04_Bend_en

download 04_Bend_en

of 13

Transcript of 04_Bend_en

  • 7/29/2019 04_Bend_en

    1/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 1

    T. Udomphol

    LLaabboorraattoorryy 44

    Bend Testing

    ____________________________________

    Objectives

    Students are required to study the principles of bend testing, practice their testingskills and interpreting the experimental results of the provided materials when failed

    under three-point bending.

    Investigate responses of metals when subjected to bending Determine parameters such as bend strength, yield strength in bending and elastic

    modulus.

    Students can interpret the obtained test data and select appropriate engineeringmaterials for their intended uses in order to prevent creep failures.

  • 7/29/2019 04_Bend_en

    2/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 2

    T. Udomphol

    1. Literature review

    1.1 Bend or flexure testing

    Bend or flexure testing is common in springs and brittle materials whose failure behaviours

    are linear such as concretes, stones, woods, plastics, glasses and ceramics. Other types of brittle

    materials such as powder metallurgy processed metals and materials are normally tested under a

    transverse flexure. Bend test is therefore suitable for evaluating strength of brittle materials where

    interpretation of tensile test result of the same material is difficult due to breaking of specimens

    around specimen gripping. The evaluation of the tensile result is therefore not valid since the failed

    areas are not included in the specimen gauge length.

    Smooth rectangular specimens without notches are generally used for bend testing under

    three-point or four-point bend arrangements as shown in figures 1 a) and b) respectively. Figure 2

    illustrates three-point bending which is capable of 180o

    bend angle for welded materials.

    Figure 1: Bend testing of a rectangular bar under a) three-point bend and b) four-point bend arrangements.

    Considering a three point bend test of an elastic material, when the load P is applied at the

    midspan of specimen in an x-y plane, stress distribution across the specimen width (w = 2c) is

    demonstrated in figure 3 a). The stress is essentially zero at the neutral axis N-N. Stresses in the y

    axis in the positive direction represent tensile stresses whereas stresses in the negative direction

    represent compressive stresses. Within the elastic range, brittle materials show a linear relationship of

    load and deflection where yielding occurs on a thin layer of the specimen surface at the midspan.

    This in turn leads to crack initiation which finally proceeds to specimen failure. Ductile materials

    however provide load-deflection curves which deviate from a linear relationship before failure takes

  • 7/29/2019 04_Bend_en

    3/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 3

    T. Udomphol

    place as opposed to those of brittle materials previously mentioned. Furthermore, it is also difficult to

    determine the beginning of yielding in this case. The stress distribution of a ductile material after

    yielding is given in figure 3 b). Therefore, it can be seen that bend testing is not suitable for ductile

    materials due to difficulties in determining the yield point of the materials under bending and the

    obtained stress-strain curve in the elastic region may not be linear. The results obtained might not be

    validated. As a result, the bend test is therefore more appropriate for testing brittle materials whose

    stress-strain curves show its linear elastic behaviour just before the materials fail.

    Figure 2:Example of a weld plate bend tested under athree-point bend arrangement.

    Figure 3: Stress distributions in a rectangular bar when a) elastically bended and b) after yielding [1].

  • 7/29/2019 04_Bend_en

    4/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 4

    T. Udomphol

    For brittle materials having a liner stress-strain relation, the fracture stress (f) can be

    determined from the fracture stress in bending according to a linear elastic beam analysis as shown in

    equation 1

    22

    3

    tc

    M

    I

    Mcf == (1)

    3

    2 3tcI =

    (2)

    where M is the bending moment

    c is half of the specimen width as shown in figure 1

    t is the thickness of the specimen as shown in figure 1

    I is the moment of inertia of the cross-sectional area

    Under there-point bending as shown in figure 1 a) when the load Pis applied at the midspan

    of a rectangular bar of a length L between the two rollers, the highest bending moment at the midspan

    is equal to

    4

    PLM = (3)

    We then have

    22

    2

    3

    8

    3

    tw

    LP

    tc

    LP fffb == (4)

    where fb

    is the calculated fracture stress

    Pf

    is the fracture load obtained from the bending test

    w is the width of the specimen of length = 2c

    The fracture stress in bending is called the bend strength or flexure strength, which is

    equivalent to the modulus of rupture in bending. The bend strength is slightly different from the

    fracture stress obtained from the tensile test if failure takes place further away from yielding.

    However, brittle materials possess higher strength in compression than in tension. The material

  • 7/29/2019 04_Bend_en

    5/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 5

    T. Udomphol

    failure under bending is therefore owing to the tensile stresses especially along the surface opposite to

    the load direction.

