05 - Shale Assessment

download 05 - Shale Assessment

of 88

Transcript of 05 - Shale Assessment

  • 7/27/2019 05 - Shale Assessment

    1/88

    Introduction

    Probability, Distributions and Correlation

    Estimating Under Uncertainty

    Tight Clastics / Carbonate Assessment

    Shale Assessment

    Reservoir Flow

    Valuation Techniques

    Risk, Uncertainty & Economic Analysis

    for Resource Assessment and Production

    Forecasting in Shale and Tight Reservoirs

    What Are Unconventional Resources?

    CBM

    Shales

    Piceance basin

    Deep WCSB

    Black Warrior basin

    dirty coals

    Bossier

    MancosLewis

    Baxter

    Typically self-sourced w sorbed gas

    Primarily a sorbed gas reservoir

    Fruitland CoalsHorseshoe River

    Vaca Muerta Posidonia Utica

    Los Molles Barnett Muskwa

    Haynesville Alum

    Marcellus Lias

    Woodford Monterey

    Fayetteville Niobrara

    Eagle Ford Mowry

    Hybrid systems

    Shattering to create

    the fracture

    and thus permeability

    Silica rich mineral suite

    Carbonate rich mineral suit e

    Tight

    Sands / Carb

    Rose & Associates, LLP 1 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    2/88

    33 66 slickloamygritty

    Siltstone

    Shale

    mudstone claystone> 1cm

    < 1cm

    bedded

    laminated

    beds

    laminae

    What Are Unconventional Resources?A simple classification scheme for shales

    Maximum grain size 0.062 mm

    AfterLevine,modifiedfromBlattandothers(1972)

    Shales as Source Rock Factories

    BarsRepresentGeologicTimeofGlobalAnoxicEvents

    100MMYr

    Miocene

    Monterrey

    Cretaceous

    LaLuna

    EagleFord

    Niobrara

    Mowry

    Jurassic

    Kimmeridge

    Haynesville

    Lias

    VacaMuerta

    LosMolles

    Posidonia

    PennShalesPhosphoria

    Meade

    Gothic

    Silurian

    Poland

    Devonian

    Woodford

    Marcellus

    Muskwa

    Ordovician

    Alum

    Utica

    Mississipian

    Bakken

    Barnett

    Fayetteville

    %ofH

    Cgenerated

    30

    20

    10

    Kreyen

    hagen

    Eocene

    Klemme andUlmishek (1991)

    Rose & Associates, LLP 2 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    3/88

    transgressivesed

    sequence

    Blackshales

    Anoxicportionof

    watercolumn

    Dilutionfromdeltabuildingvs organicbuildup

    fromdeltaic

    retreat

    Pycnocline

    Mechanisms of Formation

    Classical paradigm

    for sediment

    transport

    AfterMacquaker (2011)

    transgressivesed

    sequence

    Blackshales

    Dilutionfromdeltabuildingvs

    organicbuildupfromdeltaicretreat

    Pycnocline

    Mechanisms of Formation

    Classical paradigm

    for sediment

    transport has

    evolved to includeobservations of

    bioturbation and in

    situ fauna

    AfterMacquaker (2011)

    Rose & Associates, LLP 3 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    4/88

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    Kerogen TypeI

    II

    II

    II

    III

    IV

    MaceralAlginite

    Exinite

    Cutinite/resinite

    Liptinite

    Vitrinite

    Inertinite

    Original OMFresh water algae

    Pollen, spores

    Land plant cuticles/resins

    All land plant lipids; marine algae

    Woody material from land plants

    Oxidized and reworked matter

    Mechanisms of Formation

    Note how Type III dominantsource rocks require higher

    Ro for gas level maturities

    What needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    very rare

    very rare

    Ro = Reflectance of vitrinite (% Ro or %VRo) = is a measurement of the

    percentage of light reflected off the vitrinite maceral at 600x magnification

    in oil immersion. The reflectance increases with increasing maturity.

    AdaptedfromJarvie (2009)

    Rose & Associates, LLP 4 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    5/88

    Mechanisms of Formation

    AdaptedfromJarvie (2009)

    What needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    Ro = 0.4 pre generation Ro = 0.85 peak oil generation

    Ro = 1.4

    gas window

    Ro = 2.0 gas window

    Ro = Reflectance of vitrinite (% Ro or %VRo) = is a measurement of the

    percentage of light reflected off the vitrinite maceral at 600x magnification

    in oil immersion. The reflectance increases with increasing maturity.

