06 Organic Photovoltaics RD India v Kumar

download 06 Organic Photovoltaics RD India v Kumar

of 101

Transcript of 06 Organic Photovoltaics RD India v Kumar

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    1/101

    Photovoltaics Research inIndia

    Vikram Kumar

    Ph sics / CARE / NRFIndian Institute of Technology Delhi

    [email protected]

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    2/101

    Photovoltaic Devices

    Direct conversion of Sunlight into Electricity

    Conventional Silicon Solar cells Limitations

    Hi h Cost

    Commercial Efficiency ~ 16 %

    ~

    Large Area Limitation

    Less Flexibility

    Thin Film Solar Cells

    a Si , CdTe, CIGS and thin film crystalline Si

    Commercial Efficiency ~ 10 % Efficiency at Laboratory scale ~ 16 %

    Search for cost Organic Solar cells

    effectivealternatives

    Nanocomposite/organic Solar

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    3/101

    Why Organic Photovoltaics

    Solar energy demand has grown ata rate of ~30% p.a. over the last

    9Production facilities are >10xcheaper than those for anytraditional PV technolo

    The global market for PVinstallations estimated at 18 b

    9 Low unit costs enable use

    even for shorter lifecycles

    Currently the market is heavilydependent on government

    9 New form factors(semitransparent foil) allow

    subsd es

    Lifetime

    3flexibility, weight, large area, low cost, tailored properties

    os sc ency

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    4/101

    Current in Organic Semiconductors

    Need to understand OS is sandwiched between

    contacts with different work

    Carrier Generation

    Trans ort

    functions (eg. Al and ITO) giving

    rise to an electric field

    RecombinationCurrent holes electrons

    PPV forms ohmic contact with

    ITO, Au for holes.

    Ca, Al for electrons

    Electron onl and hole onldevices depending on theinjecting contact

    4

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    5/101

    Or anic solar cells

    Small molecules(vacuum evaporation)

    (spin process)

    Conjugated Polymers

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    6/101

    in India

    ~, .

    Jawaharlal Nehru Center for Advanced Scientific

    Research Ban alore ~2.0%

    Indian Institute of Technology, Kanpur (~1.8%)

    Indian Institute of Technology, Delhi

    , ,

    Jawaharlal Nehru University, Delhi

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    7/101

    Hole Acceptors

    PPV, MEH-PPV, MDMO-PPV, P3HT, etc

    Electron Acceptors (high electron affinities)

    - , , , , - -

    butyric acid methyl ester (PCBM), perylenes

    s mos w e y use

    n

    O

    O

    O

    O

    n

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    8/101

    OPV Working principle

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    9/101

    Earl work with bila er cells

    Initially two layer solar cells were made

    C. W. Tang , APL 48,183, 1986

    CuPC/Perylrene dye cell with

    N. S. Sariciftci et al., APL 62, 585 (1993)

    ~1%

    Interface between the organic

    la ers is crucial rather than the

    Rectification ratio in the dark 104

    Short circuit current linear up to 1W/cm2

    electrode/organic contact

    10-1 %

    9

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    10/101

    Distributed Hetero unction Mix electron acceptor and hole acceptor materials together

    Distribute active interfaces throu hout the bulk

    All excitons are within a diffusion range of an interface

    Exciton dissociation at the PPV/C60 interface Electrons transferred to one component, holes to the other

    Charges travel to respective electrodes

    10-3

    -

    illuminated

    nt

    (A/cm

    2)

    10-7

    Curr

    10-9

    10-1

    dark

    090202 10

    - -Bias (V)

    G. Yu and A. J. Heeger: J. Appl. Phys. 78, 4510-5 (1995)

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    11/101

    -1)-1

    )

    ien

    t(c GaAs

    (Inorganic)ient(c CuPC

    (organic)

    Coeffi

    nCoeffi

    Narrow Band

    sorptio

    sorptio

    Narrow Band

    Ab

    Energy (eV)Energy (eV)

    Energy (eV)

    A

    + Can use multiple layers

    (tandem solar cells)

    Absorbs all photons in solar spectrum

    with energy above bandgap energy

    The absorption coefficient values are usually higher in organic solar

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    12/101

    h

    LUMO level

    HOMO level

    ec ron exc e

    to higher energy level

    Absorbed photon creates an exciton

    Excitons do NOT always form free electrons and

    holes This is especially true in organic semiconductors

    ,

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    13/101

    Photovoltaic Process In Organic Solar

    Cells

    Coupling Absorption Creation Separation Collectionhtof sunlight

    into

    solar cell

    of

    incident

    photons

    of

    free

    charges

    of charges

    by built-in

    E field

    of charges

    at

    electrodes

    of

    excitonsSunlig

    g

    Reflected

    Away

    o ons

    Not

    Absorbed

    Charges

    Recombine

    'Charges

    Recombine

    'Excitons

    Recombine

    '' ' ' 'Efficiency of this step is ~100%for inorganic solar cells

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    14/101

    -

    bi

    Ef bi

    n-typep-type Ebuilt-in

    u - n

    rgan c a er aInorganic semiconductord

    No charge of its own

    Built-in potential depends on electrode work function difference

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    15/101

    OSC is typically different from inorganic solar cells in the following ways:

    Absor tion in a narrower s ectral band

    Usuall hi h absor tion coefficient

    Exciton bindin ener hi her

    Poor charge mobility

    Built-in potential dependent on electrodes

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    16/101

    bi-layer and bulk-heterojunction

    (blend) organic solar cells

    090202 16

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    17/101

    Optical Absorption in PPV-PCBM

    Blends

    decreasing from 1-6

    Total absor tion is decreasin

    PCBM

    with the increase in the PCBM

    concentration

    Still best performance at 80%.

    PPV

    Jain et al, Syn Met, 148, 245 (2005)

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    18/101

    Bulk heterojunction polymer solar Cells

    ITO/PEDOT:PSS/P3HT:PCBM (1:1)/A

    0.005

    0.010

    0.005

    0.010

    Dark

    )

    0.0000.000

    nsity(A/cm

    um na e

    -

    -0.005

    -

    -0.005

    Current

    de

    -1.0 -0.5 0.0 0.5 1.0

    -0.015

    .

    -0.015

    .

    S.No. Voc(V) Jsc(mA/cm2

    )

    FF(%) (%)

    Voltage (V)

    090202 18

    1. 0.60 8.01 33.2 1.99

    Device active area = 11.2 mm2

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    19/101

    Small molecular PV Cells

    0.12

    ITO/ZnPc:C60/BPhen/Al

    0.35

    0.40

    ZnPc

    0.08

    0.10

    (A/cm

    2) Illuminated

    ar

    0.25

    0.30

    .

    nce

    (a.u.)

    C60

    0.04

    .

    entdensity

    ZnPc

    0.10

    0.15

    0.20

    Absorb

    -0.02

    0.00

    .

    C

    ur

    0.05

    300 400 500 600 700 800

    2

    -2 -1 0 1 2

    Voltage (V)

    . . oc sc 1. 0.50 6.51 51.5 2.09

    19

    Device active area = 9.1 mm2

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    20/101

    Dual donors for broad s ectral covera e

    ITO/CuPc(20-x nm)/Sub-Pc(x nm)/C60(40 nm)/BPhen(8 nm)/Al

    (nm)oc sc

    (mA/cm2)

    0 0.42 2.68 45.3 0.64

    . . . .

    2 0.42 5.16 47.8 1.29

    3 0.43 2.61 40.0 0.56

    . . . .

    20 0.60 3.13 25.2 0.59

    Device exhibited maximum efficiency ~ 1.3 % forx = 2 nm

    20

    Kumar et al. J. Phys. D: Appl. Phys. 42, 15103 (2009)

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    21/101

    Bulk heterojunction polymer solar Cells

    ITO/PEDOT:PSS/P3HT:PCBM (1:1)/Al

    0.005

    0.010

    0.005

    0.010

    Dark

    )

    0.0000.000

    nsity(A/cm

    um na e

    -

    -0.005

    -

    -0.005

    Current

    de

    -1.0 -0.5 0.0 0.5 1.0

    -0.015

    .

    -0.015

    .

    S.No. Voc(V) Jsc(mA/cm2

    )

    FF(%) (%)

    Voltage (V)

    21

    1. 0.60 8.01 33.2 1.99

    Device active area = 11.2 mm2

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    22/101

    Effect of illumination and temperature on Voc

    0.015

    Dark

    Bilayer device ITO/CuPc/C60/BPhen/Al

    0.005

    0.010

    sity(A/cm

    2) .

    OD 0.6

    OD 0.4

    OD 0.2

    OD 0.1

    0.000

    CurremtDe OD 0.0

    0.015

    2) 295 K

    295 K

    -0.005

    0.005

    .

    nsity(A

    /c

    254 K233 K

    213 K

    -1.0 -0.5 0.0 0.5 1.0- .

    Voltage (V) 0.000

    C

    urrentd

    -0.005

    Initial illumination intensity - 80 mW/cm2

    -1.0 -0.5 0.0 0.5 1.0

    - .

    Voltage (V)

    ur mo e exp a ns ese

    observations as well

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    23/101

    Spectral response characterisation

    Spectral ellipsometry

    Physics and circuit model of organic solar cells

    Choice of material

    tructure en , ayer, tan em

    Process optimisation

    Reliability and stability

    Choice of material

    Mechanism of degradation

    Enca sulation techni ues New & emerging technology issues

    Novel methods of fabrication

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    24/101

    Suman Banerjee

    Suman Banerjee

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    25/101

    Calcium-Aluminium Cathode

    P3HT:PCBM BlendPEDOT:PSS

    PEDOT:PSS - 30 nm;

    Glass

    P3HT:PCBM (1:1) - 90 nm;

    Ca - 6 nm; Al - 70 nm.

