03_PDE_cyl

download 03_PDE_cyl

of 45

Transcript of 03_PDE_cyl

  • 8/12/2019 03_PDE_cyl

    1/45

    Boundary Value Problems in Cylindrical

    Coordinates

    Y. K. Goh

    2009

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    2/45

    Outline

    Differential Operators in Various Coordinate Systems

    Laplace Equation in Cylindrical Coordinates Systems

    Bessel Functions

    Wave Equation the Vibrating Drumhead

    Heat Flow in the Infinite Cylinder

    Heat Flow in the Finite Cylinder

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    3/45

    Differential Operators in Various Coordinates

    Differential Operators in VariousCoordinates

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    4/45

    Differential Operators in Polar Coordinates

    Polar Coordinates x= r cos , y=r sin r2 =x2 +y2, tan = yx

    Differential relations r

    x = xr , x = yr2 , and 2r

    x2 = y2

    r3 , 2

    x2 = 2xyr4 ry =

    yr ,

    y =

    xr2

    , and 2r

    y2 = x

    2

    r3,

    2y2

    = 2xyr4

    2

    x2+

    2

    y2 = 0, and

    x

    r

    x+

    y

    r

    y = 0

    Differential operators ux = cos

    ur

    sin r

    u , and

    uy = sin

    ur +

    cos r

    u

    2u=2u

    x2+

    2u

    y2 =

    2u

    r2 +

    1

    r

    u

    r +

    1

    r22u

    2

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    5/45

    Laplacian in Various Coordinates

    Polar Coordinates (r, ) : x=r cos , y=r sin

    2u=2u

    r2 +

    1

    r

    u

    r +

    1

    r22u

    2

    Cylindrical Coordinates (,,z) : x= cos , y= sin , z =z

    2u=1

    u

    +

    1

    22u

    2+

    2u

    z2

    Spherical Coordinates (r,,) : x=r cos sin , y =r sin sin , z=r cos 2u=

    1

    r2

    r

    r2

    u

    r

    +

    1

    r2 sin

    sin

    u

    +

    1

    r2 sin2

    2u

    2

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    6/45

  • 8/12/2019 03_PDE_cyl

    7/45

    Dirichlet Problems on a Disk or inside Inf Cylinder

    A Dirichlets problem inside a Disk or Infinite Cylinder

    Variables u(,,z) =u(r, ).

    PDE

    2u=2u

    r2+

    1

    r

    u

    r+

    1

    r22u

    2 = 0, 0< r < L,0

  • 8/12/2019 03_PDE_cyl

    8/45

    Dirichlet Problems on a Disk or inside Inf Cylinder

    Separation of variables

    u(r, ) =R(r)() = R

    R +

    1

    r

    R

    R =

    =.

    Sturm-Liouville Eq. associated to is Harmonic Eq.

    + = 0, 0

  • 8/12/2019 03_PDE_cyl

    9/45

    Dirichlet Problems on a Disk or inside Inf Cylinder

    ODE associated to R is a Euler Equation

    r2R +rR R= 0, 0< r < L.

    R(r) = C0+D0ln r for= 0;Cnrn +Dnrn, forn= 0, n= 1, 2, . . . .

    Regularity condition: |u| is finite in 0< r < L requiresthatD0=Dn= 0, because ln r andr

    n as r 0.

    A general solution 0< r < Land 0

  • 8/12/2019 03_PDE_cyl

    10/45

    Dirichlet Problems on a Disk or inside Inf Cylinder

    Coefficients

    a0= 1

    2

    20

    f() d

    anLn =

    1

    2 2

    0

    f()cos nd

    bnLn =

    1

    2

    20

    f()sin nd

    A complex form of the general solution is

    u(r, ) =

    n=

    cnr|n|ein, 0< r < L, 0

  • 8/12/2019 03_PDE_cyl

    11/45

    Neumann Problems on a Disk or inside Inf Cylinder

    A Neumanns problem on a Disk or inside Infinite Cylinder

    Variables u(,,z) =u(r, ).

    PDE

    2u=2u

    r2+

    1

    r

    u

    r+

    1

    r22u

    2 = 0, 0< r < L,0 L, 0

  • 8/12/2019 03_PDE_cyl

    12/45

    Neumann Problems on a Disk or inside Inf Cylinder

    General solution

    u(r, ) =a0

    2 +

    n=0

    (anrn cos n+bnr

    n sin n)

    Boundary condition

    ur

    r=L

    =n=1

    annLn1 cos n+bnnLn1 sin n

    = f()

    Coefficients

    annLn1 =

    1

    2 2

    0f()cos nd

    bnnLn1 =

    1

    2

    2

    0f()sin nd

    Note that the B.C. must satisfies

    20

    f() d= 0

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    13/45

    Dirichlet Problems outside a Disk or Inf. Cylinder

    A Dirichlets problem outside a Disk or Infinite Cylinder

    Variables u(,,z) =u(r, ).

