07 AE Diode - DidatticaWEB

32
Analogue Electronics Paolo Colantonio A.A. 2015-16 Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica

Transcript of 07 AE Diode - DidatticaWEB

Page 1: 07 AE Diode - DidatticaWEB

Analogue ElectronicsPaolo Colantonio

A.A. 2015-16

Università degli Studi di Roma Tor VergataDipartimento di Ingegneria Elettronica

Page 2: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 2|32A.A. 2015/16

Introduction: materials

Conductors• e.g. copper or aluminum• have a cloud of free electrons (at all temperatures above absolute zero). If an 

electric field is applied electrons will flow causing an electric current

Insulators• e.g. polythene• electrons are tightly bound to atoms, so, only a few can break free to conduct 

electricity

Semiconductors• e.g. silicon or germanium• at very low temperatures these have the properties of insulators• as the material warms up some electrons break free and can move about, and it 

takes on the properties of a conductor – albeit a poor one• however, semiconductors have several properties that make them distinct from 

conductors and insulators

Page 3: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 3|32A.A. 2015/16

Pure semiconductors• The Silicon is one of the most adopted semiconductor to realize electronic devices, 

both discrete or integrated• It is constituted by a tetrahedral cell, with an atom in each vertexes, linked to the 

other by covalent bounds between the 4 electrons of each atom• At 0 Kelvin, each electron is linked to its atom and the conductivity is null• Increasing material temperature, thermal vibration results in some bonds being 

broken, generating free electrons which move about• These leave behind holes (positive charge carries) which accept electrons (negative 

charge carriers) from adjacent atoms and therefore, also move about• At room temperatures there are few charge carriers, thus pure semiconductors are 

poor conductors (this is intrinsic conduction)

The atomic structure of

silicon

Temperature 

Page 4: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 4|32A.A. 2015/16

Doping of semiconductors

• The addition of small amounts of impurities drastically affects the properties of a semiconductor.

• This process is known as doping.

• Adding Phosphorus P (e.g. pentavalent material) into the crystal lattice of Silicon Si (e.g. tetravalent material), four of P’s valence electrons are tightly bound by the covalent bonding.

• The fifth electron is only weakly bound and is therefore almost free to move within the lattice and contribute to an electric current.

Page 5: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 5|32A.A. 2015/16

Doping of semiconductors• When  the added materials form an excess of electrons, they are called donor 

impurities and produce a n‐type semiconductor• When the added materials form an excess of holes, they are called acceptor 

impurities and produce a p‐type semiconductor • Both n‐type and p‐type materials have much greater conductivity than pure 

semiconductors: extrinsic conduction• The dominant charge carriers in a doped semiconductor (e.g. electrons in n‐type 

material) are called majority charge carriers. The other type are minority charge carriers

• The overall doped material is electrically neutral

Page 6: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 6|32A.A. 2015/16

Device technology

• Excepting bulk devices, which exploit basic properties of semiconductors, the large amount of electronic devices are based on the junction of different semiconductor materials with different doping profile, i.e. with different concentration of impurity (e.g., p‐n junction), or by metal and semiconductors (e.g. Schottky junction).

• The modern electronic technology employ a variety of semiconductor• Pure

• e.g. constituted by a single atomic specie, • Composed

• e.g. constituted by different atomic elements like Gallium Arsenide (GaAs), Indium Phosphorus (InP), Gallium Nitride (GaN), Silicon Carbide (SiC), Silicon‐Germanium (SiGe).

Page 7: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 7|32A.A. 2015/16

pn junctions

• When p‐type and n‐type materials are joined, this forms a pn junction

• The majority charge carriers on each side diffuse across the junction where they combine with (and remove) the charge carriers of the opposite polarity

• Hence, around the junction there are few free charge carriers and we have a depletion layer (also called a space‐charge layer)

• The diffusion of positive charge in one direction and negative charge in the other produces a charge imbalance, resulting in a potential barrier across the junction

Page 8: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 8|32A.A. 2015/16

Potential barrier• The barrier opposes the flow of majority charge carriers and only a small number 

have enough energy to surmount it• This generates a small diffusion current

• The barrier encourages the flow of minority carriers and any that come close to it will be swept over

• This generates a small drift current

• For an isolated junction these two currents must balance each other and the net current is zero

Page 9: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 9|32A.A. 2015/16

Forward and Reverse bias

Forward bias• If the p‐type side is made positive with respect to the n‐type

side the height of the barrier is reduced, thus more majoritycharge carriers have sufficient energy to surmount it

• the diffusion current therefore increases while the driftcurrent remains the same

• there is thus a net current flow across the junction whichincreases with the applied voltage

Reverse bias• if the p‐type side is made negative with respect to the n‐type

side the height of the barrier is increased, thus the number ofmajority charge carriers that have sufficient energy tosurmount it rapidly decreases

• the diffusion current therefore vanishes while the driftcurrent remains the same

• thus the only current is a small leakage current caused by the(approximately constant) drift current

• the leakage current is usually negligible (a few nA)

Page 10: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 10|32A.A. 2015/16

Forward and reverse currents

• The current flowing through a pn junction can be approximately related to theapplied voltage by the expression

• I is the current through the junction• IS is a constant called the reverse saturation current• q is the electronic charge• V is the applied voltage• k is Boltzmann’s constant,• T is the absolute temperature• is a constant in the range 1 to 2 determined by the junction material (e.g.

approximately 1 for Ge and 1.3 for Si). For most purposes we can assume =1

Page 11: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 11|32A.A. 2015/16

Diode IV characteristic

• At room temperature (T=300K) VT26mV

Forwardbias

Reversebias

Page 12: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 12|32A.A. 2015/16

Diodes

• A pn junction is not an ideal diode, but itdoes have a characteristic thatapproximates to such a device(semiconductor diode)

• An ideal diode passes electricity in one direction but not in the other

Page 13: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 13|32A.A. 2015/16

Silicon Diodes• Generally have a turn‐on voltage of about 0.5 V• Generally have a conduction voltage of about 0.7 V• Have a breakdown voltage that depends on their construction

• perhaps 75 V for a small‐signal diode• perhaps 400 V for a power device

• have amaximum current that depends on their construction• perhaps 100 mA for a small‐signal diode• perhaps many amps for a power device

AK

Page 14: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 14|32A.A. 2015/16

Application of diodes

• One application of diodes is in rectification

Example: half-wave rectifier

• In practice, no real diode has ideal characteristics but semiconductor pn junctionsmake good diodes

Page 15: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 15|32A.A. 2015/16

Diode equivalent circuits

• Sometimes we represent a diode by an equivalent circuit.• Models have different levels of sophistication

Page 16: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 16|32A.A. 2015/16

Diode equivalent circuits

• Sometimes we represent a diode by an equivalent circuit.• Models have different levels of sophistication

Page 17: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 17|32A.A. 2015/16

Diode equivalent circuits

Page 18: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 18|32A.A. 2015/16

Diode equivalent circuits

Page 19: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 19|32A.A. 2015/16

Diode equivalent circuits

Page 20: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 20|32A.A. 2015/16

Diode equivalent circuits

Page 21: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 21|32A.A. 2015/16

Diode characteristicsConduction Voltage• In a real diode I‐V characteristic it can be noted the

existence of a voltage VON, below of which the currentis negligible (less 1% of diode maximum current).

Logarithmic scale behavior• Increasing the forward voltage V, the voltage drop

across the semiconductor becomes significant andthe device behaves like a resistor

Saturation current• For negative voltage (reverse bias) the current is IS

(generally negligible)

• VON 0.2V for Ge• VON 0.7V for Si

• mA for Si• nA for Ge

Page 22: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 22|32A.A. 2015/16

Diode characteristics

Effects of temperature• There is an intrinsic relationship with the operating

temperature T

• For a given current I, the voltage V is inversely proportional to T

• For a silicon diode (similar for germanium), V decreases by about 2 mV per °C

• The diode current is also affected by the reverse saturation current, which

increases with temperature

• IS increases by about 7% per °C IS twined for T=10°C

Page 23: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 23|32A.A. 2015/16

Diode capacitive behavior

• A reversed‐biased diode has two conducting regions separated by an insulatingdepletion region

• This structure resembles a capacitor• Variations in the reverse‐bias voltage change the width of the depletion layer and

hence the capacitance, namely Transient Capacitance CT

• A forward‐biased diode shows a capacitive behavior due to the injection of minoritycharges across the junction

• The resulting Diffusion Capacitance CD is greater than CT

Page 24: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 24|32A.A. 2015/16

Diode transient behaviour

• When a varying signal is applied to a diode,the electrical response of diode shows atransient behavior.

• Considering the following situation

Page 25: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 25|32A.A. 2015/16

Reverse breakdown

• If a large reverse voltage is applied across a pn junction, a breakdown phenomenoncan be observed, that can be caused by two mechanisms

Zener breakdown• In devices with heavily doped p‐ and n‐type regions the transition from one to the

other is very abrupt and the depletion region is few nanometers thick• This produces a very high field strength across the junction that can pull electrons

from their covalent bonds, resulting in a large reverse current• The current produced by Zener breakdown must be limited by external circuitry to

prevent damage to the diode• The breakdown voltage is largely constant and the Zener breakdown normally occurs

below 5V• The breakdown voltage decreases very slightly with increasing temperature (the

energy required to break the covalent bonds is reduced being increased the energyacquired by each electrons)

Page 26: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 26|32A.A. 2015/16

Reverse breakdown

Avalanche breakdown• Occurs in diodes with more lightly doped materials, where the field strength across

junction is insufficient to pull electrons from their atoms, but is sufficient toaccelerate the electrons within the depletion layer

• The electrons loose energy by colliding with atoms• If they have sufficient energy they can liberate other electrons, leading to an

avalanche effect• Usually occurs at voltages above 5V• The voltage at which avalanche breakdown occurs increase with junction

temperature (the increased temperature increase the thermal vibration, thusincreasing the collision before the electrons reach the sufficient velocity to break thecovalent bonds)

Page 27: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 27|32A.A. 2015/16

Special‐purpose diodesVaractor• A reversed‐biased diode has two conducting regions separated by an insulating

depletion region• This structure resembles a capacitor• Variations in the reverse‐bias voltage change the width of the depletion layer and

hence the capacitance• This produces a voltage‐dependent capacitor• The Varactor are diodes constructed to emphasize such capacitive behavior• They are used in applications such as automatic tuning circuits

R r

R s

CT

Rr= reverse bias resistanceRs= semiconductor bulk resistanceCT= reverse bias capacitance

Symbol

Equivalent circuit

Page 28: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 28|32A.A. 2015/16

Special‐purpose diodes

Zener• Uses the relatively constant reverse breakdown voltage to produce a voltage

reference• Breakdown voltage is called the Zener voltage, VZ

Symbol

Page 29: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 29|32A.A. 2015/16

Special‐purpose diodes

Zener• It is used as a voltage stabilizer, since the voltage across the Zener is practically fixed

to VZ value

Page 30: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 30|32A.A. 2015/16

Special‐purpose diodesLED• The Light‐Emitting‐Diode (LED) is a semiconductor diode constructed

in such a way that in the pn junction, when it is forward biased, thecharges injected in the region where they are minoritary (holes inregion n‐type and electrons in region p‐type) will recombine emittinglight.

• Such phenomenon happens in the depletion layer region• A range of semiconductor material can be used to produce infrared

or visible light of various colors• Typical devices use materials such as gallium arsenide (GaAs), gallium

phosphide (GaP) or gallium arsenide phosphide (GaAsP)

SymbolImpossibile trovare nel file la parte immagine con ID relazione rId4.

MaterialLight

length(nm)

Color

GaAs 910 Infrared

GaP 560 Green

GaAsP 650 Red

Page 31: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 31|32A.A. 2015/16

Special‐purpose diodesPhotodiode• They are devices able to transform light in electrical current• Without light the photodiode behaves like a normal diode, with

an I‐V characteristic crossing the origin axes• By lighting the pn junction reverse biased, with a proper incident

radiating length (i.e. the energy of the incident photon shall belarger than the energy gap), there is an increase of reversecurrent due to the increase of free charges

• The efficiency of the illumination is a function of the light spotdistance from the pn junction

Symbol

Page 32: 07 AE Diode - DidatticaWEB

P. Colantonio – Analogue Electronics 32|32A.A. 2015/16

Solar cells• If the pn junction of a photodiode is used in the fourth quadrant, being IV negative then

electrical energy is produced

With Siliconsilicon

Iph short circuit current proportional to the illumination intensity

Vph photovoltaic potential