    Mechanisms of Formation

    S1: free oil that volatizes at 300 deg C, the distillable peak

    S2: organic matter that pyrolyzes between 300 600 deg C, pyrolyzable peak

    aka remaining HC potential

    S3: organic CO2 released from Kerogen

    Tmax: temp at max evolution of S2 peak

    Production Index = S1/(S1+S2), measures kerogen conversion

    Transformation Ratio = (HI orig HI now)/HI orig, measures kerogen conversion

    Wt organic content = TOC/0.83 (83% C in HC)

    S2 * 131.34 = remaining generation potential in MCF/AF

    S1 S2 S3time

    temp

    yield

    Tracking is modeled in the lab with programmed pyrolysis measurements

    What needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    HI = 100 * S2/(TOC), mg HC/g TOC

    OI = 100 * S3/(TOC), mg CO2/g TOC

    S2/S3 = HI/OI

    Rose & Associates, LLP 5 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    6/88

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    HI

    OI

    lookslikeaVanKrevelen

    diagramand

    can

    be

    used

    to

    determinekerogen type

    HI = 100 * S2/(TOC), mg HC/g TOC

    OI = 100 * S3/(TOC), mg CO2/g TOC

    S2/S3 = HI/OI

    Peters(1986)

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    After

    4 days

    OBrienandothers(2002)

    Rose & Associates, LLP 6 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    7/88

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    S1 / TOC

    1 3

    50 ft

    Remember that kerogen acts like

    a sponge, so organic rich rocks

    will retain upwards of 50-80 mg

    HC/g TOC

    Thus when S1 exceeds TOC,

    (saturation exceeds adsorption)

    that indicates migrated oil which

    can be producible

    Crossover, aka Hydrogen Content Jarvie (2010)

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    S1 S2S2

    Ro=0.6:

    Traceof

    S1

    and

    mostly

    S2

    as

    kerogen

    is

    juststartingtobeconvertedtoliquid

    hydrocarbons.

    Ro=0.7:

    IncreasingS1

    indicating

    oil

    generation

    anddecreasingS2askerogen is

    convertedtooil.

    Rose & Associates, LLP 7 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    8/88

    Mechanisms of Formation

    Ro=1.0:

    IncreasingS1indicatingoilgeneration

    anddecreasingS2askerogen is

    convertedto

    oil

    and

    gas.

    Ro=1.6:

    DecreasingS1asoiliscracked togas

    anddecreasingS2.

    Ro=2.0:

    Trace tonoS1andverylowS2dueto

    kerogen conversion.

    What needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    S1 S2 S1 S2

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    very rare very rare

    Woodford Shale

    production,

    Arkoma Basin,

    with Ro contours

    N

    Whathappensat

    higher%Rovalues?

    Late in the process

    when Ro exceeds about 3.0,

    the kerogen is burnt out which

    affects porosity

    Andrews(2010)

    Rose & Associates, LLP 8 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    9/88

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    Metagenicconversionleadstoporositydestruction

    Whathappensathigher%Ro

    values?

    Laughrey andothers(2011)

    0.01

    0.1

    1

    0 1 2 3

    %Ro

    Porosity

    Mechanisms of FormationWhat needs to be tracked is the conversion of Organic Matter (Kerogen) to HC

    Metagenicconversionleadstoporositydestruction

    Whathappensat

    higher%Rovalues?

    Laughrey andothers(2011)

    Rose & Associates, LLP 9 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    10/88

    By William Hart

    Fredonia NY

    First Exploited: Dev. Dunkirk Shale, 1821

    Beginning in the 1860s

    these wells were

    stimulated in stagesas nitroglycerin was

    detonated via steel balls

    dropped at the wells site

    www.dec.ny.gov/docs/materials_minerals_pdf/nyserda2.pdf Curtis(2002)

    First Exploited: Dev. Dunkirk Shale, 1821

    http://www.alleganycountynylocalhistory.com/

    Beginning in the 1860sthese wells were

    stimulated in stages

    as nitroglycerin was

    detonated via steel balls

    dropped at the wells site

    Rose & Associates, LLP 10 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    11/88

    Next Exploited: Dev. Ohio Shale, 1880

    SPE 14446 AdaptedfromVanorsdale (1987)byJenkins

    Now: Miss. Barnett Shale, Fort Worth Basin

    325 MYA

    www.jan.ucc.nau.edu

    Rose & Associates, LLP 11 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    12/88

    Now: Miss. Barnett Shale, Fort Worth Basin

    1992

    First Production Date

    First 12 months Production, BCF

    0.5

    1.0

    1.5

    1982 2002

    The 17 year overnight success story

    1997: First water frac

    Vertical wells

    Horizontal wells

    Steward(2009)

    400

    200 isopach

    30 miles

    Inside the thicker part of the gas window

    is referred to as the Core area.

    Whats the problem outside of the

    Core area (i.e. in the oil window)?