    PDE

    2u= 2u

    r2 +1

    rur

    + 1r2

    2u2

    = 0, r > L, 0 L, 0

  • 8/12/2019 03_PDE_cyl

    14/45

  • 8/12/2019 03_PDE_cyl

    15/45

    Neumann Problems outside a Disk or Inf Cylinder

    A Neumanns problem outside a Disk or Infinite Cylinder

    Variables u(,,z) =u(r, ).

    PDE

    2u= 2u

    r2 +1

    rur

    + 1r2

    2u2

    = 0, r > L, 0 L, 0

  • 8/12/2019 03_PDE_cyl

    16/45

  • 8/12/2019 03_PDE_cyl

    17/45

  • 8/12/2019 03_PDE_cyl

    18/45

    Robins Problem on a Wedge

    A Robins problem on a wedge

    Variables u(,,z) =u(r, ).

    PDE+ B.C..

    2

    u=

    2u

    r2+

    1

    r

    u

    r +

    1

    r22u

    2 = 0, 0< r < L, 0 < . u(r, 0) =u(r, ) = 0, 0< r < L;

    r u(L, ) = u(L, ) , 0 < .

    Solution u(r, ) =

    n=1

    bn

    rn

    sinn

    where

    bn= 22(1)n

    nL(+n)

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    19/45

    Bessel Functions

    Bessels functions have wide application in mathematics,especially when dealing with cylindrical symmetry or cylindricalcoordinate systems.

    Definition (Bessels functions & Bessels equation)Bessels functions J orYare solutions to the Besselsequation of order

    x2y +xy + (x2 2)y= 0. (1)

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    20/45

    Bessel Functions

    If we seek a series solution about x= 0for the Besselsequation, then

    y(x) =

    n=

    anxn+r, an= 0forn

  • 8/12/2019 03_PDE_cyl

    21/45

    Bessel Functions

    If2 is not an integer,

    two linearly independent solutions for Eq.(1)are

    y1(x) =x

    1 x

    2

    2(2+2) + x4

    2(4)(2+2)(4+2) +. . . y2(x) =x

    1 x

    2

    2(22) + x4

    2(4)(22)(42) +. . .

    After normalizing the solutions, we obtain the general solution to the Bessels equation

    y(x) =c1J(x) +c2J(x), where

    J(x) y1(x); and J(x) y2(x); and

    J(x) is called the Bessels functions of the first kind.

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    22/45

    Bessel Functions

    Definition (Bessels functions of the first kind)The Bessels function of the first kind of order is defined as

    J(x) =

    n=0

    (1)n

    x2

    +2n

    n!(n+)!

    = 1

    !(

    1

    2x)

    1

    (x2

    )2

    + 1+

    (x2

    )4

    2(+ 1)(+ 2)+. . .

    .

    Definition (Gamma/factorial function)For is not an integer, ! is defined as

    ! (+ 1)

    0

    tet dt.

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    23/45

    Bessel Functions

    If2 is an integer, and =N+ 1

    2, for some integer N 0,

    the resulting functions are called spherical Besselsfunctions

    jN(x) = (/2x)1/2JN+1/2(x) (We will come back to speherical Bessels function later)

    =N, for some integer N 0, JN(x) = (1)

    NJN(x) is linearly dependent to JN(x);

    a linearly independent second solution is YN(x) and it iscalled the Bessels function of the second kind; now the general solution of Eq.(1) is

    y(x) =c1JN(x) +c2YN(x).

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    24/45

    Bessel Functions

    Definition (Bessels functions of the second kind)The Bessels function of the second kind of order is definedas

    Y(x) = J(x) cos() J(x)

    sin() .

    If=N, for some integer N 0, then

    YN(x) = limNY(x).

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    25/45

    Bessel Functions

    A variation of Bessels equation of order is of the form,

    x2y +xy + (2x2 2)y = 0 (2)

    Eq.(2) can be converted to the standard BesselsEquation by defining new variable t=x.

    The general solution is

    y(x) =c1J(x) +c2Y(x).