    Characterstics of a typical Organic (Polymer) Solar CellArun Tej Mallajosyula

    A i b B i

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    26/101

    Anirban Bagui

    P3HT: PCBM Blend Aluminium Cathodee eros ruc ure

    PEDOT:PSS

    ITOGlass

    Vinod Pagare 2007

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    27/101

    -

    improves device efficiencyAnirban Bagui Indian Patent being filed

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    28/101

    Modifying Interface by

    Annealing

    As deposited CuPc Annealed CuPcSmoother

    Specially Annealed CuPcSmoother with pillars

    C60

    Al

    ITO

    CuPc

    between CuPc and C60Area

    Glass

    Anukul Prasad Parhi Indian Patent being filed

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    29/101

    0.9

    1.2P3HT:PCBM:SWNT (0.75 %)

    P3HT:PCBM

    24FF

    570

    Voc5.0

    Jsc

    0.0 0.1 0.2 0.3 0.4 0.50.0

    0.3

    .

    Acm-2) Voltage (V)

    21

    5604.0

    4.5Jsc

    Voc

    FF(%)

    (mV)(mA cm

    -2)

    -0.6-0.3 =2.99 %

    =2.01 %JL(

    AM 1.5 G

    5553.5

    -1.2

    - .Intensity =6 mW cm-2

    0.0 0.2 0.4 0.6 0.8 1.0

    SWNT wt%

    5503.0

    Incorporation of single walled nanotubes can improve solar cell performance

    Main role of nanotube is in charge transport within the solar cell

    Aurn Tej Mallajosyula

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    30/101

    Degradation under Electrical & Optical Stress

    Statistically arrive at parameters that matter most

    Identify the physics of degradation

    Munish Jassi 2006

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    31/101

    Tandem small molecular solar cell with

    m xe e ero unc ons

    Cell B Efficiency 5.70.3 % 100 mW/cm

    J. Xue, Appl. Phys. Lett. 85, 5757 (2004).

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    32/101

    Polymer Tandem bulk heterojunction solar cell

    Tandem cell Efficiency ~ 6. 5 %.

    Kim J Y et al. Science 317, 222 (2007).

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    33/101

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    34/101

    Hybrid Organic-Inorganic Solar Cells

    Polymer: Inorganic Nanocomposites based Solar cells

    Cost Effective

    Efficient Electron Transport

    Strong Optical Absorptionc en exc on ssoc a on

    Prepared by Inexpensive Wet Chemical Synthesis

    size of the nanoparticles- quantum size effect

    Nanoparticlepolymer cells generally have a photoactive

    layer consisting of interconnected semiconductingnanoparticles in a solid semiconducting polymer phase i.e.

    interpenetrating phases of semiconducting polymers and

    nanopar c es

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    35/101

    General rinci les

    Con u ated Po ersP3HT, MEH-PPV

    Semiconducting Nanoparticles/Quantum dotsCdSe, PbSe, CdTe, CdSexTe1-x, CdS, PbS, ZnO, TiO2

    Quantum dots have large surface energies highly unstable high

    35

    tendency to agglomerate nonhomogeneous dispersion in polymer

    matrices hinders charge transport limits efficiency

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    36/101

    CdSe E bulk = 1.7 eV

    CdTe ( Eg bulk = 1.49 eV)

    PbSe ( Eg bulk = 0.26 eV)

    PbS ( Eg bulk = 0.37 eV)

    Energy-level positions of MEH-PPV, P3HT, and Semiconductor Nanocrystals (NCs)of different sizes

    Unlike PCBM and TiO2, CdSe nanoparticles absorb solar

    spectrum edge

    ev ces compose o po ymer an s s ow:

    good diode characteristics

    sizable photovoltaic response in spectral range from

    nm

    090202 36

    the ultraviolet to the infrared

    X. Jiang et al., J. Mater. Res., Vol. 22, No. 8, 2007

    nm

    P l CdS N it S l C ll

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    37/101

    Polymer:CdSe Nanocomposites Solar Cells

    . . .,

    with lengths 30 nm

    Enhanced EQE and power conversion

    efficiencies could be realized with the use of

    The use of nanorods and tetra ods of CdSe

    high aspect ratio CdSe nanorods which provide adirect path for e transport

    with P3HT and MEH-PPV, show power

    conversion efficiencies of 1.8%

    090202 37

    e curren -vo age c arac er s cs o nm y nm nanoro ev ce

    exhibit rectification ratios of 105 in the dark and short circuit current of0.019 mA/cm2 under illumination of 0.084 mW/cm2 at 515 nm

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    38/101

    Experiment Details for the Synthesis

    of CdSe NanoparticlesThe organometallic precursor route involves a coordinating

    solvent TOPO Trioctylphosphine Oxide which is hazardous,

    unstable, expensive and environmentally unfriendly

    Much chea er and safer non-TOP-based route for lar e-scale synthesis of CdSe QDs was proposed by Deng et

    al.(2005)

    Procedure:

    0.0514 of CdO 0.1116 of TDPA and

    Chemicals used:

    CdO - Cadmium Oxide

    -

    1.8884 g of TOPO were loaded into a 100

    mL flask. The mixture was heated to 300-

    TOP - Trioctylphosphine

    TDPA - Tetradecylphosphonic Acid

    - un er r ow, an was

    dissolved in TDPA and TOPO. Solution

    was cooled to 270 C; selenium stock

    Capping agents used: Trioctylphosphine Oxide (TOPO) Oleic Acid OA

    090202 38

    solution 1M (0.0205 g of selenium powder

    dissolved in 1.2 ml of TOP) was injected.