    Now: Miss. Barnett Shale, Fort Worth Basin

    Ro = 1.1

    largecomplexring(3nm)

    smallcomplexring(1nm)

    methane (0.4nm)

    Rose & Associates, LLP 12 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    13/88

    400

    200 isopach

    Ro = 1.1

    30 miles

    Inside the thicker part of the gas window

    is referred to as the Core area.

    Whats the problem outside of the

    Core area (i.e. in the oil window)?

    Now: Miss. Barnett Shale, Fort Worth Basin

    The pores, about the size of 10 gas

    molecules, get occluded by the larger oilmolecules and the associated clumping from

    electrostatic charge

    When the pores are > 50 nm, darcy flow

    When the pores are < 50 nm, diffusive flow

    Loucks andothers(2008)

    L.Penn

    Ellenburger

    Barnett

    East

    Darker tones have

    more TOC

    ~ 1 micrometer

    Now: Miss. Barnett Shale, Fort Worth Basin

    and may provide hidden

    pathways to enhance production

    (Wang, 2009)

    ViolaLimestone

    Loucks andothers(2008)

    Rose & Associates, LLP 13 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    14/88

    Clays

    Qtz + F + PyCarbonates

    Barnett core

    Siliceous is delicious

    Now: Miss. Barnett Shale, Fort Worth Basin

    400

    200 isopach

    Ro = 1.1

    30 miles

    Now: Miss. Barnett Shale, Fort Worth Basin

    A traffic light, or common risk segment

    mapping approach

    should include mapping of the

    target isopach thicks (with cutoffs, like GR;

    excess resistivity delta LogR),

    Ro and

    higher qtz content

    pyrite related to kerogen

    using a Barnett analog

    Rose & Associates, LLP 14 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    15/88

    Now: Marcellus Shale, Appalachians

    385 MYA

    http://www2.nau.edu/rcb7/namD385.jpg

    Now: Marcellus Shale, Appalachians

    http://eeducation.mediasite.com

    Rose & Associates, LLP 15 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    16/88

    Now: Marcellus Shale, Appalachians

    Ro = 1

    Ro = 2

    Ro = 3

    Over pressure present (largely in PA thought to be related to conversion of

    oil to gas in fixed pore space)

    50 ft

    Isopach Thermal maturity

    Milici andSwezey (2006),USGSOFR1237

    Now: Marcellus Shale, Appalachians

    Barnett

    Comparison of intra kerogenic porosity

    InWV,quartz

    concentrationsare

    remarkablyuniform

    and

    theclaycontentis

    uniformlylow. Inreality

    theMarcellusisnota

    shale

    1 micrometer

    Marcellus

    1 micrometer

    BoyceandCarr(2009)

    Rose & Associates, LLP 16 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    17/88

    Now: Marcellus Shale, Appalachians

    In WV, quartz concentrations are

    remarkably uniformly and the clay content is

    uniformly low. In reality the Marcellus is not a shale

    -- Matt Boyce

    150 ft

    100 ft

    50 ft

    What else is needed to high grade this play?

    70 ft

    Total Marcellus isopach, ft

    from Milici and Swezey (2006)

    BoyceandCarr(2009)

    Now: Marcellus Shale, Appalachians

    In WV, quartz concentrations are

    remarkably uniform and the clay content is

    uniformly low. In reality the Marcellus is not a shale

    -- Matt Boyce

    150 ft

    100 ft

    50 ft

    What else is needed to high grade this play?

    70 ft

    Total Marcellus isopach, ft

    from Milici and Swezey (2006)

    BoyceandCarr(2009)

    Rose & Associates, LLP 17 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    18/88

  • 7/27/2019 05 - Shale Assessment

    19/88

    Now: Marcellus Play Ingredients: Pressure

    Maps rectified via Priemere PowerTools for Arc GIS

    Zagorski andothers(2010)

    Now: Marcellus Play Ingredients: Isopach

    Maps rectified via Priemere PowerTools for Arc GIS

    Zagorski andothers(2010)

    Rose & Associates, LLP 19 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    20/88

    Now: Marcellus Play Ingredients: Vclay

    Maps rectified via Priemere PowerTools for Arc GIS

    Zagorski andothers(2010)

    Thisrelativewell

    production

    performance (through

    endJune2011)

    legendisindexedtoa

    4.2BCF (=1)typecurve

    Ro>10.45psi/ft

    Grossthickness>160ft

    Vclay

  • 7/27/2019 05 - Shale Assessment

    21/88

    Now: Marcellus Play Ingredients

    Zagorski (2013)

    Months

    MCF / D

    Now: Marcellus Production, 4.2 BCF Type

    Curve

    Thisrelativewell

    production

    performance(through

    endJune2011)

    legendisindexedtoa

    4.2BCF (=1)typecurve

    Rose & Associates, LLP 21 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    22/88

    Productionrecordedwascomparedtotype

    curveandaratioofactualversustypewas

    plotted

    Months

    e.g.