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    26/45

    Bessel Functions

    A modified Bessels Equation is of the formx2y +xy (x2 +2)y= 0. (3)

    The general solution to modified Bessels equation is

    y(x) = c1J(ix) +c2Y(ix); or

    y(x) = c1I(x) +c2K(x).

    Definition (Modified Bessels functions)

    First kind I(x) =iJ(ix) =

    n=0

    (x

    2

    )+2n

    n!(n+)! ;

    Second kind K(x) = limr

    Ir(x)cos r Ir(x)

    sin r .

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    27/45

    Bessel Functions

    A variation of modified Bessels Equation is of the form

    x

    2

    y

    +xy

    (

    2

    x

    2

    +

    2

    )y= 0, (4)

    with the general solution

    y(x) =c1I(x) +c2K(x).

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    28/45

    Bessel Functions

    Figure: Bessels functions of thefirst kind, Jn(x).

    Figure: Bessels functions of thesecond kind, Yn(x).

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    29/45

    Bessel Functions

    Figure: Modified Besselsfunctions of the first kind, In(x).

    Figure: Modified Besselsfunctions of the second kind,Kn(x).

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    30/45

    Bessel Functions

    Another representation of the Bessels functions for integervalues of=N is in the integral form

    JN(x) =

    1

    0 cos(N x sin ) d

    YN(x) = 1

    0

    sin(x sin N ) d

    1

    0

    e

    N

    + (1)

    N

    e

    Ne

    x sinh

    d

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    31/45

    Bessel Functions

    Also the Bessels functions could be generated from thegenerating function

    e(x/2)(t1/t) =

    n=

    Jn(x)tn

    eiz cos =

    n=

    inJn(z)ein

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    32/45

    Bessel Functions

    Recursion relations of Bessels functions

    d

    dx[xJ(x)] =x

    J1(x)

    ddx [xJ(x)] = xJ+1(x)

    J1(x) +J+1(x) =2

    xJ(x)

    J1(x) J+1(x) = 2J(x)

    J(x) = xJ(x) +J1(x) =

    xJ(x) J+1(x)

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    33/45

    Bessel Functions

    Orthogonality properties of Bessels functions: If and are two roots ofJ, then

    1

    0

    xJ(x)J(x) dx = ,

    2

    J2+1()

    = ,

    2 J2()

    Thus, the generalized Fourier series in terms ofJ is

    f(x) =

    n=1

    cnJ(nx), and where the coefficient is given

    bycn=R1

    0 xf(x)J(nx) dxR10 xJ2 (nx) dx

    = 2J2+1

    (n)

    1

    0 xf(x)J(nx) dx.

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    34/45

    The Vibrating Drumhead (Radial Symmetric I.C.)

    The vibrating of a thin circular membrane with uniform densitywith radial symmetric initial conditions is given by

    PDE: 2u

    t2 =c22u

    r2 +

    1

    r

    u

    r , 0< r < , t >0.

    B.C.: u(, t) = 0, t 0;

    I.C.: u(r, 0) =f(r), u

    r(r, 0) =g(r), 0< r < .

    The initial conditions are said to be radial symmetric asf andg are depend only on r but not .

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    35/45

    The Vibrating Drumhead (Radial Symmetric I.C.)

    Separation of variables:

    u(r, t) =R(r)T(t) = T

    c2T =

    1

    R(R +

    1

    rR) = 2.

    The ODEs and corresponding B.C.

    rR +R +2rR = 0, R() = 0 (5)

    T +c22T = 0 (6)

    Solutions to ODEs R(r) =c1J0(r) +Y0(r)

    Since u is bounded near r= 0, this gives c2= 0; B.C.R() = 0 = J0() = 0; Let n, n= 1, 2, . . . be the roots ofJ0, then

    =n= n , n= 1, 2, . . . .

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    36/45

    The Vibrating Drumhead (Radial Symmetric I.C.)

    Non-trivial solutions to the ODEsRn(r) = J0(nr) =J0

    n

    r

    , n= 1, 2, . . . ,

    Tn(t) = Ancos cnt+Bnsin cnt

    General solution and coefficients

    u(r, t) =n=1

    (Ancos cnt+Bnsin cnt)J0(nr) ,

    An =

    2

    2J21 (n) 0 f(r)J0(nr)r dr,

    cnBn = 2

    2J21 (n)

    0

    g(r)J0(nr)r dr.

    Y. K. GohBoundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    37/45

    The Vibrating Drumhead (Asymmetric I.C.)