    Cadmium toSelenium ratio:

    1:1; 2:1; 3:1

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    39/101

    Colloidal Particles Engineer reactions to precipitate quantum dots from

    solutions or a host material (e.g. polymer)

    In some cases, need to cap the surface so the dot

    remains chemically stable (i.e. bond other molecules onthe surface)

    Can form core-shell structures

    Typically group II-VI materials (e.g. CdS, CdSe)

    Size variations ( size dispersion)

    CdSe core with ZnSshell QDs

    Blue: smaller dots!

    Synthesis approach:

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    40/101

    Synthesis approach:

    12 nm (CdO : Se ~ 0.5:1)

    7 nm (CdO : Se ~ 1:1)TOP-Se/Ar gasCdO +

    9 nm (CdO : Se ~ 3:1)

    ~

    > 300o C

    TOPO/OA- capped CdSe

    TOPO/OA +

    TDPA

    Size regulating factor Cd

    optimized conditionto Se precursor ratio

    Preparation of Polymer:CdSe Nanocomposites

    Pyridine solvent:

    - Uncapped CdSe particlesToluene solvent:

    - appe e par c es

    090202 40

    Figure shows the Capped and Uncapped CdSe nanoparticles dispersed in

    Polymer matrix

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    41/101

    Synthesis of CdSe Quantum Dots

    Conclusions

    9We have successfully synthesized high quality CdSe

    quantum dots

    o Nearly-monodispersed

    o Highly Crystalline

    9 Cd:Se = 2:1 is the optimized condition as for both the capping casessmallest particles were achieved

    e :

    CdSe(TOPO) 2:1

    ~ 7 nm

    ~ 5 nm

    9 CdSe(OA) 2:1 particles show better properties compared to CdSe(TOPO) 2:1

    - Steric stability

    - Photoluminescence

    090202 41

    - Photostability

    Eff t f CdS t d t h l t t

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    42/101

    Effect of CdSe quantum dots on hole transport

    n po y - exy t op ene t n ms

    ITOPEDOT:PSS

    P3HT

    Au

    Glass substrate

    20 nm20 nm

    P3HT:CdSe

    Au

    Glass substrate

    ITO:

    TEM image of CdSe quantum

    dots (size ~ 5 nm) dispersed

    in P3HT matrix in 1:1 weightDevice 2ratio

    The incorporation of CdSe quantum dots in P3HT results in enhancement in

    090202 42

    , .,

    trap and mobility models to only trap modelKusum et al, Appl. Phys. Lett., 92, 263504 (2008)

    D st ti f S l C ll

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    43/101

    Demonstration of Solar Cell.....

    P3HT: PCBM ITO/ PEDOT:PSS/ P3HT:PCBM/ LiF/ Al

    P3HT: CdSe: PCBM ITO/ PEDOT:PSS/ P3HT:CdSe:PCBM/ LiF/ Al

    Jsc = 6.32 x 10-3A/cm2

    Voc = 0.44 V

    Jsc = 8.88 x 10-3A/cm2

    Voc = 0.48 V0.0

    5.0x10-3

    J(A/cm

    2)

    FF = 0.435 FF = 0.36

    -0.25 0.00 0.25 0.50 0.75

    -5.0x10-3

    V (Volts)

    = 1.23 % = 1.91 %

    -1.0x10-2

    P3HT: PCBM

    P3HT: CdSe: PCBM

    -1.5x10-2

    090202 439 Reduction of barrier at active layer- acceptor interface

    Demonstration of Solar Cell

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    44/101

    Demonstration of Solar Cell.....

    MEH-PPV:PCBM ITO/ PEDOT:PSS/ MEHPPV:PCBM/ LiF/ Al

    -PPV:CdSe:PCBM

    ITO/ PEDOT:PSS/ MEHPPV:CdSe:PCBM/ LiF/ Al

    -2

    Jsc = 2.88 x 10-3A/cm2

    Voc = 0.37 V

    Jsc = 7.37 x 10-3A/cm2

    Voc = 0.41 V5.00x10-37.50x10

    -3

    .MEH-PPV: PCBMMEH-PPV: CdSe: PCBM

    /cm

    2)

    FF = 0.46

    =

    FF = 0.40

    =-0.25 0.00 0.25 0.50

    -2.50x10-3

    0.00

    2.50x10-3

    J

    (A

    . .