    20months~600days

    Actualcumprod=0.5MM

    Typecurvecum=1.0MM

    Rel performance=0.5

    MCF

    Now: Marcellus Production, 4.2 BCF TypeCurve

    Thisrelativewell

    production

    performance(through

    endJune2011)

    legendisindexedtoa

    4.2BCF (=1)typecurve

    MarcellusHoriz wells

    from

    Pennsylvania

    (West,CentralandEast)

    ThroughJune30,2011(n=1078)

    Productionnormalizedto4.2BCF(=1)

    EURtypecurve

    Now: Marcellus Production: W, C, & East

    Rose & Associates, LLP 22 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    23/88

    Fullrangeofdata

    MarcellusHoriz wells

    from

    Northern

    Pennsylvania(Northof40.84lat)

    ThroughJune30,2011(470outof696)

    Productionnormalizedto4.2BCF(=1)

    EURtypecurve

    Now: Marcellus Production: North Operators

    Fullrangeofdata

    Now: Marcellus Production: South Operator

    MarcellusHoriz wellsfrom Southern

    Pennsylvania(Southof40.84lat)

    ThroughJune30,2011(286outof382)

    Productionnormalizedto4.2BCF(=1)

    EURtypecurve

    Rose & Associates, LLP 23 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    24/88

    Now: Neuquen Basin

    www.eia.gov

    ClosingTethys

    Subtropicalenvironment

    WarmestperiodinCretaceous

    8999MYA

    Anoxictime

    Sluggishsalinewaters

    Highcarbonateproduction

    Now: Eagle Ford Shale, S. Texas

    Bohacs andothers(2011)

    Rose & Associates, LLP 24 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    25/88

  • 7/27/2019 05 - Shale Assessment

    26/88

    Now: Eagle Ford Shale, S. Texas

    The importance of an early

    understanding of mapping

    HC Pore Volume

    Fanandothers(2011)

    Now: Eagle Ford Shale, S. Texas

    Highstand

    SENW

    LowstandTransgressive

    However, there are very good performing wells in the lower Eagle

    Ford. So you always have to do your regional homework tying

    correlations to rock property data

    J. May, personal communications Bohacs andothers(2011)

    Upper Eagle Ford tends to be more carbonate rich

    Lower Eagle Ford tends to have higher TOC

    Rose & Associates, LLP 26 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    27/88

    Now: Eagle Ford Shale, S. Texas

    Oil molecule diam

    ~ 0.5 nm to 3 nm

    Methane molecule diam

    0.4 nm

    Three types of porosity

    intergranular

    intragranular (CO3 disolution)

    intrakerogenic

    60 75% carbonate

    Barnett

    Now: Eagle Ford Shale, S. TexasOil molecule diam

    ~ 0.5 nm to 3 nm

    Methane molecule diam

    0.4 nm

    Marcellus

    Rose & Associates, LLP 27 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    28/88

    Clays

    Qtz + F + PyCarbonates

    Barnett

    Haynesville

    Marcellus

    Eagle Ford

    Niobrara Marl

    Now: Eagle Ford Shale, S. Texas

    Now: Permian Basin(s)

    Fairhurst andWallace(2013)

    Rose & Associates, LLP 28 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    29/88

    Now: Permian Basin(s)

    ConchoResourcesMay2013InvestorPresentation

    Midland Basin

    Leonard

    Leonard Lime

    Leonard

    Upper Spraberry

    Lower Spraberry

    Dean

    Wolfcamp

    Upper Wolfcamp

    Middle Wolfcamp

    Lower Wolfcamp

    (Deadwood)

    P

    ennsyl-

    vanian

    Cline Shale

    Strawn

    AtokaMiss. Barnett

    WoodfordDevonian

    DevonianSilurian

    Fusselman

    OrdovicianSylvan

    Ellenburger

    Now: Permian Basin(s)

    ApacheCorporationJanuary2013InvestorPresentation

    Thermalmaturity

    map

    for

    Wolfcamp shales

    Rose & Associates, LLP 29 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    30/88

    Clays

    Qtz + F + PyCarbonates

    Barnett

    Haynesville

    Marcellus

    Eagle Ford

    Niobrara Marl

    Scott-Sugg #1HNow: Permian Basin(s)Wolfcamp

    Volumetric Calculations For Shale

    In Place Resources

    from geochemistry: rock pyrolysis data

    In Place Resources

    from volumetric approaches,

    aka tank volume

    Analogs of EUR per well

    Rose & Associates, LLP 30 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    31/88

    Conversionfactorsneededare

    Volumetric Calculations For ShaleOOIP,BOfromS1rockpyrolysis

    Steps

    in

    evaluation

    Generated from geochem data

    AdaptedfromDowneyandothers(2011)

