04 Pipelined

19
Ain Shams University 3/5/2009 M. Dessouky - Integrated Circuits Lab. 1 Pipeline Pipelined ADC ADC Mohamed Dessouky Ain Shams University I.C. Lab. M. Dessouky - ASU - ICL 2 Flash Two-step Pipelined Interpolating Folding Time-interleaved Successive Approximation Algorithmic Integrating (Rampfunction) Delta-Sigma High Speed, Low-to-Medium Resolution Medium Speed, Medium Resolution Low-to-Medium Speed, High Resolution ADC Architectures ADC Architectures Speed , Resolution

Transcript of 04 Pipelined

Page 1: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 1

PipelinePipelinedd ADCADC

Mohamed DessoukyAin Shams University

I.C. Lab.

M. Dessouky - ASU - ICL2

Flash

Two-step

Pipelined

Interpolating

Folding

Time-interleaved

Successive Approximation

Algorithmic

Integrating(Rampfunction)

Delta-Sigma

High Speed,Low-to-Medium Resolution

Medium Speed,Medium Resolution

Low-to-Medium Speed,High Resolution

ADC ArchitecturesADC Architectures

Speed ↑↑↑↑ , Resolution ↓↓↓↓

Page 2: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 2

M. Dessouky - ASU - ICL3

ADC ApplicationsADC Applications

M. Dessouky - ASU - ICL4

ADC ArchitecturesADC Architectures

Page 3: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 3

M. Dessouky - ASU - ICL5

OutlineOutline

• Introduction

• Stage Errors

• Digital Error Correction

• Example

M. Dessouky - ASU - ICL6

Flash ADC (Flash ADC (ParallelParallel) )

• Input is simultaneously compared with 2N–1 reference voltages.• Reference voltages typically derived from a resistor string.

Page 4: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 4

M. Dessouky - ASU - ICL7

TwoTwo--StepStep ADC ADC –– OperationOperation

0111 Result_____ 0011 LSB0100 MSB

+ 1 10

1

��

2nd ADCFine

DAC

V -DACin

1st ADCCoarse

M. Dessouky - ASU - ICL8

TwoTwo--StepStep ADCADC

• Number of comparators = 2M + 2Q – 2.• Example: # of comparators for 8 bits

– Flash = 28 – 1 = 255– Two-Step (5-5) = 24 + 24 – 2 = 30

• Compared to the Flash A/D converter, the two-step A/D converter trades speed for reduced complexity and power.

Page 5: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 5

M. Dessouky - ASU - ICL9

PipelinedPipelined ADCADC

• General extension of the two-step ADC with interstage gain.• Trade conversion speed for latency using interstage SHA• Speed is limited by conversion speed of one stage.

��

Multiplying-DAC (MDAC)

��

M. Dessouky - ASU - ICL10

PipelinedPipelined ADCADC

• Throughput is independent of the number of stages.• Number of components grows linearly with resolution.

Page 6: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 6

M. Dessouky - ASU - ICL11

Stage Transfer Stage Transfer FunctionFunction

• Consider a 3-bit pipeline, based on a 1 bit per stage topology.

refnrefninout VDVDVV +−= 2

��

Residue

��

M. Dessouky - ASU - ICL12

Precision MultiplyPrecision Multiply--byby--TwoTwo AmplifierAmplifier

21 CC =

floating

floating

������

• Phase φφφφ1: both capacitors are charged to Vin0.

• Phase φφφφ2: Since node X is floating, the second capacitor charge istransferred to the first one such that

02 inout VV =

Page 7: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 7

M. Dessouky - ASU - ICL13

Pipeline 1Pipeline 1--Bit Stage Bit Stage ImplementationImplementation

• In CMOS technologies, the gain, subtraction, and SHA functions are readily merged into a single SC block.

• A precision multiply-by-two amplifier. Instead of grounding C1, it is connected to ±Vref to perform the required subtractionthrough an inverting amplifier configuration.

• Digital correction is used to alleviate comparator requirements.

refnrefnnn VDVDVV +−=− 21

M. Dessouky - ASU - ICL14

OutlineOutline

• Introduction

• Stage Errors

• Digital Error Correction

• Example

Page 8: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 8

M. Dessouky - ASU - ICL15

The Contribution of Stage ErrorsThe Contribution of Stage Errors

• Input referred error:

• Each error must be < LSB/2:

• The first stage error is the most significant

1e

ke

2e

∑=

−+=k

iii

in Geee

211

×G ×G×G

112

−+≤ i

Ni GFSe

M. Dessouky - ASU - ICL16

Stage Stage ErrorsErrors

inVε

sfcycleDuty _ t

Settling error

ADC comparator errors

+

Offset

Residue

Gain/Nonlinearity error

AV

SV

DAC output errors

SHA2M

Page 9: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 9

M. Dessouky - ASU - ICL17

SubSub--ADC ErrorsADC Errors

• Offset, Gain, and Nonlinearity

• All move the decision levels of the ADC

• Digital correction & redundancy can eliminate such errors

• Only the last stage errors are not corrected. However, their

contribution to the overall ADC errors are divided by the

product of all inter-stage gains.