    The determination of the yield strength (y) is carried out by replacing the load at yielding P

    f

    in equation 4. The yielding load is determined at the definite yield point or at certain % offset.

    Hence, we now have the yield strength in equation 5. It should be noted that the yield strength

    obtained from the bend test is not different from the yield strength achieved from the tensile test. This

    is because the relationship between the load and the deflection remains linear at yielding.

    22

    3

    tw

    LPyo = (5)

    Moreover, from the experimental result, we can also obtain the elastic modulus of the

    material according to the linear-elastic analysis. The deflection of the beam (v) from the center as

    illustrated in figure 3 can be expressed in equation 6

    EI

    PLv

    48

    3

    = (6)

    where the elastic modulus (E) can be calculated from the slope of the load-deflection curve

    )(dv

    dPin the linear region as follows

    )(32

    )(48 3

    33

    dv

    dP

    tc

    L

    dv

    dP

    I

    LE == (7)

    The elastic moduli achieved from the bend test are generally close to the elastic moduli

    obtained from tension and compression using the same material. However, there are several factors

    that might affect the elastic moduli, which are 1) elastic and plastic deformation at the rollers at the

    supports or the loading points might not be sufficiently small in comparison to the beam deflection.

    2) If a short specimen is bend tested, deformation due to shear stress may take place, which are not

    ideal for the calculation according to the beam theory. 3) Materials might have different elastic

    moduli under bending, tension and compressive. Therefore, the elastic moduli in bending should be

    identified to any avoid confusions for the interpretation of the mechanical behaviour of the material.

  • 7/29/2019 04_Bend_en

    6/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 6

    T. Udomphol

    According to figure 4 b), Finite Element Analysis (FEM) of a rectangular bar when the load P

    is applied. Under three point bending, strain is confined in the midspan area of the specimen which

    finally leads to yielding of the bar.

    Figure 4: a) Deflection of the beam and b) Finite Element Analysis (FEM) for three-point bending.

  • 7/29/2019 04_Bend_en

    7/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 7

    T. Udomphol

    2. Experimental procedure

    2.1 Bend specimens

    2.2 Micrometer or vernia caliper

    2.3 Permanent pen

    2.4 Universal testing machine

    3. Experimental procedure

    3.1 Measure the width and thickness of the specimen including the span length in the table

    provided for the calculation of the stress and elastic modulus. Mark on the locations where

    the load will be applied under three-point bending.

    3.2 Bend testing is carried out using a universal testing machine until failure takes place.

    Construct the load-extension or load-deflection curve if the dial gauge is used.

    3.3 Calculate the bend strength, yield strength and elastic modulus of the specimen

    3.4 Describe the failure under bending and sketch the fracture surfaces in the table provided.

    3.5 Discuss the obtained experimental results and give conclusions.

  • 7/29/2019 04_Bend_en

    8/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 8

    T. Udomphol

    4. Results

    Description Specimen 1 Specimen 2

    Thickness, t(mm)

    Width, w (mm)

    Span length,L (mm)

    Fracture load,Pf(N)

    Load at yielding,Pf

    (N)

    Bend strength, fb

    (MPa)

    Yield strength in bending, yb

    (MPa)

    Elastic modulus (GPa)

    Fracture details

    Table 1: Experimental data for bend testing of materials

  • 7/29/2019 04_Bend_en

    9/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 9

    T. Udomphol

    Figure 5:Load-deflection curves of the tested specimens

  • 7/29/2019 04_Bend_en

    10/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 10

    T. Udomphol

    5. Discussion

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/29/2019 04_Bend_en

    11/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 11

    T. Udomphol

    6. Conclusions

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/29/2019 04_Bend_en

    12/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 12

    T. Udomphol

    7. F (Questions)

    7.1 Explain how did cast iron fail under bending? Would it be different from a failure of

    aluminium under bending?

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    7.2 What do you expect if the bending experiment has been carried out at elevated temperatures?

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    ____________________________________________________________________________________________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

  • 7/29/2019 04_Bend_en

    13/13

    Laboratory 4: Bend testing

    Mechanical Metallurgy Laboratory 431303 13

    7.3 Give three examples of engineering applications which involve bending properties of the

    materials.

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    __________________________________________________________________________________

    8. F (References)

    8.1 Dowling, N.E., Mechanical behavior of materials: Engineering methods for deformation,

    fracture and fatigue, 2nd

    edition, 1999, Prentice Hall, ISBN-0-13-010989-4.

    8.2 Hibbleler, R.C.,Mechanics of materials, SI second edition, 2005, Prentice Hall, ISBN 0-13-

    186-638-9.