    OOIP,BO

    from

    S1

    rock

    pyrolysis

    Stepsinevaluation

    Leadstothegeneralformula

    Volumetric Calculations For ShaleGenerated from geochem data

    Rose & Associates, LLP 31 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    32/88

    N por

    dens por

    100

    S1, mg / g

    Exercise:DeterminethemeanOOIP,BOforyour640ac

    Given:

    10%chancepaythicknesscouldexceed200

    10%chancepaythicknesscouldbelessthan100

    S1valuesfromcoreareindeedrepresentativeacrossyouracre

    NocorrelationbetweenS1,thickness

    Avg Ro~0.8;oildens~0.780from50APIgrav condensate

    Seenextslide

    fordistribution

    viewofS1

    Downeyandothers(2011)

    Rose & Associates, LLP 32 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    33/88

    S1,mg/

    OOIP,MMBOExercise:DeterminethemeanOOIP,BOforyou

    Generated

    Rose & Associates, LLP 33

  • 7/27/2019 05 - Shale Assessment

    34/88

  • 7/27/2019 05 - Shale Assessment

    35/88

    Exercise:DeterminethemeanOOIP,BOforyour640ac

    Generated from geochem data

    Lets get a quick look at the availabletank volume in place resource base

    for a targeted portion of the play

    Volumetric Calculations For Shale

    40,000

    ac

    P99 P90 P50 Mean P10 P1

    Thickness, ft

    Por. , %

    HC sat, %

    1 / Bg

    BCF

    scf / ton

    BCF

    Dens, g/cc

    Sorbed

    Total

    BCF

    Free

    In Place from vol. approach

    Rose & Associates, LLP 35 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    36/88

    Storage space comes from pores, fractures

    and adsorption sites

    Volumetric Calculations For ShaleIn Place from vol. approach

    EagleFordexamplesfromBohacs andothers(2011)

    Volumetric Calculations For Shale

    Volumetric contributions from fractures are very

    difficult to ascertain, hence the reliance on other

    methods.

    Storage space comes from pores, fracturesand adsorption sites

    Interpreted fractures in Wolfcamp

    In Place from vol. approach

    ApproachResourcesApril2011investorspresentation

    Rose & Associates, LLP 36 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    37/88

  • 7/27/2019 05 - Shale Assessment

    38/88

    gas content,

    scf / ton

    Volumetric Calculations For Shale

    Lewis shale

    CellPressure,psia

    Volumesorbed,

    scf/t

    Varies with

    temperature

    TOC

    Sorbed gas for shales = (vol sorbed at reservoir press) (vol sorbed at aband. press)

    Jenningsandothers(1997)

    Volumetric Calculations For Shale

    data from HPDI

    All operators

    EUR/well,MMCF

    INTEGRAL

    Analogs of EUR per well

    CourtesyJ.TanigawaandD.Detring

    Rose & Associates, LLP 38 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    39/88

  • 7/27/2019 05 - Shale Assessment

    40/88

  • 7/27/2019 05 - Shale Assessment

    41/88

    Chance factor adequacy matrix

    0.0 0.2 0.8 1.0

    0.2 0.4 0.4 0.6 0.6 0.8

    0.3 0.45 0.45 0.55 0.55 0.7

    Bad News Good News

    Coin Toss

    Quality

    Quantity

    Confidencelevel

    Control

    Poor Limited

    Good Lots

    Low

    High

    For any chance factor

    D a t a

    So each chance factor is multiplied

    such that the product of the chance factors

    referred to as the play chance,

    represents your confidence of?

    Key Chance Elements For Shale

    Rose & Associates, LLP 41 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    42/88

    Key Chance Elements For Shale

    Month

    Suchthattheproductofthechancefactorsalso

    calledPlaychance,representsyourconfidenceof

    achievingthe

    low

    end

    of

    the

    initial

    production

    ratedistributioninthefirststageofdrilling,

    somewhereinyourdefinedplaysegment

    Key Chance Elements For Shale

    Hackley (2012)

    Rose & Associates, LLP 42 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    43/88

    Key Chance Elements For Shale

    Rem

    ainingHCpotential,mgHC/grock

    TOC, wt %

    2 40 8 106

    0

    10

    20

    30

    Type II

    oil prone

    marine

    lean

    S2

    mixed Type II/III

    oil / gas prone

    Type III

    gas prone

    dry gas prone

    Type I

    oil prone

    lacustrine

    Jarvie andothers(2007)

    Key Chance Elements For Shale

    RemainingHCpotential,mgHC/grock

    TOC, wt %

    20 8 1060

    10

    20

    30

    4

    Barnett: core and non core

    S2

    mixed Type II/III

    oil / gas prone

    Type III

    gas prone

    dry gas prone

    Type I

    oil prone

    lacustrine

    Jarvie andothers(2007)