    The vibrating of a thin circular membrane with uniform densitywith asymmetric initial conditions is given by

    PDE: 2u

    t2 =c2

    2u

    r2 +

    1

    r

    u

    r +

    1

    r22u

    2 ,0< r < ,0 0.

    B.C.: u(,,t) = 0, 0

  • 8/12/2019 03_PDE_cyl

    38/45

    The Vibrating Drumhead (Asymmetric I.C.)

    Separation of variables: u(r,,t) =R(r)()T(t) =Tc2T

    = R

    R + R

    rR+

    r2= 2; and

    r2R+rR+r2RR

    =

    =2.

    The ODEs and corresponding B.C.

    +2

    = 0, (0) = (2),

    (0) =

    (2)r2R +rR + (2r2 2)R= 0, R() = 0

    T +c22T = 0

    Solutions to ODEsmn= mn

    andmn isn

    th root ofJm.

    () = m() =Amcos m+Bmsin m, m= 0, 1, 2, . . .

    R(r) =Rmn(r) =Jm(mnr), m= 0, 1, 2, . . . , n= 1, 2, . . .

    T(t) =Tmn(t) =Amncos cmnt+Bmnsin cmnt.Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    39/45

    The Vibrating Drumhead (Asymmetric I.C.)

    General solution u(r,,t) and coefficients

    u =

    m=0

    n=1

    Jm(mnr)(amncos m+bmnsin m)cos cmnt

    +

    m=0

    n=1

    Jm(mnr)(amncos m+b

    mnsin m)sin cmnt

    a0n = 1

    2J21 (0n)

    0

    20

    f(r, )J0(0nr) rdrd

    amn = 22J2m+1(mn)

    0

    20

    f(r, )cos mJm(mnr) rdrd

    bmn = 2

    2J2m+1(mn)

    0 2

    0

    f(r, ) sin mJm(mnr) r dr d

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    40/45

    The Vibrating Drumhead (Asymmetric I.C.)

    a0n = 1

    2

    J

    2

    1 (0n)

    0

    2

    0

    g(r, )J0(0nr) rdrd

    amn = 2

    2J2m+1(mn)

    0

    20

    g(r, )cos mJm(mnr) rdrd

    bmn = 2

    2J2m+1(mn)

    0

    2

    0

    g(r, )sin mJm(mnr) rdrd

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    41/45

    Heat Flow in the Infinite Cylinder (Radial Sym.)

    The radial flow of heat in a infinite cylinder or on a disk withlateral surface is kept at zero temperature is given by

    PDE:

    u

    t =c

    22ur2 +

    1

    r

    u

    r

    , 0< r < , t >0. B.C.: u(, t) = 0, t 0;

    I.C.: u(r, 0) =f(r), 0< r < .

    The initial conditions are said to be radial symmetric as

    f is depend only on r.

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    42/45

    Heat Flow in the Infinite Cylinder (Radial Sym.)

    Separation of variables:u(r, t) =R(r)T(t) =

    T

    c2T =

    1

    R(R +

    1

    rR) = 2.

    The ODEs and corresponding B.C.

    rR

    +R

    +2

    rR = 0, R() = 0T +c22T = 0.

    Solutions to ODEs

    Rn(r) = AnJ0(nr)Tn(t) = Cne

    c22nt

    n = n/, n= 1, 2, . . . , n are roots ofJ0.

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    43/45

    Heat Flow in the Infinite Cylinder (Radial Sym.)

    General solution and coefficients

    u(r, t) =

    n=1

    anJ0(nr)ec2

    2

    nt,

    an = 2

    2J21 (n)

    0

    f(r)J0(nr)r dr.

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    44/45

    Heat Flow in a Finite Cylinder

    The heat flow in a finite cylinder of radius and height 2hwith lateral surface and bases are kept at zero temperature isgiven by

    PDE: ut

    =c2

    2ur2

    +1r

    ur

    + 1r2

    2u2

    +2u

    z2

    ,

    0< r < ,0 0.

    B.C.: u(,,z,t) =u(r,,h, t) =u(r,,h,t) = 0,

    I.C.: u(r,,z, 0) =f(r,,z).

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/
  • 8/12/2019 03_PDE_cyl

    45/45

    Heat Flow in a Finite Cylinder

    Separation of variables: u(r,,z,t) =R(r)()Z(z)T(t)

    The general solution

    u(r,,z,t) =

    m=0

    n=1

    k=1

    { ec2(2mn+

    2k)tJm(mnr)sin k(z+h)

    (Amnkcos m+Bmnksin m) }

    Y. K. Goh

    Boundary Value Problems in Cylindrical Coordinates

    http://find/