M. Dessouky - ASU - ICL18

SubSub--DAC ErrorsDAC Errors

• Offset: – Equivalent to an offset in the sub-ADC– Can be corrected by digital correction/redundancy

• Gain error:– Equivalent to gain error in the sub-ADC + inter-stage

gain error– Gain error in the sub-ADC can be corrected by digital

correction/redundancy– Inter-stage SHA gain error, see later

Page 10: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 10

M. Dessouky - ASU - ICL19

SubSub--DAC Errors (contd.)DAC Errors (contd.)

• Nonlinearity: Error that depends on the DAC output– Must be < LSB/2

N-M(i-1) ≡ The number of bits remaining to be determined by the stage i and the following stages

– The DAC in each stage must be at least as linear as the combined resolution of this and the later stages.

– The first stage DAC must be as linear as the entire ADC.– 1-bit DACs are inherently linear

1111 22 +−+− ≤≤∴ Nii

Nii FS

GFS

Gδδ or

( )[ ] 1122 +−−≤∴= iMNi

M FSG δ s

M. Dessouky - ASU - ICL20

SHA Gain ErrorsSHA Gain Errors

• Offset:– Equivalent to DAC offsets– Can be corrected by digital correction/redundancy

• Gain error:– In the first stage, no quantization has occurred yet, SHA

gain error just causes ADC gain error.– In the following stages, the resulting error must be at

least as linear as the combined resolution of this and the later stages.

• Nonlinearity error:– Same as the gain error, but includes also the first stage.

Page 11: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 11

M. Dessouky - ASU - ICL21

Errors SummaryErrors Summary

≤ Resolution of this and following stagesNonlinearity

≤ Resolution of this and following stagesGain

digital correctionOffsetSHA

≤ Resolution of this and following stagesNonlinearity

digital correction + SHA Gain errorGain

digital correctionOffsetDAC

digital correctionOffset, Gain, & Nonlinearity

Sub-ADC

RequirementErrorBlock

M. Dessouky - ASU - ICL22

OutlineOutline

• Introduction

• Stage Errors

• Digital Error Correction

• Example

Page 12: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 12

M. Dessouky - ASU - ICL23

Input rangeextension withone additionalbit

Digital Digital ErrorError Correction in 2Correction in 2--stepstep ADC: ADC: IdeaIdea

Out of range(underflow)

��

M. Dessouky - ASU - ICL24

Offset

Digital Digital ErrorError Correction in 2Correction in 2--stepstep ADC: ADC: ProcedureProcedure

0111 Result_____ 0010 Offset0001 LSB1000 MSB

−+

10 1

100

0

Input rangeextension withone additionalbit��

����

�� ±2 LSB of comparator offset can be tolerated in the coarse ADC.

Page 13: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 13

M. Dessouky - ASU - ICL25

Digital Digital ErrorError CorrectionCorrection

• 1-bit pipeline stage.• Offset in sub-ADC transition level (Vth = 0V) causes the output

to exceed the output range ±±±±Vref.• To solve this problem

– Extend output range and use extra bit for correction! – Decrease the interstage gain to maintain the output range

±±±±Vref.

��

M. Dessouky - ASU - ICL26

Residue 2nd stage

V1

Residue 1st stage

V1

Digital Digital ErrorError Correction: Correction: IdeaIdea3-bit PipelinedADC

Digital Correction

110 Result_____ 001 Offset001 LSB110 MSB

−+ 1

10 1

10

1 extra bit for correction

Lower gain2 instead of 22 = 4

��

V1

2 bits 1 bit

refV=×∆ 2

222

2 2refref

N

VVFS ===∆

2refV

+

2refV

Page 14: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 14

M. Dessouky - ASU - ICL27

Residues

Digital Digital ErrorError Correction: Correction: withwith OffsetOffset

1/4 Vref

1/4 Vref

����

110 Result_____ 001 Offset011 LSB100 MSB

−+ 1

1

10

0 1

• First ADC error can be as large as ¼ Vref and still in input range.• Both addition and subtraction operations are needed.• To use only addition, subtract the offset from the input signal

directly.• Offset = 1 LSB = 2 Vref / 23 = Vref / 4.