    Rose & Associates, LLP 43 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    44/88

    Key Chance Elements For Shale

    If you are concerned

    that, from Ro, CAI

    Tmax information or

    kinetic models that

    your area is not within

    the needed thermal

    maturity window (such

    that the wells would

    fail), you would lower

    your confidence

    accordingly

    Ro, %

    Clays

    Qtz + F + PyCarbonates

    Barnett

    Haynesville

    Marcellus

    Eagle Ford

    Niobrara Marl

    MBakken

    Polishsh (BNK)

    Muskwa (avg of20)

    Wolfcamp avg

    Consider the fracabilitybased on mineral

    ingredients

    Key Chance Elements For Shale

    Barth#2Utica

    Pt.Pleasant

    Utica, Quebec

    Rose & Associates, LLP 44 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    45/88

  • 7/27/2019 05 - Shale Assessment

    46/88

    YoungsModulus

    Key Chance Elements For ShaleBrittleness index

    redefined from

    mineralogy relative toelastic moduli

    0

    2

    4

    6

    8

    100.1 0.22 0.400.28 0.340.16

    Poissons Ratio

    ModifiedfromWang(2009)SIPESpresentation

    Key Chance Elements For ShaleBrittleness indexredefined from

    mineralogy relative to

    elastic moduli

    0.1 0.22 0.400.28 0.340.16Poissons Ratio

    Vp / Vs

    4

    3

    2

    PlasticshaleDolostone toLsSilicarich

    1

    AfterVonLunen(2009)

    Rose & Associates, LLP 46 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    47/88

  • 7/27/2019 05 - Shale Assessment

    48/88

  • 7/27/2019 05 - Shale Assessment

    49/88

    Key Chance Elements For ShaleConsider the impact of

    natural fractures and

    faults

    Faults are not conducive to

    productive wells in the Barnett if

    they cut deeper into the water

    bearing zones

    Fracture systems help provide more

    permeability but can also prevent

    the development of a complex frac

    job

    Healed fractures like the picture are

    easier to reactivate with fraccing

    than inducing fresh fracturesthrough shale

    Frac energy preferentially drawn

    toward the zones of weakness

    Fault related folding

    Red = ridges

    Blue = depressions

    Lunardi (2008)

    Tenn Va WV Penn NYWV

    0

    2,000

    ChattanoogaMillboro

    Marcellus

    GeneseoBurkett

    Mostly LS, SS and Chert

    Mostly Silts and Shales

    Key Chance Elements For ShaleConsider the impact ofnatural fractures and

    faults

    Appalachian Basin Devonian

    Black Shales

    Milici andSwezey (2006)

    Rose & Associates, LLP 49 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    50/88

    The higher TOC portions of the Appalachian black shales

    have the densest joint sets

    Strike joint (J1) are betterdeveloped in the shales and dip

    joints (J2) in the sandy beds

    J1

    J2

    J1 related to HC-overpressureJ2 related to uplift

    Key Chance Elements For ShaleConsider the impact of

    natural fractures and

    faults

    Appalachian Basin Devonian

    Black Shales

    Sheldon(1912)

    Key Chance Elements For ShaleConsider the impact ofnatural fractures and

    faults

    Rose & Associates, LLP 50 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    51/88

    First gas well

    50 100 150

    In addition to mineralogy, also consider fractures in the reservoir.

    Marcellus Shale

    isopach maps

    can be complimented

    with available fracture

    density and orientation

    (relative to present max

    princ. stress) maps as well

    as with TOC and % qtz +

    dolomite

    Photo by G. Lash

    ShalePoreDiameter,nm

    ShalePorosity,%

    5

    5

    10

    15

    10 15

    largecomplexring(3nm)

    smallcomplexring(1nm)

    methane (0.4nm)

    When dealing with liquids,the pore space available

    compounds the challenge

    Key Chance Elements For Shale

    AfterJarvie (2008)

    Rose & Associates, LLP 51 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    52/88

    Key Chance Elements For ShaleBe on guard for elements

    that could hinder the

    basal seal effectiveness

    PinnacleTechnologies

    L.Penn

    Ellenburger

    Barnett

    East

    Viola

    Key Chance Elements For ShaleBe on guard for elementsthat could hinder the

    basal seal effectiveness

    Nissen andothers(2007)