    -7.50x10-3

    -5.00x10-3

    B

    A

    -1.00x10-2

    CdSe QDs have a range of electron affinities reported from 3.5-4.5 eV help

    090202 44

    PCBM provides additional conducting path allowing significantenhancement of electron transport at even low doping levels

    P l

    Nanoparticles Voc

    (V)

    Jsc

    ( A/ 2)

    EQE PCE

    (%) R f

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    45/101

    Polymer (V) (mA/cm2) (%) References

    OC1C10-PPV CdSe tetrapods 0.75 9.1 0.52 2.8 B. Sun et al., J Appl Phys

    97 (2005) 014914

    P3HT CdSe nanorods 0.62 8.79 0.70 2.6 B. Sun et al., Phys Chem Chem Phys 8(2006) 3557

    APFO-3 CdSe nanorods 0.95 7.23 0.44 2.4 P. Wang et al., Nano Lett 6 (2006) 1789

    . . . . .,

    7 (2007) 40914

    P3HT CdSe nanorods 0.70 6.07 0.56 1.7 W. U. Huynh et al., Science 295 (2002)24257

    MDMO-PPV ZnO 0.81 2.40 0.39 1.6 WJE Beek et al., Adv Mater 16 (2004)

    100913MEH-PPV CdSe tetrapods 0.69 2.86 0.46 1.13 Zhou Y, Nanotechnology

    17 (2006) 40417

    MDMO-PPV ZnO 1.14 2.30 0.26 1.1 WJE Beek et al., Adv Funct Mater 15(2005) 17037

    MEH-PPV CdSexTe1x 0.69 1.57 0.49 Yi Zhou et. al., Nanotechnology 17

    0.78 0.22

    MEH-PPV CdTe

    nanocrystals

    0.77 0.19 0.42 T. Shiga et al., Solar Energy Materials& Solar Cells 90 (2006) 18491858

    090202 45

    . . . . . .,

    D: Appl Phys 38 (2005) 200612

    P3HT PbSe 0.35 1.08 0.14 D Cui et al., Appl Phys Lett88 (2006) 183111

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    46/101

    The Potential of

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    47/101

    The Potential of

    www.konarka.com

    Konarkas solar bags

    A potential cottage industry

    www.crunchwear.com/solar-powered-fashion-accessories/

    Production is distributed

    www.scienceknowledge.org

    S mmar and Concl sions

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    48/101

    Summar and Conclusions

    We have reviewed the status ofnove so ar ce s

    Nanoparticles are used in

    improve the solar energy

    New materials are the key toro ress to im rove absor tion

    for longer wavelenghts

    There are several groupswor ng on ese aspec s nIndia.

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    49/101

    I thank numerous persons who have

    contributed to this resentation

    First generation PV

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    50/101

    First generation PV

    Second Gen PV

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    51/101

    Second Gen PV

    3rd Gen PV

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    52/101

    3 Gen PV

    4th Gen

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    53/101

    4 Gen

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    54/101

    -1)-1

    )

    ie

    nt(c GaAs

    (Inorganic)ient(c CuPC

    (organic)

    Coeffi

    nCoeffi

    Narrow Band

    sorpt

    io

    sorp

    tio Narrow Band

    Ab

    Energy (eV)Energy (eV)

    Energy (eV)

    A

    + Can use multiple layers

    (tandem solar cells)

    Absorbs all photons in solar spectrum

    with energy above bandgap energy

    The absorption coefficient values are usually higher in organic solar

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    55/101

    hLUMO level

    HOMO level

    ec ron exc e

    to higher energy level

    Absorbed photon creates an exciton

    Excitons do NOT always form free electrons and

    holes This is especially true in organic semiconductors

    ,

    Photovoltaic Process In Organic Solar

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    56/101

    Photovoltaic Process In Organic Solar

    Cells

    Coupling Absorption Creation Separation Collectionht

    of sunlight

    into

    solar cell

    of

    incident

    photons

    of

    free

    charges

    of charges

    by built-in

    E field

    of charges

    at

    electrodes

    of

    excitonsSunlig

    g

    Reflected

    Away

    o ons

    Not

    Absorbed

    Charges

    Recombine

    'Charges

    Recombine

    'Excitons

    Recombine

    '' ' ' 'Efficiency of this step is ~100%

    for inorganic solar cells

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    57/101

    -bi

    Ef bin-typep-type

    Ebuilt-in

    u - n

    rgan c a er aInorganic semiconductord

    No charge of its own

    Built-in potential depends on electrode work function difference

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    58/101

    OSC is typically different from inorganic solar cells in the following ways:

    Absor tion in a narrower s ectral band

    Usuall hi h absor tion coefficient

    Exciton bindin ener hi her

    Poor charge mobility

    Built-in potential dependent on electrodes

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    59/101

    At IIT Kanpur

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    60/101

    http://www.iitk.ac.in/scdt/

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    61/101

    Dr. Deepak Gupta

    Dr. Y.N.Mohapatra

    Dr. Dr. B.Mazhari

    Engineers

    Dr. J. Narain .