Same input 110

M. Dessouky - ASU - ICL28

Digital Digital ErrorError Correction: Correction: ModifiedModified StageStage

• To use only adders in the digital error correction circuit.• Add intentional –¼ Vref = 1 LSB offset at the input.• Can be transferred as –¼ Vref offset at input and output of

ADC/DAC in circuit implementations.��

Page 15: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 15

M. Dessouky - ASU - ICL29

Digital Digital ErrorError Correction: Correction: ModifiedModified StageStage

Residues

����

• With ¼ Vref offset at input, no need for offset subtraction.• First ADC error can be as large as ¼ Vref and still corrected.• Since the last segment in the first stage (11) is redundant,

i.e. can be corrected for, we can totally remove it.

110 Result_____ 010 LSB100 MSB

+ 10

10

Same input 110

��

M. Dessouky - ASU - ICL30

Digital Digital ErrorError Correction: 1.5 bit/stageCorrection: 1.5 bit/stage

• Only two levels or 1.5 bits.• Equivalent to 2 bits with correction in the following stage.• Most popular pipeline stage. Only 2 comparators.• For N-bit converter with 1.5 bit/stage, N-1 stages are

required: The first stage provides 2 bits, while other stages provide only 1 bit each reserving the second bit for digital correction.

Residue

Page 16: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 16

M. Dessouky - ASU - ICL31

001

d1

2* Vin + Vref-Vref0Vin<-Vref/42* Vin01-Vref/4<Vin<Vref/4

2* Vin - VrefVref0Vin>Vref/4

ResidueDAC Outputd0Vin

1.5 bit/stage: Transfer 1.5 bit/stage: Transfer FunctionFunction

Vref

-Vref

Vref/4

-Vref/400

01

10

thresholds

M. Dessouky - ASU - ICL32

1.5 bit/stage: SC 1.5 bit/stage: SC ImplementationImplementation

��

Page 17: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 17

M. Dessouky - ASU - ICL33

OutlineOutline

• Introduction

• Stage Errors

• Digital Error Correction

• Example

M. Dessouky - ASU - ICL34

ExampleExample: 10: 10--bit ADC bit ADC –– 1.5 bit/stage1.5 bit/stage

• 9 stages.• First stage gives two bits• Stage 2 to 9 give one bit + one bit for digital correction of

the previous stage.

Page 18: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 18

M. Dessouky - ASU - ICL35

ExampleExample: 10: 10--bit ADC bit ADC –– Last StageLast Stage

• The Nth stage cannot be digitally corrected (since there are no following stages)

• It is implemented by only a Flash ADC– have standard thresholds. – If digitally corrected offsets are used, the top code

1111… will be missing which is typically not critical.

Vref

-Vref

Vref/4

-Vref/400

01

10Vref

-Vref

Vref/2

-Vref/2

0

00

01

10

11

2-bit flash standard thresholds2-bit digital-correction thresholds

M. Dessouky - ASU - ICL36

Number of bits/StageNumber of bits/Stage

• Tradeoff between speed, power, and accuracy of each stage. • For fewer number of bits per stage,

+ the sub-ADC comparator requirements are more relaxed+ the inherent speed of each stage is faster because the

inter-stage gain is lower allowing higher speed due to the fundamental gain-bandwidth tradeoff of amplifiers.

– more stages are required if there are fewer bits per stage. – the noise and gain errors of the later stages contribute

more to the overall converter inaccuracy because of the low inter-stage gain.

• High-speed, low-resolution specifications favor a low number of bits per stage.

• Low-speed, high-resolution specifications tend to favor higher number of bits per stage.

Page 19: 04 Pipelined

Ain Shams University 3/5/2009

M. Dessouky - Integrated Circuits Lab. 19

M. Dessouky - ASU - ICL37

ReferencesReferences• Bruce Wooley & Katelijn Vleugels, « EE315: VLSI Data Conversion

Circuits – Handouts », Department of Electrical Engineering, Stanford University, http://www.stanford.edu/class/ee315/

• Paul G. A. Jespers, « Integrated Converters: D to A and A to D Architectures, Analysis and Simulation », Oxford University Press, 2001.

• Georges Chien, «High-Speed, Low-Power, Low Voltage PipelinedAnalog-to-Digital Converter », M.Sc., University of California, Berkeley, 1996.

• S. Lewis, «Optimizing the Stage Resolution in Pipelined, Multistage, Analog-to-Digital Converters for Video-Rate Applications», IEEE TCAS-II, Vol. 39, No. 8, August 1992.

• Andrew Masami Abo, «Design for Reliability of Low-voltage, Switched-capacitor Circuits », Ph.D., University of California, Berkeley, 1999.

• Behzad Razavi, « Design of Analog CMOS Integrated Circuits », McGraw-Hill, 2001.