    Rose & Associates, LLP 52 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    53/88

    diapirs andkarsting asthemaintechnicalrisks for ParadoxBasinshalePlays

    Akah Salt

    Key Chance Elements For ShaleBe on guard for elements

    that could hinder the

    basal seal effectiveness

    BillBarrettCorpOctober2008InvestorPresentation

    Month

    Suchthattheproductofthechancefactorsalso

    calledPlaychance,representsyourconfidenceof

    achievingthelowendoftheinitialproduction

    ratedistributioninthefirststageofdrilling,

    somewhereinyourdefinedplaysegment

    Chance Assessment in Perspective

    Rose & Associates, LLP 53 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    54/88

    PlayChance(atthesegmentlevel):Theproductofthechancefactors,which

    representsyourconfidenceofachievingthe

    lowendoftheinitialproductionrate

    distributioninthefirststageofdrilling,

    anywhereinyourdefinedplaysegment

    Independentchance(atthewelllevel):Weestimate,giventheplaysegmentcan

    yieldminimal production,whatpercentage

    ofsubsequentwellswillsucceed when

    considering geologicalvariability(usingthe

    samechecklistasabove)andalsothe

    percentageofwellsthatwillsucceedwhen

    considering mechanicalconcerns.

    Whenwemodela play

    Wedeterminefirstthe

    playchance,

    thentheindependent

    chancetodeterminea

    drillingsuccessrate

    Thisineffectdeterminesthepercentageofthesimulationtrialsthat haveaccess

    toproduction

    Chance Assessment in Perspective

    Thischanceofsuccessisthenusedtocalculate,withestimatesofproduction,timing,

    productpriceandcosts,thechanceofmakingaprofit(aswellastheamountofprofit).

    then

    Possible Analogs for your Shale Gas PlayPossible Analogs for your Shale Play

    Byline: Shales gonewild!

    Rose & Associates, LLP 54 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    55/88

  • 7/27/2019 05 - Shale Assessment

    56/88

    Midinterval

    Largely

    dolomitic to

    east,

    sandyor

    limeyshales

    towestand

    north

    Therearetwoconcessions,A&B,availableforlicensinginthisoilplay.

    Acompilationofregionaldatahasbeenmapped

    Inrecentyears,thetargetintervaljustbecameproductive,hencethesale.

    TherearerelativelyshortEWlineamentsinthevicinityofA,and

    SEtrendinglineamentscrossingBassociatedwithfaultswarmsonpoorqualityseismicdata

    Whichconcessionismorepreferred,andwhy?

    ConcessionPreferenceExercise

    great great

    Foreachparameter,gradeeachconcession

    onascaleof5(best)to1

    Rose & Associates, LLP 56 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    57/88

    Estimatedfacies

    50km

    largely

    dolomite

    Limey

    dolomite

    shaley

    limestone

    B

    ConcessionPreferenceExerc

    Rose & Associates, LLP 57

  • 7/27/2019 05 - Shale Assessment

    58/88

    Rose & Associates, LLP 58 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    59/88

    TopStructure

    Vertical

    extentof

    fractures

    -8750

    -7500

    -6250

    B

    50km

    ConcessionPreferenceExerc

    Rose & Associates, LLP 59

  • 7/27/2019 05 - Shale Assessment

    60/88

    Rose & Associates, LLP 60 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    61/88

    Isopach

    Isopach

    50

    150

    100

    100

    B

    50km

    ConcessionPreferenceExerc

    Rose & Associates, LLP 61

  • 7/27/2019 05 - Shale Assessment

    62/88

    Rose & Associates, LLP 62 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    63/88

    Note,Tempsbelow420

    degCareconsidered

    immature

    S2Tmax,LShale

    Tmax

    440

    420

    4

    B

    50km

    ConcessionPreferenceExerc

    Rose & Associates, LLP 63

  • 7/27/2019 05 - Shale Assessment

    64/88

    Rose & Associates, LLP 64 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    65/88

    Recentoilproductionfromhorizontalwells

    BetweenconcessionsAandB

    EURforBE:270

    50

    CumProduction,MBO

    BOE

    /D

    200

    400

    600

    ConcessionPreferenceExerc

    Rose & Associates, LLP 65

  • 7/27/2019 05 - Shale Assessment

    66/88

    Rose & Associates, LLP 66 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    67/88

    1) Examinethemapsofdepth,thickness,TOCandRoanddeterminethevaluea

    cellblock. Eachcellblockrepresents9sqmiles.

    2) Foreachnode,enterthedepth,thickness,TOCandRovaluedeterminedfrom

    entrytabofthespreadsheetprovided. Therewillbe100entries,4entriesf

    3) Notethatcolumnslabeledisothermandporosityhavetheirvaluesprogram

    TOCandRo,respectively.