    Dr. Satyendra Kumar

    Dr. S.S.K.Iyer

    Dr. Ashish Garg

    Dr. Vandana Singh

    Dr. Ashish Gupta

    .

    Visiting ResearchEngineers

    Dr. Unni Narain

    Dr. Asha Awasthi

    Mr. I. V. Kameshwar Rao

    Support Staff

    Mr. Dharmendra Swain

    Mr. Arvind Kumar Students r. an r ng Mr. Boby C. Villari

    Mr. Pankaj Uttwani

    Dr. Ganesan Palaniswami

    Mr. Ramnath Yadav

    Mr. Dinesh Kumar

    Mr. Ajay Naik

    Ms. Mamata Rai

    Ph.D : 19

    M.Tech : 22

    Ms. Shewta Maurya. . .

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    62/101

    Dis la

    Metal Lines

    COF

    Images Captures on the displayDisplay Module,

    made at SCDT

    , ,

    Passive Matrix, consisting of the

    OLED Display, COF and Driver.

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    63/101

    Pushing the Envelope of

    Understanding of Organic Devices

    Dis la s

    Lighting

    Solar Cells

    CoreExpertise &

    OLED

    Sensors

    The new age of Macro-electronics

    Printable, Flexible, Large, Cost Effective !

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    64/101

    -

    WOLED

    O-TFT (printable)

    O-Solar Cells

    OLED Displays

    Getting

    Started

    Exploratory

    StagePrototyping

    with

    Industrial Partner

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    65/101

    On-going work at IIT Kanpur

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    66/101

    Discrete Devices Module ApplicationsOrganic Molecules

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    67/101

    Vacuum Thermal DepositionWet Processing

    R = Hexyl group

    C60CuPcPCBMP3HT

    In-house

    biodegradable

    molecules

    - -

    Modified Chromophor of GreenFluorescent Protein Prof. R. Gurunath Modified Porphyrin moleculesProf. S.P. Rath

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    68/101

    Spectral response characterisation

    Spectral ellipsometry

    Physics and circuit model of organic solar cells

    Choice of material

    tructure en , ayer, tan em

    Process optimisation Reliability and stability

    Choice of material

    Mechanism of degradation

    Enca sulation techni ues

    New & emerging technology issues

    Novel methods of fabrication

    Suman Banerjee

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    69/101

    Suman Banerjee

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    70/101

    Calcium-Aluminium Cathode

    P3HT:PCBM Blend

    PEDOT:PSS

    PEDOT:PSS - 30 nm;

    Glass

    P3HT:PCBM (1:1) - 90 nm;

    Ca - 6 nm; Al - 70 nm.

    Characterstics of a typical Organic (Polymer) Solar Cell

    Arun Tej Mallajosyula

    Anirban Bagui

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    71/101

    P3HT: PCBM Blend

    Aluminium Cathode

    e eros ruc ure PEDOT:PSS

    ITOGlass

    Vinod Pagare 2007

    -

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    72/101

    improves device efficiency

    Anirban Bagui Indian Patent being filed

    Modifying Interface by

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    73/101

    Annealing

    As deposited CuPc Annealed CuPcSmoother Specially Annealed CuPcSmoother with pillars

    C60

    Al

    ITO

    CuPc between CuPc and C60Area

    Glass

    Anukul Prasad Parhi Indian Patent being filed

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    74/101

    0.9

    1.2P3HT:PCBM:SWNT (0.75 %)

    P3HT:PCBM

    24FF

    570

    Voc5.0

    Jsc

    0.0 0.1 0.2 0.3 0.4 0.50.0

    0.3

    .

    Acm-2) Voltage (V)

    21

    5604.0

    4.5Jsc

    Voc

    FF(%)

    (mV)(mA cm

    -2)

    -0.6

    -0.3

    =2.99 % =2.01 %

    J

    L(

    AM 1.5 G

    5553.5

    -1.2

    - .Intensity =6 mW cm-2

    0.0 0.2 0.4 0.6 0.8 1.0

    SWNT wt%

    5503.0

    Incorporation of single walled nanotubes can improve solar cell performance

    Main role of nanotube is in charge transport within the solar cell

    Aurn Tej Mallajosyula

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    75/101

    Degradation under Electrical & Optical Stress

    Statistically arrive at parameters that matter most Identify the physics of degradation

    Munish Jassi 2006

    Plasmonics

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    76/101

    Bulk Metal

    DecreasingUnoccu ie

    the sized states

    occu ied

    5 nm

    Close l in

    states

    Separation between

    bands

    conduction bands

    motion that is not confined confined, and quantization sets in

    Particle size < mean free ath

    of electrons

    Unusual Properties on the nm ScaleUnusual Properties on the nm Scale are realizedare realized

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    77/101

    in centuries backin centuries back

    particles about 10 nm in

    diameter, it looks wine-red

    -

    ruby-red stained

    glass from gold,how close the particles are

    together

    nanoparticles

    Surface Plasmon Absorption of Au

    520 nm

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    78/101

    0.3

    520 nm

    0.2

    s

    o

    r

    tio

    n

    0

    0.1A

    b

    Au colloids Size ~7-8 nm

    300 400 500 600 700 800

    Wavelength (nm)Optical response of a nanoparticle depends on its size, shape,

    Surface plasmon absorption is due to coherent motion of conduction band electrons

    co ec ve e av our an oca e ec r c env ronmen

    after incident EM radiation

    ++ + +++

    -- - - -- - -

    Metal Nanoparticles --

    Localized surface lasmons

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    79/101

    Collective motion of electrons is called plasma ,

    Ag, Al

    7-8 nm

    Rough surface Grating structure

    NanoparticlesBulk Gold

    + +++ + ++

    +

    -- - - -- - -

    Metal nanoparticles Conduction electrons acts like oscillator

    Plasmonics for photovoltaics

    ,

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    80/101

    typically achieved using a pyramidal surfacetexture that causes scattering of light into the

    ,

    increasing the effective path length in the cell.

    Such large-scale geometries are not suitable for thin-film cells, for

    thickness) and because the greater surface area increases minority carrier

    recombination in the surface and junction regions.

    -

    of metallic nanostructures that support surface plasmons:

    o excitations of the conduction electrons at the interface between a

    .

    o By proper engineering of these metallodielectric structures, light

    can be concentrated and folded into a thin semiconductor layer,

    .o Both localized surface plasmons excited in metal nanoparticles

    and surface plasmon polaritons (SPPs) propagating at the

    Plasmonic light-trapping geometries for thin-film

    solar cells

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    81/101

    at the surface of the solar cell. Light is preferentiallyscattered and trapped into the semiconductor thin film

    - ,

    increase in the effective optical path length in the cell.

    (b) Light trapping by the excitation of localized surface

    plasmons in metal nanoparticles embedded in the

    semiconductor. The excited particles near-field

    causes the creation of electronhole pairs in thesemiconductor.

    plasmon polaritons at the metal/semiconductor

    interface. A corrugated metal back surface couples

    li ht to surface lasmon olariton or hotonic modes

    that propagate in the plane of the semiconductor

    layer. Nature materials VOL 9, 2010,205

    Surface plasmon enhanced Si

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    82/101

    solar cell

    a. Enhancement from a double-

    s e po s e wa er characterized optically using a

    sizes formed from differentmass thickness of silver by

    thermal evaporation followed by

    annealing.

    . o a an use re ec anceplots from a double-sided

    oxidePillai et al JAP,101, 093105 2007

    Phos hors

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    83/101

    Photon accounting of a Si solar cells shows about.

    contributing to the output energy due to the

    thermalization of the excited electrons/holes to the

    respective band edges.

    The photons with energy below the band gap are not

    absorbed in the base region and are mostly lost.

    These two optical losses

    combine to result in ~ 50% of

    contributing to the

    hotovoltaic conversion

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    84/101

    The second loss mechanism is imperfect collection due.

    Since high energy photons are absorbed in this regionthey are more likely to be affected and the result is areduced spectral response at shorter wavelengths.

    This loss can be reduced by using phosphors that,

    the higher spectral response region (500 -1000 nm) ofthe Solar cell.

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    85/101

    e r oss mec an sm s ransm ss on, w coccurs because photons with energy less than the

    band a of silicon are not absorbed. Transmission losses can be reduced by employing

    up-conversion (UC) processes, whereby two or moreow energy p o ons com ne o crea e one g er

    energy photon.

    solution for enhancing the cell efficiency butunfortunately, no breakthrough has been reported

    ye n s area. s ma es e ssue more arge -oriented and challenging to pursue research forsuitable hos hor/nano hos hor coatin s for improvements in the efficiency of solar cell.

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    86/101

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    87/101

    Thermalization.

    Wavelen th < 2E of Si

    Down Conversion/ Photoluminescence

    Phosphors

    Transmission.

    Wavelength > Eg of Si

    Up Conversion Phosphors

    N P LI N D I A

    Up-Conversion (UC) Phosphor: Absorbs IR and emits in VIS-NIR

    Down Conversion (DC) Phosphor: Absorbs UV-VIS and emits in VIS-NIR

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    88/101

    The Phosphor Layer should be transparent to wavelengths other than its absorption.

    N P LI N D I A IIT, Delhi

    SolarSpectrumModificationUsingNovelNanoandBulkPhosphorsforEnergy

    EfficientSolarCells

    A romisin conce t for efficient harvestin of solar ener usin solar cells is

    Spectrum Modification using phosphors

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    89/101

    P otograp s o YV 4:Eu+

    colloidal solution and red

    emission from spin coated

    a es ow ng~t ree

    timesincrementinIsc at

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    90/101

    of solar power by using inexpensive

    su s ra es an a ower quan y anquality of semiconductor material.

    However, the resulting short optical path

    len th and minorit carrier diffusion

    length necessitates either a high

    trapping.

    Silicon Nanowires

    Light absorption Longitudinal direction

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    91/101

    Light absorption Longitudinal direction

    arr er co ec on ransverse rec on

    Excellent L ight trapping structures

    Improved material properties due to miniaturization

    Offers new eometries for solar cells - not ossible with bulk or thin films

    A SiNWs based solar cell (with radial p-n junctions):SiNWsbased solar cells aremuch less sensitiveto theimpurities ascompared with planar p-n junction solar cells

    Theoretically(JAP 97, 114302

    (2005))

    mg-Si can be usedinstead of s -Si

    ~half of the total energy required to fabricate a solar

    Direct impact on: Processing cost & Energy payback time

    FabricationofNanowires

    Gas PhaseSynthesis (BottomupApproach)

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    92/101

    Gas-Phase Synthesis (Bottom up Approach) - -

    (both by CVD and PVD methods)

    - PECVD, MBE etc.Oxide Assisted Growth (OAG)

    Etching Methods (Top down Approach)

    Metal catalyzed wet Chemical etching/Template-Based Synthesis

    Dry Etching such as reactive ion etching (RIE) etc.

    SINGLE-NANOWIRE SI SOLAR CELLS

    H. A. Atwater Group

    California Institute of Technology, Pasadena, CA 91125

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    93/101

    Coaxial silicon nanowires as solar cells

    Charles M. Lieber Group

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    94/101

    NATURE| Vol 449| 18 October 2007, 885-890

    Chem. Soc. Rev., 2009, 38, 16 - 24, DOI: 10.1039/b718703n

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    95/101

    NATURE| Vol 449| 18 October 2007, 885-890

    Axial p-n Junctions Realized in Silicon Nanowires by

    Ion Im lantation

    S. Hoffmann, J. Bauer, C. Ronning, Th. Stelzner,| J. Michler, C. Ballif, V. Sivakov,,| and S. H.

    Christiansen*,,|

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    96/101

    Nano Lett., Vol. 9, No. 4, 2009

    Light Trapping in Silicon Nanowire Solar CellsPeidong Yang Group at University of California, Berkeley, California

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    97/101

    DOI: 10.1021/nl100161z | Nano Lett. XXXX, xxx, 000-000

    Silicon Nanowire Radial or coaxial p-n Junction Solar CellsPeidong Yang Group at UniVersity of California, Berkeley, California and Lawrence Berkeley National Laboratory, Berkeley,

    a orn a

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    98/101

    Efficiency and other cell

    J. AM. CHEM. SOC. 2008, 130, 92249225

    Silicon Nanowire-Based Solar Cells on GlassS. H. Christiansen Group, IPHT, Jena, Germany

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    99/101

    Efficiency and other cell

    parameters and limitations

    Nano Lett., Vol. 9, No. 4, 2009, 1549-1554

    Developed a novel room temperature process for large area

    Silicon Nanowires array: Growth & Optical PropertiesSingle crystalline SiNWs

    growth of SiNW arrays via selective wet chemical etching

    of silicon (Top Down approach)

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    100/101

    ( p pp )

    20

    25

    30

    35

    ength(m)

    u

    (400)

    (220)(2-20)0 20 40 60 80 100 120

    0

    5

    10

    15

    SiNW

    arraysl

    5 m

    SiNW arrays have very low surface reflectivity (~2 % ) and therefore, potential

    J . Nanoparticle Research 2010(in Press)Etching time (min)

    9Aligned, Dense, Controlled arrays length, =100-300nm

    application in solar cells

    50

    60

    SiNW arrays Polished Si

    10

    20

    30Polished

    2min

    90s

    60s

    R(%

    )

    9Low R

  • 7/29/2019 06 Organic Photovoltaics RD India v Kumar

    101/101

    (a) (b)

    a. Control solar Cell: CMP wafer

    b. SiNW arrays based black cells

    0.8

    1.0

    Efficie

    ncy

    40

    50

    (%)

    (b)

    -10

    0

    A/cm2

    )Control cell

    Cell with selective SiNW arrays of 4 m length

    (a)

    0.4

    0.6

    control cell

    selective SiNW arrays cell (~4m)cell based on entire area SiNW arraysn

    alQuantum

    20

    30

    Reflectivity

    -20

    ntDensity(m

    400 500 600 700 800 900 1000 11000.0

    0.2

    control cell

    SiNW arrays cell (~4m)Inte

    0

    10

    0 100 200 300 400 500 600

    -40

    -30

    Curr

    19th PVSEC, 9-13 Nov, 2009, J eju,, Korea

    Proc.34th IEEE PVSC, 2009, pp. 1851-1856

    Solar Energy Mater & Solar cells 2010 (In Press)

    Voc(mV)

    9 ~20 % enhancement in Jsc and ~1% absolute

    in conversion efficiency in SiNW based cells