N

    9 m . I

    A *0, o - - Lvr wE s ?

    ruW 0 1

    CP

    Y0 12

    o

    1

    I

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    16/17

    233

    8

    a.ik

    u

    M

    dP

    ah

    tc

    m

    9

    elel

    cd

  • 7/25/2019 07_3_NEW YORK_09-63_0218

    17/17

    TULE 111

    APPROXIMATECRITICAL DULMETERS CF SEVERALNPU-PETN FCRYULATIONS

    15/85

    15/35I

    , 20 mI

    I 20/8025/75

    25/75

    CRITICALCOWIIE?B%NT : DI. UETER

    CONFINED'

    NONE

    CCNFIMED

    NO?E

    COW'IVED*

    MCFE

    CONFINED'

    NONE

    i n.)

    1 . m

    Greater than 2.96

    0.5

    Greater than 1 0

    0.25

    Leas than 0.25

    Less than 1 0

    * All confined charges were confined in1/16 in . wall copper tubing.