    If

    the

    present

    day

    thermal

    maturity

    is

    less

    than

    0.6%

    Ro,

    the

    free

    (and

    ato0ontheassumptionthatnosignificantthermalgashasbeengenera

    Thefreegasvolumeiscalculatedfromthethickness,pressure,tempera

    depth),area,andgassaturation. Porosityisacalculatedasafunctiono

    StandardreservoirengineeringmethodologyisusedandthegasZfac

    4) WereallycantsaythenodalRovalueisrepresentativeoftheentireblock,so

    we

    have

    also

    calculated

    cases

    where

    the

    porosity

    is

    uniformly

    2%,

    3%,

    7%

    and

    5) Whentheporosityis2%or3%,thegassaturationissetto70%. Whenthepo

    saturationissetto85%.

    Instructions(whenallelsefails,readhere)

    Exercise: Determinetheblocksyouwanttolease,basedoninplacegas(OGIP)ina9sqmiblock&inthewetgas(Ro=

    Rose & Associates, LLP 67

  • 7/27/2019 05 - Shale Assessment

    68/88

    Rose & Associates, LLP 68 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    69/88

    6) So,onthetabsummarylinkyouwillhavethemapderivedvalues,andvalue

    otherscenarios. Wehaveprovidedthemeanofthosefivescenarios.

    7) Post(atthenodesoftheprovidedblankbasemap)andcontourthemeanofillustratewhereyoushouldcontinuethenextstageofexploration. Rememthe250BCFcontourtraversingitqualifiesforthefirstcriterion.

    8) Forthoseblocksthatdomeetthecriteria,buildadistributionofthevariabilwhich

    the

    mean

    was

    calculated),

    via

    the

    mid

    point

    plotting

    method

    to

    commassociatedwiththemeancase.

    9) Toaccomplishthedistribution,takethevaluesfromcolumnsBtoFforyourp

    (soundsdetentionlike,doesntit)andtypeorpastethemintothe datacolu

    thetablabeledlogprobit (2cycle). Inorderforthevaluestoplotproperlyy

    themfromhightolow. Ifplottingbyhandtheformulatodeterminepercent

    valuesispercentile=(rank 0.5)*(100/n)

    Instructions(continued)

    Exercise: Determinetheblocksyouwanttolease,basedoninplacegas(OGIP)ina9sqmiblock&inthewetgas(Ro=

    Rose & Associates, LLP 69

  • 7/27/2019 05 - Shale Assessment

    70/88

    Rose & Associates, LLP 70 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    71/88

    A B C D E

    MeanfreeOGI

    Rose & Associates, LLP 71

  • 7/27/2019 05 - Shale Assessment

    72/88

    Rose & Associates, LLP 72 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    73/88

    A B C D E

    Rose & Associates, LLP 73

  • 7/27/2019 05 - Shale Assessment

    74/88

    Rose & Associates, LLP 74 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    75/88

    A B C D E

    Rose & Associates, LLP 75

  • 7/27/2019 05 - Shale Assessment

    76/88

    Rose & Associates, LLP 76 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    77/88

    A B C D E

    Rose & Associates, LLP 77

  • 7/27/2019 05 - Shale Assessment

    78/88

    Rose & Associates, LLP 78 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    79/88

    A B C D E

    Rose & Associates, LLP 79

  • 7/27/2019 05 - Shale Assessment

    80/88

    Rose & Associates, LLP 80 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    81/88

    freeOGI

    Rose & Associates, LLP 81

  • 7/27/2019 05 - Shale Assessment

    82/88

    Rose & Associates, LLP 82 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    83/88

    freeOGI

    Rose & Associates, LLP 83

  • 7/27/2019 05 - Shale Assessment

    84/88

    Rose & Associates, LLP 84 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    85/88

    freeOGI

    Rose & Associates, LLP 85

  • 7/27/2019 05 - Shale Assessment

    86/88

    Rose & Associates, LLP 86 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    87/88

    Commoncompositemethods

    Whygothroughtheprocessofcompositingwhichthenhelpsusdeterminethesegments?

    Why do we go through the effort to segment?

    www.priemere.com/GIS

    120 km

    A

    B

    D

    E

    F

    C

    Here, the geometric mean of the three parameters

    Different rock Ingredients will likely result in different production profiles.

    It behooves us to standardize how we composite.

    1 2 3 4

    1) Determine what constitutes favorable and unfavorable conditions2) Color code those values

    3) Overlap and integrate a composited color to a value

    Different segments need different type curvesWhy:

    www.priemere.com/GIS

    Rose & Associates, LLP 87 Ch 5 - Shale AssessmentAAPG Cartagena 2D course, Sept. 2013

  • 7/27/2019 05 - Shale Assessment

    88/88

    Different segments need different type curvesWhy:

    Steffen(2012)

    20yearsMMCF/

    D

    PVperwell

    EURperwellEURpersegment,TCF,linearscale

    P90

    P10

    0

    $5/MCF

    Different segments need different type curvesWhy: