030-050 Water-Cooled Packaged Chillers€¦ · with Helical Rotary Screw Compressors Installation,...

58
Form No. 6168 Water-Cooled Packaged Chillers with Helical Rotary Screw Compressors Installation, Operation & Maintenance Manual 030-050

Transcript of 030-050 Water-Cooled Packaged Chillers€¦ · with Helical Rotary Screw Compressors Installation,...

Form No. 6168

○ ○ ○ ○ ○ ○ ○ ○ ○ ○○

○○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Water-Cooled Packaged Chillerswith Helical Rotary Screw CompressorsInstallation, Operation & Maintenance Manual

030-050

2

TABLE OF CONTENTS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Page1.0 General Information

1.1 Introduction ................................................................................................................................................51.2 Product Identification .................................................................................................................................51.3 Physical Specifications: 60 HZ ................................................................................................................ 6-81.4 Physical Specifications: 50 HZ .............................................................................................................. 9-111.5 Dimensional Data ................................................................................................................................ 12-161.6 Application & Location Requirements

1.6.1 Chilled Water Flow .......................................................................................................................... 171.6.2 Ice Storage ...................................................................................................................................... 171.6.3 Multiple Unit Control ...................................................................................................................... 171.6.4 Water Cooled Condensers ............................................................................................................... 171.6.5 Condensing Water Treatment .......................................................................................................... 181.6.6 Foundation ...................................................................................................................................... 181.6.7 Vibration Isolation ........................................................................................................................... 181.6.8 Location and Installation Suggestions ............................................................................................. 181.6.9 Equipment Location and Unit Security ............................................................................................ 181.6.10 Cooler - Freeze Protection ............................................................................................................... 181.6.11 Electrical Connection Options ......................................................................................................... 181.6.12 Low Voltage Units ........................................................................................................................... 181.6.13 Medium Voltage Units .................................................................................................................... 181.6.14 Power Sources ................................................................................................................................. 181.6.15 Unit and Field Mount Disconnects .................................................................................................. 181.6.16 Control Circuits ............................................................................................................................... 18

1.7 Starter & Control Panels1.7.1 Solid State Reduced Voltage Starters .......................................................................................... 19-211.7.2 Wye-Delta Starters ........................................................................................................................... 211.7.3 Across-The-Line Starters .................................................................................................................. 21

2.0 Installation2.1 General Installation ...................................................................................................................................222.2 Inspection .................................................................................................................................................. 222.3 Handling, Storage & Rigging ....................................................................................................................22

2.3.1 General ���� Handling Instructions ............................................................................................ 222.3.2 Storage ........................................................................................................................................... 222.3.3 ���� Rigging and Moving ........................................................................................................... 22

2.4 Space and Clearance Requirements ..........................................................................................................232.4.1 General Space and Clearance Requirements .................................................................................... 232.4.2 Location and Clearance Drawing ..................................................................................................... 23

2.5 Foundation or Mounting Structure ..........................................................................................................242.5.1 ���� Unit Weights, Point Loading and Center of Gravity — English I.P. Units ............................. 242.5.2 ���� Unit Weights, Point Loading and Center of Gravity — S.I. Units ......................................... 25

2.6 Sound and Vibration Isolation .................................................................................................................. 262.6.1 ���� Spring Vibration Isolators and Locations ............................................................................ 26

2.7 Water Piping Connections ......................................................................................................................... 272.7.1 ���� Chilled Water Piping ........................................................................................................... 27

Figure 27A Chilled Water Piping - Three-Way Load Side By-Pass ..................................................... 27Figure 27B Chilled Water Piping - Two-Way Load Side By-Pass ....................................................... 27

2.7.2 Multiple Chillers Per Chilled Water System ...................................................................................... 282.7.2.1 Load is Greater than one ���� can Handle .............................................................. 282.7.2.2 Parallel Chiller Applications ........................................................................................ 28Figure 28A Parallel Chiller Chilled Water Piping Schematic ........................................................... 282.7.2.3 Series Chiller Applications .......................................................................................... 28Figure 28B Series Chiller Chilled Water Piping Schematic ............................................................. 282.7.2.4 Oversizing Chillers ...................................................................................................... 282.7.2.5 Water (Fluid) Strainers ................................................................................................ 28

2.7.3 Cooler Design Data Guidelines ........................................................................................................ 292.7.3.1 Maximum Leaving Fluid Temperature ......................................................................... 292.7.3.2 Minimum Leaving Fluid Temperature .......................................................................... 292.7.3.3 Operating Leaving Temperature Range ....................................................................... 292.7.3.4 Minimum/Maximum Flow Rates ................................................................................. 292.7.3.5a Two Pass Coolers ........................................................................................................ 292.7.3.5b Single Pass Coolers ..................................................................................................... 292.7.3.5c Three Pass Coolers ...................................................................................................... 29

3

TABLE OF CONTENTS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2.7.3.6 Wide Range - Low Flow Chiller Operation .................................................................. 292.7.3.7 Extra Narrow and Wide Range Applications ............................................................... 29Figure 29A Wide Range - Low Flow By-Pass Piping Schematic ...................................................... 29Figure 29B Extra Narrow and Wide Range By-Pass Piping Schematic ........................................... 29

2.7.4 Chilled Fluid Loop Volume (CFLV) Guidelines ................................................................................... 30Table 30 Minimum Chilled Loop Volume Quick Reference Table ............................................... 30Figure 30A Single Loop System with Storage Tank ....................................................................... 30Figure 30B Primary and Secondary Loop Systems with Storage Tank ........................................... 30

2.7.5 Flooded Cooler Water Side Pressure Drop Curves ............................................................................ 312.7.6 Condenser Water Side Pressure Drop Curves ................................................................................... 322.7.7 Cooling Tower Control and Condenser Application Design Data ..................................................... 33

2.7.7.1 Cooling Tower Head Pressure Control ......................................................................... 332.7.7.2 Condenser Water Temperature ................................................................................... 332.7.7.3 Condenser Water Regulating Valves ........................................................................... 332.7.7.4 Cooling Tower and Head Pressure Control .................................................................. 332.7.7.5 Condenser Water Pump .............................................................................................. 332.7.7.6 Fan Cycling Tower Control .......................................................................................... 332.7.7.6.1 Minimum Entering Condenser Water Temperature ..................................................... 332.7.7.6.2 Maximum Entering Condenser Water Temperature .................................................... 332.7.7.6.3 Unit Operating Efficiency ............................................................................................ 332.7.7.6.4 Minimum/Maximum Flow Rate Data .......................................................................... 342.7.7.6.5 Condenser Water Pressure Drop Data ......................................................................... 342.7.7.6.6 Wide Condenser Water Temperature Ranges .............................................................. 342.7.7.6.7 Narrow Condenser Water Temperature Ranges .......................................................... 34

2.7.8 Glycol Freeze Protection .................................................................................................................. 34Table 34A Ethylene Glycol ........................................................................................................... 34Table 34B Propylene Glycol ......................................................................................................... 34

2.7.9 Water Quality .................................................................................................................................. 342.8 Typical Refrigerant Piping Diagram .......................................................................................................... 352.9 Electrical Connections ............................................................................................................................... 35

2.9.1 Unit Electrical Data .......................................................................................................................... 362.9.2 Electrical Field Connection Data ...................................................................................................... 372.9.3 Power Wiring Diagram: Typical Solid State Unit Mounted Starter ............................................... 38-392.9.4 Power Wiring Diagram: Typical Wye-Delta unit Mounted Starter ................................................ 40-412.9.5 Typical Control Wiring Diagram .................................................................................................. 42-442.9.6 Typical Optional Interconnection Wiring Diagram ........................................................................... 45

3.0 Operation: Mechanical3.1 General Mechanical Unit Operation .......................................................................................................... 463.2 System Water Flow Rate ............................................................................................................................ 463.3 Seasonal Shut-Down Procedure ................................................................................................................ 463.4 Seasonal Start-Up Procedure .................................................................................................................... 463.5 Safety Relief Valves ................................................................................................................................... 463.6 Refrigerant Cycle ....................................................................................................................................... 463.7 Oil System .................................................................................................................................................. 47

3.7.1 Oil Supply System............................................................................................................................ 473.7.2 Oil Return System ............................................................................................................................ 47

3.8 Hydraulic Capacity Control System........................................................................................................... 473.9 Freeze Protection ....................................................................................................................................... 47

3.9.1 Standby at Low Ambient Temperature ............................................................................................ 473.9.2 In Operation .................................................................................................................................... 473.9.3 During Maintenance........................................................................................................................ 47

4.0 Operation: Control System4.1 Typical Wiring Diagram ............................................................................................................................. 484.2 Typical Operation ...................................................................................................................................... 484.3 Microcomputer Controller ........................................................................................................................ 48

4.3.1 To display Data From the Menu ....................................................................................................... 484.3.2 To Reset All Control Points to Computer Control ............................................................................. 484.3.3 To Display Alarms ............................................................................................................................ 484.3.4 to Become Authorized..................................................................................................................... 484.3.5 To Alter Setpoints Data .................................................................................................................... 48

Page

4

TABLE OF CONTENTS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Page4.3.6 To Calibrate Temperature and Pressure Sensors ............................................................................... 494.3.7 To Set Date and Time ...................................................................................................................... 494.3.8 To Display Data without Accessing Menu ........................................................................................ 49

Figure 49 Microcomputer Keypad .................................................................................................. 49Figure 50 Microcomputer Instruction Label ..................................................................................... 50

4.3.9 To Revise Schedules ......................................................................................................................... 504.3.10 To Set Holidays ................................................................................................................................ 50

4.4 Control and Safety Functions ................................................................................................................... 504.4.1 Chilled Water pump Interlock and Flow Switch ............................................................................... 504.4.2 Customer Control Interlock ............................................................................................................. 504.4.3 Anti-Recycle Timer (Microcomputer) ............................................................................................... 504.4.4 Load Control (Microcomputer) ........................................................................................................ 514.4.5 Ramp Control (Microcomputer) ....................................................................................................... 514.4.6 Current Limiting (Microcomputer) ................................................................................................... 514.4.7 Hot Gas Bypass (Factory Installed Option) ....................................................................................... 514.4.8 Refrigerant Management ................................................................................................................ 514.4.9 High Oil Sump Temperature Alarm .................................................................................................. 514.4.10 Control Power Loss .......................................................................................................................... 514.4.11 Low Pressure Cutoff (Microcomputer) ............................................................................................. 514.4.12 Cooler Freeze Shut-off (Microcomputer) ......................................................................................... 524.4.13 High Pressure Cutoff (Microcomputer) ............................................................................................ 524.4.14 Low Oil Pressure Alarm (Microcomputer) ........................................................................................ 524.4.15 Sump Heater Control ....................................................................................................................... 524.4.16 Compressor Starter Failure .............................................................................................................. 524.4.17 Compressor Power Control (No Stop Alarm) ................................................................................... 524.4.18 Sensor Alarm Shutdown.................................................................................................................. 524.4.19 Slide Valve Error (Microcomputer) ................................................................................................... 524.4.20 Liquid Line Mod Motor Error (Microcomputer) ............................................................................... 534.4.21 Oil Sump Starter Error (Microcomputer) .......................................................................................... 534.4.22 Chilled Water Reset (Optional) ........................................................................................................ 534.4.23 Demand Limiting Input (Optional) ................................................................................................... 534.4.24 Pressure Load Limiting .................................................................................................................... 534.4.25 Unit Schedule of Operation (Optional) ............................................................................................ 534.4.26 Low Chiller Flow Alarm ................................................................................................................... 544.4.27 External Shutdown (No-Run Alarm) ................................................................................................. 544.4.28 Low Discharge Superheat (DSH) Alarm ............................................................................................ 544.4.29 Proactive Warning Contact .............................................................................................................. 544.4.30 Condenser Flow Alarm and Interlock ............................................................................................... 544.4.31 Chiller Pump Interlock ..................................................................................................................... 544.4.32 Ice Build Mode ................................................................................................................................ 54

5.0 Maintenance5.1 General Maintenance ................................................................................................................................ 555.2 Periodic Inspection .................................................................................................................................... 555.3 Monthly Inspection ................................................................................................................................... 555.4 Water Side Cleaning of Vessels ................................................................................................................. 555.5 Electrical Malfunction ............................................................................................................................... 555.6 Charging .................................................................................................................................................... 55

5.6.1 Refrigerant Charge .......................................................................................................................... 555.6.2 Oil Charge ....................................................................................................................................... 55

5.7 Troubleshooting .................................................................................................................................. 56-575.8 Sample Log Sheet ...................................................................................................................................... 58

5

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION

W - WaterP - Propylene GlycolE - Ethylene Glycol

Nominal Capacity (Tons x 10)Unit VintageSingle Refrigerant CircuitUnit Voltage

AR—460/3/60 AU—400/3/50AS—575/3/60 CT—3300/3/50AX—2300/3/60AY —4160/3/60

Z - Refrigerant (R22),

Microcomputer ControllerEvaporator DesignationCondenser DesignationCompressor Motor Designation

1.1 IntroductionThis manual is designed to provide all necessaryinformation for installation, operation andmaintenance of the latest generation of ����

Dunham-Bush Helical Rotary Screw compressorpackage units.

To use this manual effectively, you must first determineyour unit model number from the unit nameplate.Since this manual is comprehensive for a wide varietyof units, you should be careful to use only thosesections which apply to your model. Note that eachsection is clearly marked as to the applicable models.

This equipment is a factory built and tested packagedchiller designed for the purpose of cooling water orother non-corrosive liquid. The liquid to be cooled isto be circulated through the tubes of a refrigerantevaporator (hereafter referred to as a cooler) wherethe temperature is reduced to the desired level. Theheat absorbed by the refrigerant in the cooler is rejectedvia the condenser where it raises the temperature of

1.2 Product Identification

����

Open Drive Rotary ScrewPackaged Water-CooledWater Chiller

B S AR ZP B F6, E6 F1S030

another liquid stream (usually water) being circulatedthrough the tubes. This heat is usually rejected via acooling tower or closed circuit cooler.

To assure satisfactory operation and to avoid damageto the unit, the installation should be made by aqualified refrigeration mechanic. It is assumed thatthe reader of his manual and those who install, operateand maintain this equipment have a basicunderstanding of the principles of air conditioning,refrigeration and electrical controls. These instructionsare general in nature and are for standard catalog units.Non-standard units may vary in some respects fromthese instructions.

Your Dunham-Bush package has been manufacturedunder a careful quality control system and has beenfactory run tested as a final verification of reliability. Ifit is installed, operated and maintained with care andattention to these instructions, it will give many yearsof satisfactory service.

6

����� 030

Model No. ���� 030 - 60 HZStandard Single Oversized Double OversizedVessel Set Vessel Set Vessel Set

English S. I. Units English S. I. Units English S. I. UnitsNominal Capacity: tons/(kWo) 276 942 278 949 279 952Compressor Model 2010 2010 2010Motor RPM 3550 3550 3550Flooded Cooler - (Code) F6 G6 H6Cooler Shell Diameter in./(cm) 22 559 24 610 26 660Cooler Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure:

Water Side: psig(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume (2 Pass): gal./(Litres) 60.8 230 71.6 271 88.2 334Optional Single Pass Cooler

Minimum Flow Rate: GPM/(L/s) 481 30.3 555 35 671 42.3 Pressure Drop: Ft. Water (kPa) 1.16 3.47 1.14 3.41 1.16 3.47

Maximum Flow Rate: GPM/(L/s) 2406 151.8 2777 175.2 3354 211.6Pressure Drop: Ft. Water/(kPa) 21.58 64.5 20.87 62.4 21.49 64.2

Standard Two Pass CoolerMinimum Flow Rate: GPM/(L/s) 243 15.3 278 17.5 344 21.7Pressure Drop: Ft. Water/(kPa) 2.23 6.67 2.22 6.64 2.29 6.84Maximum Flow Rate: GPM/(L/s) 1193 75.3 1389 87.6 1633 103Pressure Drop: Ft. Water/(kPa) 39.56 118.2 40.6 121.4 37.94 113.4

Optional Three Pass CoolerMinimum Flow Rate: GPM/(L/s) 164 10.3 192 12.1 227 14.3Pressure Drop: Ft. Water/(kPa) 3.56 10.64 3.49 10.43 3.7 11.06Maximum Flow Rate: GPM/(L/s) 733 46.2 861 54.3 997 62.9Pressure Drop: Ft. Water/(kPa) 52.81 157.8 52.2 156 53.36 159.5

Condenser Code E6 E7 F6Condenser Shell Diameter: in./(cm) 20 508 20 508 22 559Condenser Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure

Water Side: psig/(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume: Gal/(Litres) 66.9 253 73.9 280 93.2 353Standard Two Pass Condenser:

Minimum Flow Rate: GPM/(L/s) 291 18.4 349 22 409 25.8Pressure Drop: Ft. Water/(kPa) 2.44 7.29 2.8 8.37 2.55 7.62Maximum Flow Rate: GPM/(L/s) 1435 90.5 1495 94.3 1983 125.1Pressure Drop: Ft. Water/(kPa) 37.96 113.5 34.32 102.6 39.26 117.3

General DataShipping Wt. w/ Low Volt Motor: lbs/(kg) 13720 6223 14515 6584 15980 7249Operating Wt. w/ Low Volt Motor: lbs/(kg) 14780 6704 15725 7133 17500 7938Shipping Wt. w/ Medium Volt Motor: lbs/(kg) 14870 6745 15665 7106 17135 7772Operating Wt. w/ Medium Volt Motor: lbs/(kg) 15930 7226 16875 7655 18650 8460Operating Charge R-22: lbs/(kg) 572 260 624 283 780 354

Note:Low Voltage Motor: 460/3/60 and 575/3/60Medium Voltage Motor: 2300/3/60 and 4160/3/60

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)1.3 Physical Specifications: 60 Hz

7

����� 040

Model No. ���� 040 - 60 HZStandard Single Oversized Double OversizedVessel Set Vessel Set Vessel Set

English S. I. Units English S. I. Units English S. I. UnitsNominal Capacity: tons/(kWo) 400 1365 404 1378 408 1392Compressor Model 2015 2015 2015Motor RPM 3550 3550 3550Flooded Cooler - (Code) H6 K6 L6Cooler Shell Diameter in./(cm) 26 660 30 762 32 813Cooler Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure:

Water Side: psig(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume (2 Pass): gal./(Litres) 88.2 334 109.2 413 133.4 505Optional Single Pass Cooler

Minimum Flow Rate: GPM/(L/s) 671 42.3 794 50.1 994 62.7 Pressure Drop: Ft. Water (kPa) 1.16 3.47 1.16 3.47 1.12 3.59

Maximum Flow Rate: GPM/(L/s) 3354 211.6 3970 250.5 4968 313.4Pressure Drop: Ft. Water/(kPa) 21.49 64.2 20.39 63.9 22.43 67.0

Standard Two Pass CoolerMinimum Flow Rate: GPM/(L/s) 344 21.7 407 25.7 507 32.0Pressure Drop: Ft. Water/(kPa) 2.29 6.84 2.3 6.87 2.31 6.90Maximum Flow Rate: GPM/(L/s) 1633 103.0 1936 122.1 2435 153.6Pressure Drop: Ft. Water/(kPa) 37.94 113.4 38.43 114.9 39.51 118.1

Optional Three Pass CoolerMinimum Flow Rate: GPM/(L/s) 227 14.3 284 17.9 329 20.8Pressure Drop: Ft. Water/(kPa) 3.7 11.06 3.75 11.21 3.53 10.55Maximum Flow Rate: GPM/(L/s) 997 62.9 1232 77.7 1535 96.8Pressure Drop: Ft. Water/(kPa) 53.36 159.5 53.04 158.5 57.08 170.6

Condenser Code F6 G6 H6Condenser Shell Diameter: in./(cm) 22 559 24 610 26 660Condenser Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure

Water Side: psig/(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume: Gal/(Litres) 93.2 353 111.4 422 135.6 513Standard Two Pass Condenser:

Minimum Flow Rate: GPM/(L/s) 409 25.8 500 31.5 602 38.0Pressure Drop: Ft. Water/(kPa) 2.55 7.62 2.64 7.89 2.69 8.04Maximum Flow Rate: GPM/(L/s) 1983 125.1 2262 142.7 2710 171.0Pressure Drop: Ft. Water/(kPa) 39.26 117.3 35.33 105.6 36.0 107.6

General DataShipping Wt. w/ Low Volt Motor: lbs/(kg) 17010 7716 19105 8666 20755 9414Operating Wt. w/ Low Volt Motor: lbs/(kg) 18530 8405 20945 9501 23000 10433Shipping Wt. w/ Medium Volt Motor: lbs/(kg) 17710 8033 19805 8984 21455 9732Operating Wt. w/ Medium Volt Motor: lbs/(kg) 19235 8725 21650 9820 23705 10753Operating Charge R-22: lbs/(kg) 780 354 1137 516 1336 606

Note:Low Voltage Motor: 460/3/60 and 575/3/60Medium Voltage Motor: 2300/3/60 and 4160/3/60

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)1.3 Physical Specifications: 60 Hz

8

�����

050

Model No. ���� 050 - 60 HZStandard Single Oversized Double OversizedVessel Set Vessel Set Vessel Set

English S. I. Units English S. I. Units English S. I. UnitsNominal Capacity: tons/(kWo) 477 1628 483 1648 N/A N/ACompressor Model 2018 2018 N/AMotor RPM 3550 3550 N/AFlooded Cooler - (Code) K6 L6 N/ACooler Shell Diameter in./(cm) 30 762 32 813 N/A N/ACooler Tube Length: in./(cm) 144 3658 144 3658 N/A N/ADesign Working Pressure:

Water Side: psig(kPa) 150 1034 150 1034 N/A N/ARefrigerant Side: psig/(kPa) 300 2069 300 2069 N/A N/A

Water Volume (2 Pass): gal./(Litres) 109.2 413.4 133.4 505 N/A N/AOptional Single Pass Cooler

Minimum Flow Rate: GPM/(L/s) 794 50.1 994 62.7 N/A N/A Pressure Drop: Ft. Water (kPa) 1.16 3.47 1.16 3.47 N/A N/A

Maximum Flow Rate: GPM/(L/s) 3970 250.5 4968 313.4 N/A N/APressure Drop: Ft. Water/(kPa) 21.39 63.9 22.43 67.0 N/A N/A

Standard Two Pass CoolerMinimum Flow Rate: GPM/(L/s) 407 25.7 507 32.0 N/A N/APressure Drop: Ft. Water/(kPa) 2.30 6.87 2.31 6.90 N/A N/AMaximum Flow Rate: GPM/(L/s) 1936 122.1 2435 153.6 N/A N/APressure Drop: Ft. Water/(kPa) 38.43 114.9 39.51 118.1 N/A N/A

Optional Three Pass CoolerMinimum Flow Rate: GPM/(L/s) 284 17.9 329 20.8 N/A N/APressure Drop: Ft. Water/(kPa) 3.75 11.21 3.53 10.55 N/A N/AMaximum Flow Rate: GPM/(L/s) 1232 77.7 1535 96.8 N/A N/APressure Drop: Ft. Water/(kPa) 53.04 158.5 5708 170.6 N/A N/A

Condenser Code G6 H6 N/ACondenser Shell Diameter: in./(cm) 24 610 26 660 N/A N/ACondenser Tube Length: in./(cm) 144 3658 144 3658 N/A N/ADesign Working Pressure

Water Side: psig/(kPa) 150 1034 150 1034 N/A N/ARefrigerant Side: psig/(kPa) 300 2069 300 2069 N/A N/A

Water Volume: Gal/(Litres) 111.4 422 135.6 513 N/A N/AStandard Two Pass Condenser:

Minimum Flow Rate: GPM/(L/s) 504 31.8 602 38.0 N/A N/APressure Drop: Ft. Water/(kPa) 2.68 8.01 2.69 8.04 N/A N/AMaximum Flow Rate: GPM/(L/s) 2243 141.5 2710 171.0 N/A N/APressure Drop: Ft. Water/(kPa) 34.86 104.2 36.0 107.6 N/A N/A

General DataShipping Wt. w/ Low Volt Motor: lbs/(kg) 19675 8925 21330 9675 N/A N/AOperating Wt. w/ Low Volt Motor: lbs/(kg) 21515 9759 23560 10687 N/A N/AShipping Wt. w/ Medium Volt Motor: lbs/(kg) 20355 9233 22000 9979 N/A N/AOperating Wt. w/ Medium Volt Motor: lbs/(kg) 22195 10068 24245 10998 N/A N/AOperating Charge R-22: lbs/(kg) 1137 516 1336 606 N/A N/A

Note:Low Voltage Motor: 460/3/60 and 575/3/60Medium Voltage Motor: 2300/3/60 and 4160/3/60

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)1.3 Physical Specifications: 60 Hz

9

���� 030

Model No. ���� 030 - 50 HZStandard Single Oversized Double OversizedVessel Set Vessel Set Vessel Set

English S. I. Units English S. I. Units English S. I. UnitsNominal Capacity: tons/(kWo) 246 840 249 850 251 857Compressor Model 2010 2010 2010Motor RPM 2960 2960 2960Flooded Cooler - (Code) F5 F6 G6Cooler Shell Diameter in./(cm) 22 559 22 559 24 610Cooler Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure:

Water Side: psig(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume (2 Pass): gal./(Litres) 51.6 195 60.8 230 71.6 271Optional Single Pass Cooler Minimum Flow Rate: GPM/(L/s) 389 34.5 481 30.3 555 35.0 Pressure Drop: Ft. Water/(kPa) 1.14 3.41 1.16 3.47 1.14 3.41 Maximum Flow Rate: GPM/(L/s) 1946 122.8 2406 151.8 2777 175.2 Pressure Drop: Ft. Water/(kPa) 20.88 62.4 21.58 64.5 20.87 62.4Standard Two Pass Cooler Minimum Flow Rate: GPM/(L/s) 201 12.7 243 15.3 278 17.5 Pressure Drop: Ft. Water/(kPa) 2.33 6.96 2.23 6.67 2.22 6.64 Maximum Flow Rate: GPM/(L/s) 939 59.2 1193 75.3 1389 87.6 Pressure Drop: Ft. Water/(kPa) 37.29 111.5 39.56 118.2 40.6 121.4Optional Three Pass Cooler Minimum Flow Rate: GPM/(L/s) 135 8.5 164 10.3 192 12.1 Pressure Drop: Ft. Water/(kPa) 3.5 10.46 3.56 10.64 3.49 10.43 Maximum Flow Rate: GPM/(L/s) 606 38.2 733 46.2 861 54.3 Pressure Drop: Ft. Water/(kPa) 52.41 156.7 52.81 157.8 52.2 156Condenser Code D6 E6 E7Condenser Shell Diameter: in./(cm) 18 457 20 508 20 508Condenser Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure

Water Side: psig/(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume: Gal/(Litres) 55.4 210 66.9 253 73.9 280Standard Two Pass Condenser:

Minimum Flow Rate: GPM/(L/s) 251 15.8 291 18.4 349 22.0Pressure Drop: Ft. Water/(kPa) 2.71 8.10 2.44 7.29 2.8 8.37Maximum Flow Rate: GPM/(L/s) 1435 90.5 1435 90.5 1495 94.3Pressure Drop: Ft. Water/(kPa) 37.96 113.5 37.96 113.5 34.32 102.6

General DataShipping Wt. w/ Low Volt Motor: lbs/(kg) 12885 5845 13645 6189 14435 6548Operating Wt. w/ Low Volt Motor: lbs/(kg) 13770 6246 14705 6670 15650 7099Shipping Wt. w/ Medium Volt Motor: lbs/(kg) 14035 6366 14790 6709 15590 7072Operating Wt. w/ Medium Volt Motor: lbs/(kg) 14926 6770 15855 7192 16795 7618Operating Charge R-22: lbs/(kg) 520 236 572 260 624 283

Note:Low Voltage Motor: 400/3/50Medium Voltage Motor: 3300/3/50

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)1.4 Physical Specifications: 50 Hz

10

���� 040

Model No. ���� 040 - 50 HZStandard Single Oversized Double OversizedVessel Set Vessel Set Vessel Set

English S. I. Units English S. I. Units English S. I. UnitsNominal Capacity: tons/(kWo) 357 1218 361 1232 364 1242Compressor Model 2015 2015 2015Motor RPM 2960 2960 2960Flooded Cooler - (Code) G6 H6 K6Cooler Shell Diameter in./(cm) 24 610 26 660 30 762Cooler Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure:

Water Side: psig(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume (2 Pass): gal./(Litres) 71.6 271 88.2 334 109.2 413Optional Single Pass Cooler Minimum Flow Rate: GPM/(L/s) 555 35.0 671 42.3 794 50.1 Pressure Drop: Ft. Water/(kPa) 1.14 3.41 1.16 3.47 1.16 3.47 Maximum Flow Rate: GPM/(L/s) 2777 175.2 3354 211.6 3970 250.5 Pressure Drop: Ft. Water/(kPa) 20.87 62.4 21.49 64.2 21.39 63.9Standard Two Pass Cooler Minimum Flow Rate: GPM/(L/s) 278 17.5 344 21.7 407 25.7 Pressure Drop: Ft. Water/(kPa) 2.22 6.64 2.29 6.84 2.3 6.87 Maximum Flow Rate: GPM/(L/s) 1389 87.6 1633 103.0 1936 122.1 Pressure Drop: Ft. Water/(kPa) 40.6 121.4) 37.94 113.4 38.43 114.9Optional Three Pass Cooler Minimum Flow Rate: GPM/(L/s) 192 12.1 227 14.3 284 17.9 Pressure Drop: Ft. Water/(kPa) 3.49 10.43 3.7 11.06 3.75 11.21 Maximum Flow Rate: GPM/(L/s) 861 54.3 997 62.9 1232 77.7 Pressure Drop: Ft. Water/(kPa) 52.2 156.0 53.36 159.5 53.04 158.5Condenser Code E7 F6 G6Condenser Shell Diameter: in./(cm) 20 508 22 559 24 610Condenser Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure

Water Side: psig/(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume: Gal/(Litres) 73.9 280 93.2 353 111.4 422Standard Two Pass Condenser:

Minimum Flow Rate: GPM/(L/s) 349 22.0 409 25.8 500 31.5Pressure Drop: Ft. Water/(kPa) 2.8 8.37 2.55 7.62 2.64 7.89Maximum Flow Rate: GPM/(L/s) 1495 94.3 1983 125.1 2262 142.7Pressure Drop: Ft. Water/(kPa) 34.32 102.6 39.26 117.3 35.33 105.6

General DataShipping Wt. w/ Low Volt Motor: lbs/(kg) 15170 6881 16630 7543 18730 8496Operating Wt. w/ Low Volt Motor: lbs/(kg) 16380 7430 18155 8235 20565 9328Shipping Wt. w/ Medium Volt Motor: lbs/(kg) 16115 7310 17585 7977 19680 8927Operating Wt. w/ Medium Volt Motor: lbs/(kg) 17325 7859 19105 8666 21520 9761Operating Charge R-22: lbs/(kg) 624 283 780 354 1137 516

Note:Low Voltage Motor: 400/3/50Medium Voltage Motor: 3300/3/50

1.4 Physical Specifications: 50 Hz

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)

11

���� 050

Model No. ���� 050 - 50 HZStandard Single Oversized Double OversizedVessel Set Vessel Set Vessel Set

English S. I. Units English S. I. Units English S. I. UnitsNominal Capacity: tons/(kWo) 427 1457 432 1474 437 1491Compressor Model 2018 2018 2018Motor RPM 2960 2960 2960Flooded Cooler - (Code) H6 K6 L6Cooler Shell Diameter in./(cm) 26 660 30 762 32 813Cooler Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure:

Water Side: psig(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume (2 Pass): gal./(Litres) 88.2 334 109.2 413 133.4 505Optional Single Pass Cooler Minimum Flow Rate: GPM/(L/s) 671 42.3 794 50.1 994 62.7 Pressure Drop: Ft. Water/(kPa) 1.16 3.47 1.16 3.47 1.2 3.59 Maximum Flow Rate: GPM/(L/s) 3354 211.6 3970 250.5 4968 313.4 Pressure Drop: Ft. Water/(kPa) 21.49 64.2 21.39 63.9 22.43 67.0Standard Two Pass Cooler Minimum Flow Rate: GPM/(L/s) 344 21.7 407 25.7 507 32.0 Pressure Drop: Ft. Water/(kPa) 2.29 6.84 2.30 6.87 2.31 6.90 Maximum Flow Rate: GPM/(L/s) 1633 103.0 1936 122.1 2435 153.6 Pressure Drop: Ft. Water/(kPa) 37.94 113.4 38.43 114.9 39.51 118.1Optional Three Pass Cooler Minimum Flow Rate: GPM/(L/s) 227 14.3 284 17.9 329 20.8 Pressure Drop: Ft. Water/(kPa) 3.7 11.06 3.75 11.21 3.53 10.55 Maximum Flow Rate: GPM/(L/s) 997 62.9 1232 77.7 1535 96.8 Pressure Drop: Ft. Water/(kPa) 53.36 159.5 53.04 158.5 57.08 170.6Condenser Code F6 G6 H6Condenser Shell Diameter: in./(cm) 22 559 24 610 26 660Condenser Tube Length: in./(cm) 144 3658 144 3658 144 3658Design Working Pressure

Water Side: psig/(kPa) 150 1034 150 1034 150 1034Refrigerant Side: psig/(kPa) 300 2069 300 2069 300 2069

Water Volume: Gal/(Litres) 93.2 353 111.4 422 135.6 513Standard Two Pass Condenser:

Minimum Flow Rate: GPM/(L/s) 409 25.8 500 31.5 602 38.0Pressure Drop: Ft. Water/(kPa) 2.55 7.62 2.64 7.89 2.69 8.04Maximum Flow Rate: GPM/(L/s) 1983 125.1 2262 142.7 2710 171.0Pressure Drop: Ft. Water/(kPa) 39.26 117.3 35.23 105.6 36.0 107.6

General DataShipping Wt. w/ Low Volt Motor: lbs/(kg) 17400 7893 19500 8845 21145 9591Operating Wt. w/ Low Volt Motor: lbs/(kg) 18915 8580 21340 9680 23380 10605Shipping Wt. w/ Medium Volt Motor: lbs/(kg) 18075 8199 20175 9151 21825 9900Operating Wt. w/ Medium Volt Motor: lbs/(kg) 19595 8888 22015 9986 24065 10916Operating Charge R-22: lbs/(kg) 780 354 1137 516 1336 606

Note:Low Voltage Motor: 400/3/50Medium Voltage Motor: 3300/3/50

1.4 Physical Specifications: 50 Hz

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)

12

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

���������������������� ��

������� ������ ������������������������������� ������� ����������� ������ ��������������

���������������������������� ������������ ��

�������������������������������� ���������

� ��

��������������� ��������� ��� ��� ����� � �

��������������� ��� ��������� ��� ������ ������������� �� ����� ������� ��������� ����

������ ������ �������� ������� ���������������� ����������� ������� ����� � ������ ������� ��������������!����� �"����������������

�������� ��

�� �����

������������ �� �� ���� �������� �������������������#������� ���� ����� ���� �

�������������������� ����������� ��

�� ��

�"$�%&'�(�������������

"������� ������������� ��������� ����

������������������������� ������������������������#������� ���)����� �����������

"��������� �������������������� ����������������� ������������������������*$

'������������� ����� ���������� ���� ���

�� �������� �������������

&"$�%"+&�(

'�"�%�&*'(

����������#���������� ���

��������,-���������� ��� �������

����������'.�%����(������� ��'�/�"

*+$�%'�"�(

'��%�*�&(

��

�� �������� ������� �

�'"������� �������� �������� ��������� ����

�"�

���

"����������������'�����������

"����������������������������

���� �������������������� �����)

��� �����)��������� �������������������

'��%��*(

*�%'�"(

���������

�����

�������� ��

��

�� ������� ��

!

������� ���

1.5 Dimensional Data

1.0 GENERAL INFORMATION (CONT.)

13

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

�����030—60 Hz

�����040—60 Hz

�����050—60 Hz

�����030—50 Hz

�����040—50 Hz

�����050—50 Hz

�����030—60 Hz

�����040—60 Hz

�����050—60 Hz

�����030—50 Hz

�����040—50 Hz

�����050—50 Hz

1.5 Dimensional Data

1.0 GENERAL INFORMATION (CONT.)

Model Cooler Cond. A C Cl C2 C3

Standard Vessel Set F6-22" E6,E7-20" 65-1/2[1664] 169-5/8[4308] 174-5/8[4435] 174-1/8[4423] 174-3/8[4429]Single Oversized Vessel Set G6-24" E6,E7-20" 70[1778] 170-1/8[4321] 175-1/8[4448] 174-5/8[4436] 176-1/2[4483]Double Oversized Vessel Set H6-26" F6-22" 71[1803] 171-3/4[4362] 176-3/4[4489] 168[4267] 173-7/8[4417]

Standard Vessel Set H6-26" F6-22" 71[1803] 171-3/4[4362] 176-3/4[4489] 168[4267] 173-7/8[4417]Single Oversized Vessel Set K6-30" G6-24" 73-7/8[1877] 171-3/4[4362] 179-3/8[4556] 175-5/8[4461] 179-1/8[4550]Double Oversized Vessel Set L6-32" H6-26" 75[1905] 171-1/8[4347] 179-7/8[4569] 176-1/8[4474] 179-5/8[4563]

Standard Vessel Set K6-30" G6-24" 73-7/8[1877] 171-3/4[4362] 179-3/8[4556] 175-5/8[4461] 179-1/8[4550]Single Oversized Vessel Set L6-32" H6-26" 75[1905] 171-1/8[4347] 179-7/84569] 176-1/8[44741 179-5/8[4563]

Standard Vessel Set F5,F6-22" D6-18" 64-3/4[1645] 164-1/2[4169 168-1/4[4274] 168-1/8[4271] 168-5/8[4283]Single Oversized Vessel Set F5,F6-22" E6,E7-20" 65-1/2[1664] 169-5/8[4308] 174-5/8[4435] 174-1/8[4423] 174-3/8[4429]Double Oversized Vessel Set G6-24" E6,E7-20" 70[1778] 170-1/8[4321] 175-1/8[4448] 174-5/8[4436] 176-1/2[4483]

Standard Vessel Set G6-24" E7-20" 70[1778] 170-1/8[4321] 175-1/8[4448] 174-5/8[4436] 176-1/2[4483]Single Oversized Vessel Set H6-26" F6-22" 71[1803] 171-3/4[4362] 176-3/4[4489] 168[4267] 173-7/8[4417]Double Oversized Vessel Set K6-30" G6-24" 73-7/8[1877] 171-3/4[4362] 179-3/8[4556] 175-5/8[446] 179-1/8[4550]

Standard Vessel Set H6-26" F6-22" 71[1803] 171-3/4[4362] 176-3/4[4489] 168[4267] 173-7/8[4417]Single Oversized Vessel Set K6-30" G6-24" 73-7/8[1877] 171-3/4[4362] 179-3/8[4556] 175-5/8[4461] 179-1/8[4550]Double Oversized Vessel Set L6-32" H6-26" 75[1905] 171-1/8[4347] 179-7/8[4569] 176-1/8[4474] 179-5/8[4563]

Model Cooler Cond. F G K L M

Standard Vessel Set F6-22" E6,E7-20" 16-5/8[422] 18-1/4[464] 11-3/4[298] 12-3/4[324] 14-7/8[378]Single Oversized Vessel Set G6-24" E6,E7-20" 16-5/8[422] 19-1/4[489] 11-3/4[298] 14[356] 13-1/2[343]Double Oversized Vessel Set H6-26" F6-22" 17-5/8[448] 20-1/4[514] 12-3/4[324] 15[381] 12-3/8[314]

Standard Vessel Set H6-26" F6-22" 17-5/8[448] 20-1/4[514] 12-3/4[324] 15[381] 12-3/8[314]Single Oversized Vessel Set K6-30" G6-24" 18-5/8[473] 22-1/4[565] 14[356] 16-5/8[422] 10-5/8[270]Double Oversized Vessel Set L6-32" H6-26" 19-5/8[499] 23-1/4[591] 15[381] 18[457] 13-3/8[340]

Standard Vessel Set K6-30" G6-24" 18-5/81473] 22-1/4[565] 14[356] 16-5/8[422] 10-5/8[270]Single Oversized Vessel Set L6-32" H6-26" 19-5/8[499] 23-1/4[591] 15[381] 18[457] 13-3/8[340]

Standard Vessel Set F5,F6-22" D6-18" 15-5/8[397] 18-1/4[464] 10-1/2[267] 12-3/4[324] 14-3/4[375]Single Oversized Vessel Set F5,F6-22" E6,E7-20" 16-5/8[422] 18-1/4[464] 11-3/4[298] 12-3/4[324] 14-7/8[378]Double Oversized Vessel Set G6-24" E6,E7-20" 16-5/8[422] 19-1/4[489] 11-3/4[298] 14[356] 13-1/2[343]

Standard Vessel Set G6-24" E7-20" 16-5/8[422] 19-1/4[489] 11-3/4[298] 14[356] 13-1/2[343]Single Oversized Vessel Set H6-26" F6-22" 17-5/8[448] 20-1/4[514] 12-3/4[324] 15[381] 12-3/8[314]Double Oversized Vessel Set K6-30" G6-24" 18-5/8[473] 22-1/4[565] 14[356] 16-5/8[422] 10-5/8[270]

Standard Vessel Set H6-26" F6-22" 17-5/8[448] 20-1/4[514] 12-3/4[324] 15[381] 12-3/8[314]Single Oversized Vessel Set K6-30" G6-24" 18-5/8[473] 22-1/4[565] 14[356] 16-5/8[422] 10-5/8[270]Double Oversized Vessel Set L6-32" H6-26" 19-5/8[499] 23-1/4[591] 15[381] 18[457] 13-3/8[340]

14

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

��

�*�%0'�(������ ��*

�*�%0'�(����&�%'"'0(������ ��&

�������)���������"$�%&'�(���� �����)����������

"��%*'+(������ �����������

������ ��*

� � � �

� �

�� ������������������������ �����)

��� ��������� ������� �����

'�&�%�.�0(

"�%�&�(

����������������

"�%�'(

*�%'�"(

������ ��

�����

����*�""$��*�"�$��*�"*$

���������������������

!*��+$�*��"$

�����

�1�$���

'$���

������ ��������������

���������

�"�'1"$���

���� ������������������ ���������

'"�'1�%�''(������� ���'+��

����������������

*�%'�"(

���� ���������� ��

��%'+"(

'"�%�+�(

2+�&'��%"'(

'"�%�+�(

���� ������������ ��� ����� ��

�"��1�$��� ���������������������

����������������������� ��

���++3

�� ���'+��

����

1.5 Dimensional Data

1.0 GENERAL INFORMATION (CONT.)

15

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

&�������� �����456�����������������#��������� ��������������������

�������������������� ������������������������� �� �� ���� �������� �����������������#������� ���)����� ����������� �����

*��������� �������������������� �������������������������#������� ���� ����� ���� �

'���� ���������� ����������� ��� ��������������������� "����������������������������������%����� ���(

������� ����������������� ������������������������������������������������������� ��������� �������������������/����������������� �������������� �����#�������� ���!����� ��������������� �����'1"$%'�(� ������� ��������������� �� �

.���� ��������� ��������'����������������������� ������������������������������������������7���/�7���

���������� � �������

�� ��

� ��������� �������� ���

�����8��������� ��������� ������� ����������������������� �����)

�����

���������

����������

"��������

"���������

'��������

'���������

���������

"���������

"��������

1.5 Dimensional Data

1.0 GENERAL INFORMATION (CONT.)

Model Cooler Cond. B U V

Standard Vessel Set F6-22" E6,E7-20" 93-3/4[2381] 89-1/8[2264] 53-1/2[1359]Single Oversized Vessel Set G6-24" E6,E7-20" 93-1/2[2375] 89-1/8[2264] 58[1473]Double Oversized Vessel Set H6-26" F6-22" 93-3/4[2381] 91-1/8[2315] 59[1499]

Standard Vessel Set H6-26" F6-22" 94-3/4[2407] 91-1/8[2315] 59[1499]Single Oversized Vessel Set K6-30" G6-24" 95[2413] 93-1/8[2366] 61-7/8[1572]Double Oversized Vessel Set L6-32" H6-26" 97-1/2[2477] 95-1/8[2416] 63[1600]

Standard Vessel Set K6-30" G6-24" 95-3/4[2432] 93-1/8[2366] 61-7/8[1572]Single Oversized Vessel Set L6-32" H6-26" 98-1/2[2502] 95-1/8[2416] 63[1600]

Standard Vessel Set F5,F6-22" D6-18" 92-1/8[2340] 87-1/8[2213] 52-3/4[1340]Single Oversized Vessel Set F5,F6-22" E6,E7-20" 93-1/4[2369] 89-1/8[2264] 53-1/2[1359]Double Oversized Vessel Set G6-24" E6,E7-20" 93[2362] 89-1/8[2264] 58[1473]

Standard Vessel Set G6-24" E7-20" 94[2388] 89-1/8[2264] 58[1473]Single Oversized Vessel Set H6-26" F6-22" 94-1/4[2394] 91-1/8[2315] 59[1499]Double Oversized Vessel Set K6-30" G6-24" 94-1/2[2400] 93-1/8[2366] 61-7/8[1572]

Standard Vessel Set H6-26" F6-22" 94-3/4[2407] 91-1/8[2315] 59[1499]Single Oversized Vessel Set K6-30" G6-24" 95[2413] 93-1/8[2366] 61-7/8[1572]Double Oversized Vessel Set L6-32" H6-26" 97-1/2[2477] 95-1/8[2416] 63[1 600]

�����030—60 Hz

�����040—60 Hz

�����050—60 Hz

�����030—50 Hz

�����040—50 Hz

�����050—50 Hz

16

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

'�����

�����

� ��������� ��������������������������� �

��� ��������

�������������������� �

'�$*��"$

'+$�*�""$

�*�"*$

!*��+$

�*�"�$

'"$

'�$

'"$

���""$

�����

'+$

'������������������� �

"�����

���������

�� ������*�"*$&$'+$

�����

�*�'&$

�*�"+$

�.�"+$

�*�""$

�*�"�$

&$&$

'+$

'+$

&$

&$

&$

&$

������

&$

"�����

*$

�� �����

�� �����

�� �����

�� �����

�� �����

'�����

'+$

&$

&$

'+$

&$

*$

�� �����

�� �����

�� �����

�� �����

�� �����

�� �����

������

�'

���������� �� �� ����� ������� ���� ������������������������������ ���������������������� ���� ��� ��

����� ������������ ����� �������

�� �������������"����������������

�'

9 �

� �

"����������������

"���������������

�� ���������������������������������

����������� ����� ����� �������������� ���� ��� ��������

�8������8����

1.5 Dimensional Data

1.0 GENERAL INFORMATION (CONT.)

Model Cooler Cond. D D1 E E1 H J

Standard Vessel Set F6-22" E6,E7-20" 12-1/2[318] 12-1/2[318] 12[305] 18[457] 6-7/8[1751] 6-1/8[156]Single Oversized Vessel Set G6-24" E6,E7-20" 13[330] 13[330] 12[305] 18[457] 6-7/8[175] 6-1/8[156]Double Oversized Vessel Set H6-26" F6-22" 20-1/8[511] 15-1/8[384] 12-1/2[318] 12-1/2[318] 7-3/8[187] 6-7/8[175]

Standard Vessel Set H6-26" F6-22" 20-1/8[5111 15-1/8[384] 12-1/2[318] 12-1/2[318] 7-3/8[187] 6-7/8[175]Single Oversized Vessel Set K6-30" G6-24" 15-5/8[397] 15-5/8[397] 14-5/8[372] 19-5/8[499] 8-1/8[207] 6-7/8[175]Double Oversized Vessel Set L6-32" H6-26" 15-5/8[397] 15-5/8[397] 15-1/8[384] 20-1/8[511] 8-7/8[226] 7-3/8[187]

Standard Vessel Set K6-30" G6-24" 15-5/8[397] 15-5/8[397] 14-5/8[372] 19-5/8[499] 8-1/8[207] 6-7/8[175]Single Oversized Vessel Set L6-32" H6-26" 15-5/8[397] 15-5/8[397] 15-1/8[384] 20-1/8[511] 8-7/8[226] 7-3/8[187]

Standard Vessel Set F5,F6-22" D6-18" 12-1/2[318] 12-1/2[318] 11-5/8[295] 11-5/8[295] 6-7/8[175] 5-5/8[143]Single Oversized Vessel Set F5,F6-22" E6,E7-20" 12-1/2[318] 12-1/2[318] 12[305] 18[457] 6-7/8[175] 6-1/8[156]Double Oversized Vessel Set G6-24" E6,E7-20" 13[330] 13[330] 12[305] 18[457] 6-7/8[175] 6-1/8[156]

Standard Vessel Set G6-24" E7-20" 13[330] 13[330] 12[305] 18[457] 6-7/8[175] 6-1/8[156]Single Oversized Vessel Set H6-26" F6-22" 120-1/8[511] 15-1/8[384] 12-1/2[318] 12-1/2[318] 7-3/8[187] 6-7/8[175]Double Oversized Vessel Set K6-30" G6-24" 15-5/8[397] 15-5/8[397] 14-5/8[372] 19-5/8[499] 8-1/81207] 6-7/8[175]

Standard Vessel Set H6-26" F6-22" 20-1/8[511] 15-1/8[384] 12-1/2[318] 12-1/2[318] 7-3/8[187] 6-7/8[175]Single Oversized Vessel Set K6-30" G6-24" 15-5/8[397] 15-5/8[397] 14-5/8[372] 19-5/8[499] 8-1/8[207] 6-7/8[175]Double Oversized Vessel Set L6-32" H6-26" 15-5/8[3971] 15-5/8[397]] 15-1/8[384] 20-1/8[511] 8-7/8[226] 7-3/8[187]

Model Cooler Cond. N P R S T

Standard Vessel Set F6-22" E6,E7-20" 7-1/2[191] 7[178] 12[305] 12-1/4[311] 6-3/4[171]Single Oversized Vessel Set G6-24" E6,E7-20" 8[203] 7[178] 12-1/2[318] 14-3/8[365] 7-5/8[194]Double Oversized Vessel Set H6-26" F6-22" 6-3/8[162] 7-1/2[191] 11-3/8[289] 14-7/8[378] 8-1/8[207]

Standard Vessel Set H6-26" F6-22" 6-3/8[162] 7-1/2[191] 11-3/8[289] 14-7/8[378] 8-1/8[207]Single Oversized Vessel Set K6-30" G6-24" 6-7/8[175] 8[203] 11-7/8[302] 15-3/8[391] 9-1/2[241]Double Oversized Vessel Set L6-32" H6-26" 6-7/8[175] 6-3/8[162] 111-7/8[302] 15-3/8[391] 10-1/8[257]

Standard Vessel Set K6-30" G6-24" 6-7/8[175] 8[203] 11-7/8[302] 15-3/8[391] 9-1/2[241]Single Oversized Vessel Set L6-32" H6-26" 6-7/8[175] 6-3/8[162] 11-7/8[302] 15-3/8[391] 10-1/8[257]

Standard Vessel Set F5,F6-22" D6-18" 7-1/2[191] 6-1/2[165] 12[305] 12-1/4[311] 6-3/4[171]Single Oversized Vessel Set F5,F6-22" E6,E7-20" 7-1/2[191] 7[178] 12[305] 12-1/4[311] 6-3/4[171]Double Oversized Vessel Set G6-24" E6,E7-20" 8[203] 7[178] 12-1/2[318] 14-3/8[365] 7-5/8[194]

Standard Vessel Set G6-24" E7-20" 8[203] 7[178] 112-1/2[318] 14-3/8[365] 7-5/8[194]Single Oversized Vessel Set H6-26" F6-22" 6-3/8[162] 7-1/2[191] 11-3/8[289] 14-7/8[378] 8-1/8[207]Double Oversized Vessel Set K6-30" G6-24" 6-7/8[175] 8[203] 11-7/8[302] 15-3/8[391] 9-1/2[241]

Standard Vessel Set H6-26" F6-22" 6-3/8[162] 7-1/2[191] 11-3/8[289] 14-7/8[378] 8-1/8[207]Single Oversized Vessel Set K6-30" G6-24" 6-7/8[175] 8[203] 11-7/8[302] 15-3/8[391] 9-1/2[241]Double Oversized Vessel Set L6-32" H6-26" 6-7/8[175] 6-3/8[162] 11-7/8[302] 115-3/8[391] 10-1/8[257]

�����030—60 Hz

�����040—60 Hz

�����050—60 Hz

�����030—50 Hz

�����040—50 Hz

�����050—50 Hz

�����030—60 Hz

�����040—60 Hz

�����050—60 Hz

�����030—50 Hz

�����040—50 Hz

�����050—50 Hz

17

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.6 Application & LocationRequirements

1.0 GENERAL INFORMATION (CONT.)

1.6.1 Chilled Water FlowThe Dunham-Bush �����

Packaged Water Chiller isdesigned for a constant chilled water flow rate even whenthe cooling load is varying. The machine will generallyperform satisfactorily with steady flow rates deviating fromdesign by as much as +10% to -50%. However, varyingwater flow rates can cause control instability which willresult in undesirable system effects, particularly poorcontrol of leaving chilled water temperature. If two-wayvalves are used to control flow through cooling coils, somemeans such as an automatic modulating valve should beprovided in the system to maintain steady flow throughthe cooler.

If the chilled water system is arranged for the dual purposeof cooling and heating, the cooler must incorporate valvesto prevent the flow of hot water through it. This can bedone with either manual or automatic shutoff valves, butthe method of control must be such that watertemperature entering the cooler never exceeds 90°F (32°C).

1.6.2 Ice StorageWith a positive displacement rotary screw compressor, theDunham-Bush water chiller can easily cool low temperatureglycol down to 22°F (-6°C) with entering condenser waterof 85°F (29°C). The same chiller can also produce warmer(40°F (4°C) to 45°F (7°C) leaving glycol for those buildingsystems designed for only peak shaving. This can beaccomplished by an external signal to the unitmicrocomputer. No matter what your ice storage needs,the Dunham-Bush Rotary Screw Water-Cooled Chiller canhandle the application.

When used with Dunham-Bush Ice-Cels, the micro-computer can be specially programmed to provide dualmode leaving chilled liquid set points for both airconditioning and ice freezing duty, plus start and stop ofchilled liquid and condenser pumps.

In addition, the following thermal storage controls can beprovided.

a. Freeze onlyb. Freeze plus coolingc. Cooling with ice onlyd. Cooling with chiller plus icee. Cooling with chiller onlyf. Off

The microcomputer can provide daily scheduling of abovemodes in as many different daily schedules as desired.These schedules can be assigned to days of the week andholidays.

1.6.3 Multiple Unit ControlOne of the most perplexing problems to system designersis control of multiple chillers on the same water loop. Thefirst decision is whether to put the chillers in parallel orseries on the chilled water side. If lower pumping cost isparamount, then putting chillers in series is oftenpreferable. If primary/secondary pumping is utilized withnormal 10°F (6°C) range, then putting chillers in parallel isnormally used. In either case, the Dunham-Bush

microcomputer (with special programming) can controlup to three chillers. This eliminates the need for externalcontrol interface which often becomes difficult. Contactthe factory if more than three chillers need to benetworked.

1.6.4 Water Cooled CondensersThe water-cooled condenser can accommodate varyingflow rates such as occurs with the use of two-way waterregulating valves or variable speed pumps. The condensermust be protected from rapid changes in temperature. Arapid change in temperature or flow rate will causeunstable operation resulting in poor control of the leavingchilled water temperature and possible nuisance trips.

If the cooling tower is used to reject the heat from thecondensing water loop, it must be controlled to providean entering condensing water temperature, which doesnot go below 60°F. The rate of temperature change mustnot exceed 20°F per minute.

This is necessary because a chiller operates in a dynamicenvironment and is designed to maintain a precise leavingchilled water temperature under varying enteringconditions. The additional dynamic of rapidly varyingcondenser water temperature subjects the machine tofluctuating pressure differentials across the cooler andcondenser. This varies the refrigerant flow and, therefore,the capacity. If this occurs faster then the machine canaccommodate it, the head pressure or suction pressurewill soon exceed their safety setpoints and the unit willshut down.

One or more of the following methods may be used tocontrol head pressure:

1.6.4.1 Tower fan starting in response to a thermostatin the tower sump. The fan thermostat shouldhave a differential of at least 20° to avoid shortcycling.

1.6.4.2 A modulating three-way valve which bypassesthe cooling tower to blend warm leavingcondenser water with the cold tower water.

1.6.4.3 Variable speed pumps controlled by an analogoutput signal (0 to 5 volt) from the chillermicroprocessor based on the condenser headpressure.

It is further recommend that the condenser water pumpbe cycled by the chiller. This is to prevent potentially verycold water from going through the condenser while thechiller is shutdown. At the same time it is probable thatrelatively warmer chilled water is in the cooler (aninversion). Refrigerant tends to migrate if there is adifference in pressure within the components of the chiller.It will seek the lowest pressure area of the chiller, which inthis case would be the condenser.

Starting a chiller where the refrigerant has migrated tothe condenser is not desirable. The presence of highlysubcooled liquid refrigerant in the condenser could causepossible low suction pressure and liquid slugging of thecompressor.

18

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)

If the condenser water pump is off until the machine starts,the water in the condenser is at room ambient which is usuallymuch closer to the cooler water temperature.

1.6.5 Condensing Water TreatmentCondensing water tends to leave silt, algae and mineraldeposits in the condenser tubes. This fouling graduallydecreases unit efficiency. For this reason, a program ofwater treatment should be employed. Also, at regularintervals, depending on water quality, the unit should beshut down, condenser heads removed and tubes cleaned.

1.6.6 FoundationA flat, level concrete foundation or floor capable ofsupporting the weight of the unit must be provided. Theunit must be levelled to within 1/16 inch per foot (1.6mmper 30.5cm) for proper operation.

1.6.7 Vibration IsolationWhere structure-borne vibration may be of concern, it isrecommended that the unit be mounted on vibrationisolators. Spring isolators are available for this unit asoptional equipment. If spring isolators are installed, it isalso necessary to provide isolation in condenser water andchilled water pipes by means of flexible connectors and inmain power supply conduit through use of flexible conduit.Isolation of piping and electrical conduit is desirable inany event to avoid noise transmission.

1.6.8 Location and InstallationSuggestions

����� Packaged Chillers are designed for indoor

application. Proper locations and installation proceduresfor this equipment are very important for successful troublefree operation. It is desirable to install these units withsufficient service space on all sides of the Unit. Tubecleaning and unit servicing require considerable space atthe ends of the units as shown in the dimensional outlinesection of this manual. Compressor and motor servicingrequire space at the rear of the unit. NEC and Local Codesrequire a minimum of 36 to 48 inches in front of the unitdepending on the application location.

1.6.9 Equipment Location and UnitSecurity

The ���� is a quiet operating chiller but sound sensitivityshould be considered when locating this equipment.Equipment and equipment rooms need to be located inareas of the building that will not disturb surroundingoccupied spaces. Equipment rooms can be acousticallydesigned for sound sensitive installations to minimizesound transmission into occupied spaces. It is suggestedthat an acoustical Engineer be consulted on critical soundand vibration applications before, rather than after, theequipment is installed. Unit security and personal safetyshould also be considered when locating this equipment.All state and local sound and safety codes should beconsidered when laying out or installing mechanicalequipment.

1.6.10 Cooler - Freeze ProtectionThe leaving water sensor mounted on the Cooler will shutdown the unit if a cooler freeze condition should occur. A

water flow switch must be supplied and mounted in thewater piping to protect the unit from low or no flow, whichcan cause cooler freezing.

1.6.11 Electrical Connection OptionsRefer to the Electrical Data Tables for specific electricaldata requirements. All wiring must be done in accordancewith the National Electric Code (NEC) and all local andstate codes. Typical power, control and interconnectionwiring diagrams are found on pages 48 through 55. Acomplete set of wiring diagrams for all units is availablefrom our Dunham-Bush Sales Representative.

The unit will be shipped with wiring diagrams located inthe electrical panel.

1.6.12 Low Voltage Units460/3/60, 575/3/60 & 400/3/50 voltage applications aresupplied with unit-mounted, Solid State Reduced Voltageor Wye-Delta starter panel. An optional remote-mountableWye-Delta starter panel can also be supplied. All threelow voltage starter panels are for single point powersource. Refer to the Electrical Data Tables for detailedinformation.

1.6.13 Medium Voltage Units2300/3/60, 4160/3/60 & 3300/3/50 applications aresupplied with remote-mounted across-the-line starterpanel.

1.6.14 Power SourcesThe term “Power Source” refers to the unit main powersupply.

The Control Power includes the oil sump heater power.For unit mounted starters, control power is supplied by aunit mounted control transformer. Dunham-Bush suppliedremote mounted starters also include a control circuittransformer to provide 115 VAC.

Medium voltage units require a separate 460/3/60 or 400/3/50 power source for the oil pump and control powertransformer.

1.6.15 Unit and Field MountedDisconnects

“Disconnecting means” are described in Article 440 of theNational Electric Code (NEC) which requires “disconnectingmeans capable of disconnecting air conditioning andrefrigeration equipment including motor-compressors, andcontrollers from the circuit feeder”. If the fused disconnectoption is not supplied, then the disconnects by othersshould be selected and located within the NEC guidelines.Location requirements per NEC, indicate that thedisconnect be located in a readily accessible position withinsight (50 feet) of the unit. Maximum recommended fuseor CB breaker sizes are found in the Electrical Data Tablesin this catalog. Maximum wire sizes that the unit canaccept, are listed in the Electrical Data Table in this catalog.

1.6.16 Control Circuits115 volt control circuit terminals are clearly marked onthe electrical diagram found in the control panel for controlpower.

19

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.7 Starter & Control Panels

1.0 GENERAL INFORMATION (CONT.)

The ����� is available with several types of compressormotor starting methods, depending on voltage, for UnitMounted and Remote Mounted applications. All modelsare supplied in NEMA 1 enclosures. The unit controllerand all other options are in a separate section of theelectrical enclosure with the exception of the remotemounted starter.

Unit mounted Solid State reduced voltage and WYE-Delta Starters are available for 460/3/60, 575/3/60 and400/3/50 voltage applications and are supplied fullyinstalled and wired with all starter options ordered. Allunit mounted starters include control transformer withprimary and secondary fuses, oil pump starter, oil pumpoverloads, undervoltage relay, and current transformerfor compressor motor load control.

Remote mounted WYE-Delta Starters are supplied for460/3/60, 575/3/60 and 400/3/50. Across-The-Line Startersare supplied for medium voltage 2300/4160/3/60 and3300/3/50 applications.

Unit MountedSolid State Starters are unit mounted and wired in a NEMA1 enclosure, and offer many standard features:

• Microprocessor controller• Bypass contactor for eliminating SCR heat generation• Programmable starting profiles• Controlled inrush current and torque• Stepless acceleration to full speed• Adjustable acceleration rate• Programmable motor protection• Under/over voltage and phase monitoring• Electronic overloads• Motor short circuit protection• Instant over current protection• Current imbalance• Ground fault interrupt• Embedded diagnostics• Integral display• Digital metering• Built-in self testing• Pending fault indicator

Options• Unit Mounted Circuit Breaker—with disconnect

handle extended through the door• Unit Mounted Fused Disconnect—handle extends

through the door• Door Latch Solenoid—for power and control panels

Solid State Starters DBRSM6B are microprocessor-controlled solid state reduced voltage with easy-to-usekeypad interface. They operate on a user-programmedclosed-loop current ramp for optimum motor control andprotection.

Solid State Starters are an excellent method of soft motorstarting, through solid state ramp control of voltage,current, speed and torque. The effect/benefit of the softstart is a reduction of both electrical and mechanical systemstress. This special solid state ramp control is shown in thefollowing diagrams.

Programmable Ramp Profiles

Programmable Speed / Torque Curves

Standard Features of the DBRSM6B Starter• Electronic Motor Overloads are Class 10, with 115%

overload service factor for the DBRSM starters.• Initial Current is the starting point for the current

ramp. It can be set between 50-400% of the motorFLA. This must be set so the motor starts turning whena start command is given.

• Current Limit is the maximum motor current limitwith an adjustable current range from 200-600% ofthe full load current. This reduces the starting currentto limit brownout conditions during starting.

1.7.1 Solid State Reduced VoltageStarters

StartTime (Seconds)

Run

PercentVoltage

InitialTorque

100%

Time(Sec)

MotorCurrent

FullSpeed

Ramp Time (sec)

600%

300%

100%0

0 15

Initial Current

Max. AdjustedCurrent

Accel

Speed (RPM)

Typical Load

ProgrammableAccelerationTorque

Full Voltage

Torque

FullLoadTorque DBRSM6B

"Soft Start"

20

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)

• Latched Fault Relay Output, switches and is latched,if any fault occurs that will not allow the motor tostart or operate properly.

• Programmable Relay Outputs are supplied toindicate overload trip, overload lock, overloadwarning, starter operating, motor up-to-speed,shorted SCR, ground fault, or under current trip.

• Programmable Metering for each of two displaymeters may be set to measure amps(A), volts(V),frequency(Hz), motor overload content(OL), powerfactor(pf), elapsed time meter(etm), kilowatts(KW),kilowatt-hours(KWH), kilovolt-amps reactive(Kvar).When measuring current or voltage, "avg" indicatesan average of all three lines, "scr" will give a scrollingmeter, and 1, 2, or 3 indicates a specific linemeasurement. For example, selecting "Vavg" willdisplay the average voltage of all three lines.

• Starts Per Hour Limiter sets the number of startsallowed per hour.

• Start Interval Limiter sets the minimum allowed timebetween starts. The motors used on this equipmentshould not be started more than three times per hour.

• Adjustable Acceleration Ramp Profiles are theprofiles of the motor starting current. The startingpoint of each current ramp is the initial current setting,which is adjustable from 50 to 400%. The maximumcurrent is adjustable from 200 to 600% and sets theendpoint for the current ramp. The ramp time isadjustable form 0 to 120 seconds. This sets the amountof time the starter spends smoothly ramping from theinitial current to the maximum current value. Typicalvalues are 150% for initial current; 250% for maximumcurrent, and 15 seconds for ramp time.

• Closed Loop Current Ramp function of the starteroperates on a user-programmed current ramp foroptimal motor control and protection. The motor isaccelerated from the initial current setting to themaximum current setting during the defined ramptime.

• Single Phase Protection, protects against one of thethree phases being lost, the starter will shut downthe motor, if running, and refuse to start until thephase is restored. The starter will report the conditionand register a fault.

• Phase Rotation Protection for the starter can beselected to be ABC sensitive. If the incoming line

phasing is detected to be out of sequence, a fault isregistered.

• Line to Line Current Imbalance is monitored and ifthe current in any phase differs from the average by aprogrammable setting (10 to 40%), the starter willshut down, and report the condition and register afault.

• Over / Under Voltage Protection monitors the linevoltage and if any phase varies above or below thebase line voltage by more than a programmablepercentage (10 to 30%), a fault is recorded and themotor is shut down.

• Adjustable Stalled Motor Protection monitors thecurrent of the motor for an up-to-speed condition. Ifthe motor does not reach up-to-speed before the ramptime plus the set stall time expires, the starter willconsider the motor stalled. An Up-To-Speed fault willbe registered.

• Ground Fault Detection monitors the motor andwiring for ground faults. The starter performs theGround Fault Protection by monitoring theinstantaneous sum of the three phase currents. Theuser can set a predetermined trip point or alarm forwhen a ground fault is detected.

• Instantaneous Electronic Over-Current Trip forsituations where the current level suddenly increasesto > 8 x FLA due to a power system or motor fault.The starter registers a fault and shuts the motor downimmediately.

• Under Current Protection allows the user to select alow current trip level (10 to 100% of FLA) and delaytime (0.1 to 90.0 seconds). This allows the user to seta predetermined trip point that can indicate an undercurrent condition or cause a starter trip to detect lossof motor load.

• Low / High Frequency Trips protect against any ofthe phases going above or below the programmedrange, and the starter will register a fault. TheMaximum range of the Frequency Trips is 23 to 72 HZ.

• Shorted SCR Detection detects shorted SCRs duringacceleration. The starter will then shut down, reportthe condition and register a fault.

• Protection Modules are Metal Sintered-OxideVaristors (SIOVs) that protect electronic componentsagainst external voltage spikes.

• Passcode Protection provides protection againstunauthorized changes and when enabled, mostprogrammable menu parameters may only be viewedand not changed. A three digit passcode between 001and 999 may be chosen.

• Battery Back-Up Menu Parameters are protected byan 10 year life battery.

• Full Fault Annunciation when a motor fault occurs,the fault code and description are displayed on theLCD display and recorded in the event recorder.

• The LCD and LED Status and Diagnostics comesstandard with programmable keypad, plain EnglishLCD display and status LEDs. The keypad is door-mounted for viewing and programming from outsidethe enclosure.

• Accumulated Event Recorder provides informationfor each time an event occurs, the code, condition,and time of the event will be recorded in the revolving

MotorCurrent (%)

MaxCurrent

InitialCurrent

Ramp Time

Stall TimeUp ToSpeed

Time(Sec)

BypassEnergizes

1200

0

600

21

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1.0 GENERAL INFORMATION (CONT.)

99-event recorder. An event is considered anythingthat changes the present state which the starter is in,including faults, starts, stops, overload warnings, andoverload trips.

• Programmable Service Factor is set to the servicefactor of the motor.

• Real Time Clock with battery backup is included inthe starter. This allows the starter to track motorthermal overload content, enforce starter lockouttimes, and time stamp faults in the event recorder. Itwill track lockouts even when the power is removed.

• Emergency Restart Provision has the ability tooverride the starter lockouts if it is necessary to startthe motor. This feature should only be used in theevent of an emergency.

1.7.2 Wye-Delta Starters

Unit MountedWye Delta Starters are unit mounted for 460/3/60, 575/3/60 and 400/3/50 applications and offer many standardfeatures mounted and wired in a NEMA 1 enclosure:

• Closed Transition controller in a NEMA 1 enclosure• Controlled inrush current and torque to 33%• Two Step acceleration speed control• Ambient compensated overload relay• Under voltage, phase monitoring relay

Options• Unit Mounted Circuit Breakers—with disconnect

handles extended through the door• Unit Mounted Fused Disconnect—handles extended

through the door• Ground Fault Interrupt Relay• Under and Over Voltage, Phase Loss, and Phase

Imbalance Relay• Volt and Amp Meters—with selector switches for

three phase meter reading• Door Latch Solenoid—for power and control panels

WYE Delta Closed Transition Starters (also called Star DeltaStarters) - offer a reduced voltage/reduce inrush currentmethod of starting motors. WYE Delta starters utilizespecial wound motors that can be connected to the "Y"pattern for reduced starting torque. In the "Y"configuration, each set of phase windings is broughttogether at a common point. This increases the impedanceof the motor itself, reducing the current and torque to33% of normal. Three contactors and a timer are used toswitch the six leads brought out of the motor into the Y-then-Delta configuration in a two-step starting process."Closed Transition" WYE Delta starters utilize shunt resistersin the circuit during the transition phase of starting toprevent motor stalls or current spikes. This scheme usesfour contactors in three steps and large starting resisters.

WYE Delta Wiring Configuration

This method is superior to Across-The-Line motor startingdue to the reduced electrical demand, in areas with highelectrical rates and utility demand charges.

Remote MountedRemote Mounted WYE Delta Starters offer the samestandard features and options as the Unit MountedStarters, and are supplied in a stand alone NEMA 1enclosure, for contractor mounting and wiring. Terminalsare marked for interconnecting wiring, from the remotestarter to the chiller, for ease of wiring.

1.7.3 Across-The-Line Starters

Remote MountedRemote Mounted Starters are available for medium voltage2300/4160/3/60 and 3300/3/50 voltage applications. Othervoltages are available by contacting our SalesRepresentative or Application Engineering Department.

Across-The-Line Starters are supplied in NEMA 1 enclosuresand have the many standard features:

• Control Power Transformer with primary andsecondary fusing

• Ambient compensated overloads• Current transformers• 4-20mA load signal• Oil Pump Starter with overload protection• Under voltage and phase monitoring relay• Draw out contactor with fused isolation switch

Options• Ground Fault Interrupt Relay• Under and Over Voltage, Phase Loss, and Phase

Imbalance Relay• Volt and Amp Meters—with selector switches for

three phase meter reading• Door Latch Solenoid—for power and control panels

Step 1, Y StartContactors 1M and S close2M is open

Step 1, Delta RunContactor 2S opens1R closes

Winding pattern "Y"33% torque, 33% current

1M

Winding pattern "Delta"Full torque, Full current

T1 2M

1M

S

T4

T5

T4

T2

T1T3

T3

T6

T6

2M

1M2M

T5

T2

T6T1

T5

T4

T2T3

22

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

"������������������� �������������������� �������

'������ ��!������ ���������� �����#�������� ����� ��

������������������ ��

����� �����!����� ����

�� ��

����������� ��� ����

�� �������� ������� ����������� �:

2.0 INSTALLATION

2.1 General ����

�����packaged chillers are designed to cool water orother non-corrosive liquids. Water is circulated throughthe flooded cooler where it is cooled to the desiredtemperature then circulated to cooling coils for airconditioning, or to other types of heat exchangers forprocess cooling.

2.2 Inspection ����

When the equipment is delivered, it is important thatthe following inspection be completed in the presenceof the carrier's representative:

1. Check all crates and cartons received against theBill of Lading/Shipping Papers to be sure they agree.

2. Check the model number and the electricalcharacteristics on the nameplate to determine ifthey are correct.

3. Check for freight damage, shortages or otherdiscrepancies and note them on the delivery receiptbefore signing.

In the event that any damage is found, a damage claimshould immediately be filed by the purchaser against

the delivering carrier as all shipments are made at thepurchaser's risk.

2.3 Handling, Storage & Rigging

2.3.1 General ���� Handling InstructionsEach unit has been carefully tested at the factory whereevery precaution is taken to assure that the unit reachesyou in perfect condition. It is very important that theriggers and movers should use the same care andprecaution in moving the equipment into place. Makesure that chains, cables, or other moving equipmentare placed so as to avoid damage to the unit or piping.The refrigerant piping must not be used as a ladder oras a hand hold. Do not attach a chain hoist sling to thepiping or equipment. Move the unit in an uprightposition and let it down gently from trucks or rollers.

2.3.2 StorageThis equipment is designed for outdoor use but mustbe protected from damage if stored before installation.

2.3.3 ���� Rigging and MovingThis equipment is too large to be carried by a forkliftwithout serious damage so rigging is required.

Figure 2.3.3.1

23

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

������ ���

��������� �����456�����������������#�������������� ��������������������

������������ �� �� ���� �������� �������������������#������� ���� ����� ���� �

�������������������� ����������� ��

�� ��

������������������������� ������������������������#������� ���)����� �����������

"��������� �������������������� ����������������� ������������������������*$

'������������� ����� ���������� ���� ���

�� �������� �������������

'�"�%�&*'(

����������#���������� ���

��������,-���������� ��� �������

����������'.�%����(������� ��'�/�"

���� �������������������� �����)

��� �����)�����������������)���������"$�%&'�(

���������

���� ������������������ ���������

�� ������������������������ �����)

��

����

��� �����)�����������������)���������"$�%&'�(�

�*�%0'�(

������ ��'�/�"

2.0 INSTALLATION (CONT.)

2.4 Space and ClearanceRequirements ����

2.4.1 General Space and ClearanceRequirements

The dimensional data and space requirements are givenon pages 12 thru 16. Refer to 2.4.2 for location andinstallation clearances and 2.4.3 for dimensionalrequirements. The most important consideration whichmust be taken into account when deciding upon thelocation of water cooled equipment is the provision forsufficient space for servicing, including electrical panelcode clearance compliance and cooler and condensertube cleaning and potential tube replacement.

Another consideration which must be made is that theunit should be mounted away from noise sensitivespaces and must have adequate support to avoidvibration and noise transmission into the building. Unitsshould be mounted under corridors, utility areas, restrooms or other auxiliary areas where sound levels arenot as important a factor. Sound and structuralconsultants should be retained for recommendationson critical installations.

Figure 2.4.2 Location and installation Clearance — ���� 030-050

24

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

� �

��

����

)

2.0 INSTALLATION (CONT.)

Cooler Cond. Operating Weight ShippingModel Code Code Comp. Motor A B C D Total Weight X Y Z E F

lbs. lbs. lbs. lbs. lbs. lbs. in. in. in. in. in.�����03060Hz, STD F6 E6 2010 Low Volt Motor 3115 3710 3630 4325 14780 13720 80 25 36 148 53.5060Hz, STD F6 E6 2010 Med Volt Motor 3040 3910 3930 5050 15930 14870 84 24 38 148 53.5060Hz, Single O.S. Clr. G6 E7 2010 Low Volt Motor 3305 3965 3845 4610 15725 14515 80 27 35 148 58.0060Hz, Single O.S. Clr. G6 E7 2010 Med Volt Motor 3235 4160 4150 5330 16875 15665 84 26 37 148 58.0060Hz, DBL O.S. Clr. H6 F6 2010 Low Volt Motor 3715 4450 4250 5085 17500 15980 79 28 34 148 59.0060Hz, DBL O.S. Clr. H6 F6 2010 Med Volt Motor 3655 4635 4565 5795 18650 17135 83 27 36 148 59.0050Hz, STD F5 D6 2010 Low Volt Motor 2835 3450 3375 4110 13770 12885 81 24 36 148 52.7550Hz, STD F5 D6 2010 Med Volt Motor 2770 3645 3675 4835 14925 14035 85 23 38 148 52.7550Hz, Single O.S. Clr. F6 E6 2010 Low Volt Motor 3085 3680 3620 4320 14705 13645 80 25 35 148 53.5050Hz, Single O.S. Clr. F6 E6 2010 Med Volt Motor 3015 3875 3920 5045 15855 14790 84 24 37 148 53.5050Hz, DBL O.S. Clr. G6 E7 2010 Low Volt Motor 3280 3935 3835 4600 15650 14435 80 27 35 148 58.0050Hz, DBL O.S. Clr. G6 E7 2010 Med Volt Motor 3210 4125 4140 5320 16795 15590 84 26 37 148 58.00���� 04060Hz, STD H6 F6 2015 Low Volt Motor 3800 4675 4510 5545 18530 17010 81 27 36 148 59.0060Hz, STD H6 F6 2015 Med Volt Motor 3755 4780 4710 5990 19235 17710 83 27 37 148 59.0060Hz, Single O.S. Clr. K6 G6 2015 Low Volt Motor 4430 5250 5155 6110 20945 19105 80 29 35 148 61.8860Hz, Single O.S. Clr. K6 G6 2015 Med Volt Motor 4390 5355 5365 6540 21650 19805 82 29 36 148 61.8860Hz, DBL O.S. Clr. L6 H6 2015 Low Volt Motor 5065 5660 5800 6475 23000 20755 80 31 35 148 63.0060Hz, DBL O.S. Clr. L6 H6 2015 Med Volt Motor 5025 5760 6020 6900 23705 21455 81 31 36 148 63.0050Hz, STD G6 E7 2015 Low Volt Motor 3370 4120 4000 4890 16380 15170 81 27 36 148 58.0050Hz, STD G6 E7 2015 Med Volt Motor 3315 4280 4245 5485 17325 16115 84 26 37 148 58.0050Hz, Single O.S. Clr. H6 F6 2015 Low Volt Motor 3785 4605 4405 5360 18155 16630 80 27 35 148 59.0050Hz, Single O.S. Clr. H6 F6 2015 Med Volt Motor 3735 4760 4665 5945 19105 17585 83 27 37 148 59.0050Hz, DBL O.S. Clr. K6 G6 2015 Low Volt Motor 4410 5180 5045 5930 20565 18730 79 30 34 148 61.8850Hz, DBL O.S. Clr. K6 G6 2015 Med Volt Motor 4365 5335 5320 6500 21520 19680 82 29 36 148 61.88�����05060Hz, STD K6 G6 2018 Low Volt Motor 4535 5390 5295 6295 21515 19675 80 29 36 148 61.8860Hz, STD K6 G6 2018 Med Volt Motor 4510 5510 5480 6695 22195 20355 82 29 36 148 61.8860Hz, Single O.S. Clr. L6 H6 2018 Low Volt Motor 5170 5795 5940 6655 23560 21330 80 31 36 148 63.0060Hz, Single O.S. Clr. L6 H6 2018 Med Volt Motor 5150 5915 6135 7045 24245 22000 81 30 37 148 63.0050Hz, STD H6 F6 2018 Low Volt Motor 3835 4750 4615 5715 18915 17400 81 27 36 148 59.0050Hz, STD H6 F6 2018 Med Volt Motor 3810 4870 4790 6125 19595 18075 83 27 37 148 59.0050Hz, Single O.S. Clr. K6 G6 2018 Low Volt Motor 4470 5330 5265 6275 21340 19500 81 29 35 148 61.8850Hz, Single O.S. Clr. K6 G6 2018 Med Volt Motor 4445 5445 5450 6675 22015 20175 82 29 36 148 61.8850Hz, DBL O.S. Clr. L6 H6 2018 Low Volt Motor 5100 5730 5910 6640 23380 21145 80 31 36 148 63.0050Hz, DBL O.S. Clr. L6 H6 2018 Med Volt Motor 5080 5850 6105 7030 24065 21825 81 30 37 148 63.00

Notes: Low Voltage Motor - 460/3/60, 575/3/60 and 400/3/50Medium Voltage Motor - 2300/3/60, 4160/3/60 and 3300/3/50X, Y, and Z Designates Location for Center of Gravity

2.5 Foundation or MountingStructure

Foundations must be level within 1/16" per foot, forproper operation and functioning of controls.Provisision must be made for supporting the individualload points as shown in the unit dimensions on 2.4.3

and unit weight and point loading chart 2.5.1. Roofmounted units must be supported on adequate steelstructures. If units are located on the ground level, aconcrete base is recommended.

ENGLISH I.P. UNITS2.5.1 ����� Unit Weights, Point Loading and Center of Gravity —

25

� �

��

����

)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

Cooler Cond. Operating Weight ShippingModel Code Code Comp. Motor A B C D Total Weight X Y Z E F

kgs. kgs. kgs. kgs. kgs. kgs. cm. cm. cm. cm. cm.����� 03060Hz, STD F6 E6 2010 Low Volt Motor 1413 1683 1647 1962 6704 6223 203 64 91 376 13660Hz, STD F6 E6 2010 Med Volt Motor 1379 1774 1783 2291 7226 6745 214 61 96 376 13660Hz, Single O.S. Clr. G6 E7 2010 Low Volt Motor 1499 1799 1744 2091 7133 6584 203 69 89 376 14760Hz, Single O.S. Clr. G6 E7 2010 Med Volt Motor 1467 1887 1882 2418 7655 7106 213 66 93 376 14760Hz, DBL O.S. Clr. H6 F6 2010 Low Volt Motor 1685 2019 1928 2307 7938 7249 202 70 87 376 15060Hz, DBL O.S. Clr. H6 F6 2010 Med Volt Motor 1658 2102 2071 2629 8460 7772 211 68 91 376 15050Hz, STD F5 D6 2010 Low Volt Motor 1286 1565 1531 1864 6246 5845 205 62 91 376 13450Hz, STD F5 D6 2010 Med Volt Motor 1256 1653 1667 2193 6770 6366 216 59 96 376 13450Hz, Single O.S. Clr. F6 E6 2010 Low Volt Motor 1399 1669 1642 1960 6670 6189 204 64 90 376 13650Hz, Single O.S. Clr. F6 E6 2010 Med Volt Motor 1368 1758 1778 2288 7192 6709 214 61 95 376 13650Hz, DBL O.S. Clr. G6 E7 2010 Low Volt Motor 1488 1785 1740 2087 7099 6548 204 69 88 376 14750Hz, DBL O.S. Clr. G6 E7 2010 Med Volt Motor 1456 1871 1878 2413 7618 7072 214 66 93 376 147������04060Hz, STD H6 F6 2015 Low Volt Motor 1724 2121 2046 2515 8405 7716 205 69 91 376 15060Hz, STD H6 F6 2015 Med Volt Motor 1703 2168 2136 2717 8725 8033 211 68 93 376 15060Hz, Single O.S. Clr. K6 G6 2015 Low Volt Motor 2009 2381 2338 2771 9501 8666 204 75 89 376 15760Hz, Single O.S. Clr. K6 G6 2015 Med Volt Motor 1991 2429 2434 2967 9820 8984 208 74 91 376 15760Hz, DBL O.S. Clr. L6 H6 2015 Low Volt Motor 2297 2567 2631 2937 10433 9414 202 79 90 376 16060Hz, DBL O.S. Clr. L6 H6 2015 Med Volt Motor 2279 2613 2731 3130 10753 9732 207 78 92 376 16050Hz, STD G6 E7 2015 Low Volt Motor 1529 1869 1814 2218 7430 6881 205 68 91 376 14750Hz, STD G6 E7 2015 Med Volt Motor 1504 1941 1926 2488 7859 7310 213 66 95 376 14750Hz, Single O.S. Clr. H6 F6 2015 Low Volt Motor 1717 2089 1998 2431 8235 7543 204 70 89 376 15050Hz, Single O.S. Clr. H6 F6 2015 Med Volt Motor 1694 2159 2116 2697 8666 7977 211 68 93 376 15050Hz, DBL O.S. Clr. K6 G6 2015 Low Volt Motor 2000 2350 2288 2690 9328 8496 202 75 87 376 15750Hz, DBL O.S. Clr. K6 G6 2015 Med Volt Motor 1980 2420 2413 2948 9761 8927 208 73 91 376 157����� 05060Hz, STD K6 G6 2018 Low Volt Motor 2057 2445 2402 2855 9759 8925 204 75 91 376 15760Hz, STD K6 G6 2018 Med Volt Motor 2046 2499 2486 3037 10068 9233 208 73 93 376 15760Hz, Single O.S. Clr. L6 H6 2018 Low Volt Motor 2345 2629 2694 3019 10687 9675 202 79 91 376 16060Hz, Single O.S. Clr. L6 H6 2018 Med Volt Motor 2336 2683 2783 3196 10998 9979 206 77 93 376 16050Hz, STD H6 F6 2018 Low Volt Motor 1740 2155 2093 2592 8580 7893 206 69 91 376 15050Hz, STD H6 F6 2018 Med Volt Motor 1728 2209 2173 2778 8888 8199 211 67 94 376 15050Hz, Single O.S. Clr. K6 G6 2018 Low Volt Motor 2028 2418 2388 2846 9680 8845 205 75 90 376 15750Hz, Single O.S. Clr. K6 G6 2018 Med Volt Motor 2016 2470 2472 3028 9986 9151 209 73 92 376 15750Hz, DBL O.S. Clr. L6 H6 2018 Low Volt Motor 2313 2599 2681 3012 10605 9591 203 78 91 376 16050Hz, DBL O.S. Clr. L6 H6 2018 Med Volt Motor 2304 2654 2769 3189 10916 9900 207 77 93 376 160

Notes: Low Voltage Motor - 460/3/60, 575/3/60 and 400/3/50Medium Voltage Motor - 2300/3/60, 4160/3/60 and 3300/3/50X, Y, and Z Designates Location for Center of Gravity

2.5.2 ����� Unit Weights, Point Loading and Center of Gravity — S.I. UNITS

26

���� ��� ���!��� ���

7�� � �� �

����������� ������ ����

�����������������������

������������������������

��);+�+�� ��*+�<��������

�0�++�%'�00(

�0�++�%'�00(

����+�%'��0(

����+�%'��0(

�&�++�%'�.�(

�&�++�%'�.�(

*'�&&�%'�."(

*��++�%'*++(

*��++�%'*++(

*'�&&�%'�."(

*'�&&�%'�."(

�0�++�%'�00(

�0�++�%'�00(

*'�&&�%'�."(

�&�++�%'�.�(

�&�++�%'�.�(

�0�++�%'�00(

�0�++�%'�00(

*��++�%'*++(

*��++�%'*++(

*'�&&�%'�."(

*��++�%'*++(

*'�&&�%'�."(

*'�&&�%'�."(

*��++�%'*++(

*'�&&�%'�."(

�0�++�%'�00(

�0�++�%'�00(

�� ��

'���������������� ������ ������� ��������

�����++ ����"++ ����"++ ����..+

�����++ ����..+ ����..+ ����&.+

����"++ ����..+ ����..+ �����++

����"++ ����..+ ����..+ ����&.+

����"++ �����++ ����..+ ����&.+

����"++ �����++ �����++ ���.+++

����"++ ����..+ ����..+ ����&.+

����"++ ����..+ ����..+ ���.+++

����"++ �����++ �����++ ���.+++

����"++ �����++ �����++ ���.+++

�����++ ����&.+����&.+ ���.+++

�����++ ����&.+ ����&.+ ���&�++

����"++ �����++ �����++ ���.+++

����"++ �����++ �����++ ���.+++

�����++ ����&.+ ����&.+ ���.+++

�����++ ���.+++ ���.+++ ���&�++

���&�++���.+++���.+++����&.+

����&.+ ���.+++ ���.+++ ���&�++

����..+ �����++ �����++ ���.+++

����"++ ����&.+ �����++ ���.+++

�����++ ����&.+ ����&.+ ���.+++

�����++ ���.+++ ���.+++ ���&�++

����&.+ ���.+++ ���.+++ ���&�++

����&.+ ���.+++ ���.+++ ���&�++

�����++ ���.+++ ����&.+ ���.+++

�����++ ���.+++ ���.+++ ���&�++

����&.+ ���.+++ ���.+++ ���&�++

����&.+ ���.+++ ���.+++ ���&�++

"����� ������� ����������������������'+=��

������������������������� ��

��� ������� ��� �������

+'+�'*�' ���'.�+ ���!

�����������������

+'+�'*�" ���"'++ ���1����������

���!�1����������

����1������������

�����++

���"0��

+'+�'*��

+'+�'*��

+'+�'*�.

+'+�'*�&

+'+�'*�*

+'+�'*��

����1����������

���1������������

���1������������

�����++

���"�&�

����..+

����"++

+'+�'*��

+'+�'*��

+'+�'*��

+'+�'*�"

+'+�'*�'

+'+�'*�0

���!�

���1����������

��

����1������������

���'+++

���&�++

���'��+

���.+++

���"*�+

����&.+

����1����������

���1����������

���!�1����������

����� ������������� ���

���������9��!��� ������ ��������� ����� ����!������� � ����� ����

���� � ������� �������������!� ������� �

������� ��� � ������������������������!� ����� �������� �� ��

���� ��������� ����� ��� ������������� ���� ����������!�

����9�� ��������������� ��������������� � ��������� �����!��� ������������ �����!� �� ����������� ����

�*������1�*���������*+1�.�1�1*+��� ��� ��

�&�++�%'�.�(

�&�++�%'�.�(

�"�.��%'��+(

����+�%'��0(

����+�%'��0(

�"�.��%'��+(

����&.+

�����++

����&.+

����..+

����&.+

����..+

����..+

����..+

����..+

����"++

����"++

����"++

����"++

����"++

�����++

�����++

�����++

�����++

����..+

����..+

����..+

����"++

����"++

����"++

��);+�+�� ��*+�<��������

�����������������������

������������������������

������������������������

�����������������������

�����������������������

������������������������

��);+�+�� ��*+�<��������

��);+�+�� ��*+�<��������

��);+�+�� ��*+�<��������

��);+�+�� ��*+�<��������

�����������������������

�����������������������

������������������������

�����������������������

�����������������������

������������������������

��);+�+�� ���+�<��������

��);+�+�� ���+�<��������

��);+�+�� ���+�<��������

��);+�+�� ���+�<��������

������������������������

�����������������������

�����������������������

������������������������

��);+�+�� ���+�<��������

��);+�+�� ���+�<��������

������������������������

�����������������������

�����������������������

������������������������

�*������1�*��������"�++1�'*+1�1*+��� ��� ��

�*������1�.���������*+1�.�1�1*+��� ��� ��

�*������1�.��������"�++1�'*+1�1*+��� ��� ��

�*������1�*���������*+1�.�1�1*+��� ��� ��

�*������1�*��������"�++1�'*+1�1*+��� ��� ��

�*������1�*���������*+1�.�1�1*+��� ��� ��

�*������1�*��������"�++1�'*+1�1*+��� ��� ��

!*������1�*���������*+1�.�1�1*+��� ��� ��

!*������1�*��������"�++1�'*+1�1*+��� ��� ��

*������1�*���������*+1�.�1�1*+��� ��� ��

*������1�*��������"�++1�'*+1�1*+��� ��� ��

!*������1�*���������*+1�.�1�1*+��� ��� ��

!*������1�*��������"�++1�'*+1�1*+��� ��� ��

*������1�*��������"�++1�'*+1�1*+��� ��� ��

*������1�*���������*+1�.�1�1*+��� ��� ��

��������1�*���������++1�1�+��� ��� ��

��������1�*����������++1�1�+��� ��� ��

�*������1�*���������++1�1�+��� ��� ��

�*������1�*����������++1�1�+��� ��� ��

�*������1�.���������++1�1�+��� ��� ��

�*������1�.����������++1�1�+��� ��� ��

�*������1�.����������++1�1�+��� ��� ��

�*������1�.���������++1�1�+��� ��� ��

�*������1�*���������++1�1�+��� ��� ��

�*������1�*����������++1�1�+��� ��� ��

!*������1�*���������++1�1�+��� ��� ��

!*������1�*����������++1�1�+��� ��� ��

�*������1�*���������++1�1�+��� ��� ��

�*������1�*����������++1�1�+��� ��� ��

!*������1�*����������++1�1�+��� ��� ��

!*������1�*���������++1�1�+��� ��� ��

*������1�*���������++1�1�+��� ��� ��

*������1�*����������++1�1�+��� ��� ��

����� ��������������������%����(

>,-�'$�?4@;?A?��BA;C?D5E��4FD�EG;HI5DFF�-DD�/��CD-4E;5J��D;JGE���,KE�KD5JEG�;F�FA;E4LKD A-5�HK,HIM;FD�E,�K,46�FC-;5J�456�?4;5E4;5 ������������9�� ��� ���

��)������� ������ ������� ���������

�����456

�������������������

��

�����

FC-;5JF�D4HG�-DFCDHE;NDKO

�KKAFE-4E;,5�FG,MF�F;5JKD�FC-;5J���������,-�����?,A5E������/�����G4ND�"�/��

���

��

7��

''$�%".0(

.�.1&$�%"++(

''��1&$�%"&0(

'+��1&$�%"*�(

.�'1�$�%'&�(���

���

���

���� ���� ��

'��1�$�%��(

'��1�$�%��(

��'1&$�%'�+(

���������

����

���

.1'*$�%''(

����

.1'*$�%''(

0��1�$�%"�&(

*��1&$�%'*&(

'"�'1&$�%�+&(

�1&�

�1&$

'1"$

��� � ������ ���������

&�.1&$�%""�(

'"$�%�+�(

'"��1�$�%�"�(

01'*$�%'�(

01'*$�%'�(

�1&$�%'*(

��'1"$�%&0(

��'1"$�%&0(

*��1&$�%'*&(

�����456�

*$�%'�"(

*$�%'�"(

��'1"$�%'�+(

�����������

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.6 Sound and Vibration Isolation ����

Sound and vibration of mechanical equipment insidebuildings is often critical and it may be necessary to installvibration isolators under the base of the Packaged Chiller.

Spring vibration isolators are offered as optional items.See 2.6.1 for mounting location. When spring isolatorsare used, flexible connectors must be installed in the waterpiping system. Note: These flexible connectors must besuitable for the fluid and pressures involved.

All piping which is external to the packaged chiller mustbe supported by spring mounted hangers and any piping

which goes through the wall, ceiling or floor should beproperly sheathed to prevent transmission of pipingvibration to the structure.

When spring isolators are used, electrical service to theunit must also be flexibly connected, by means of a 36"section of flexible conduit.

Refer to pages 24 and 25 for dimensional informationrequired for locating isolators.

2.6.1 ���� Spring Vibration Isolators and Locations

27

���� ������

� ��

�)�������

��!

�����������

�����

��������

������ ���

���� ���

� ��

�)������� ��!

�����������

����� ���������� ����

��������

������ ���

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.7 Water Piping Connections����

After the unit has been levelled and isolators (if any)installed and adjusted, connect cooler and condenserwater piping. Piping must be properly supported toavoid stress on unit water connections. Install air ventvalves in all high connections on cooler and condenserheads. Install drain valves in similar low points tofacilitate gravity draining of the system. It is importantthat water systems be cleaned before start-up to avoidcollecting debris in cooler and condenser.

The best way to do this is to install wye strainers inboth systems upstream of the unit. After filling systemswith water, bleed trapped air from the various ventvalves. Check for proper flow rates by measuring waterpressure drop across heat exchangers and reading GPMfrom charts, Figures 31 and 32. Compare measuredGPM's with values specified on purchase order.

Water flow through the cooler must remain constantfor proper chiller operation. Water pressure gaugesare recommended to check the water pressure and flowrate in the system, before and after the cooler, and todetermine if variations occur in the cooler and system.

The cooler must be freeze protected with the correctpercentage of glycol if ambient temperatures areexpected to be below 32°F. If sub-freezing ambienttemperatures are possible, the unit cooler, condenserand all exposed field water piping should be drained orhave a glycol mixture to prevent freezing.

When installing pressure taps to measure the amountof pressure drop across the water side of the coolerand condenser, the taps should be located in the water

2.7.1 ���� Chilled Water Pipingpiping a minimum of twenty-four (24) inchesdownstream from any connections (flange, elbow, etc.).

There are many piping and control systems which maybe used to assure constant water flow through thecooler. A typical system is shown in Figure 2.7A. Ituses a three way motorized valve which operates inresponse to the discharge air temperature of the coolingcoil.

Another system which is sometimes used consists of atwo way modulating control valve, which also respondsto the discharge air temperature of the cooling coil,used in conjunction with a spring loaded bypassregulating valve as shown in Figure 2.7B. The bypassvalve must be set to assure the full flow of circulatingchilled water when the modulating valve is completelyclosed.

Other systems are noted in the ASHRAE Handbook andmay serve equally well. Whatever system is selected,water flow must be constantly maintained through thechiller.

If the system is arranged for the dual purpose of coolingin the summer and heating in the winter, the coolermust be valved off during the heating season so thathot water will not pass through the cooler. This maybe either a manual or automatic change-over operation.There are also times, such as early spring and late fall,when both heating and cooling are required. Thisshould also be considered when designing heating andcooling systems. For various piping arrangements,consult the ASHRAE Handbook.

Figure 2.7A - Three-Way Load Side Bypass

Figure 2.7B- Two-Way Load Side Bypass

28

�����

�����

������ ���

�������

�,��"

�,��'

������

�������

������ ���������

������������

���������

���������

������ ��������

������� ���������

��� �� ���� �� ��������� �����������

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.7.2 Multiple Chillers Per Chilled WaterSystem

2.7.2.1 Where the load is greater than one can supply or where standby capacity isrequired or the load profile dictates, multiplechillers may be piped in parallel. Units ofequal size help to ensure fluid flow balance,however, balancing valves will ensurebalanced flows even with dissimilar chillers.Temperature controller sensors may or maynot need to be moved to the common fluidpiping depending on the specific application.

2.7.2.2 Parallel Chiller Applications (Figure 28A)Both units operate simultaneouslymodulating with load variations. Each unitoperates independently sensing its ownleaving water temperature. The set point ofeach sensor is set to maintain the desiredloading scheme.

If unit sequencing is required, specialprogramming and interconnecting wiring arerequired. Additional water control pipingmay also be required.

Figure 28A

2.7.2.3 Series Chiller Applications (Figure 28B)Where a large temperature range is required(generally over 15°F [8.4°C]), the chiller maybe piped in series. If load balancing is notrequired, the units are controlledindependently. Chiller Number 1 will operateup to full load when the system requirementsare within its capability.

If load balancing is required, specialprogramming and interconnecting wiring arerequired. The load is progressive bytemperature so the chiller selections arecritical.

Figure 28B

2.7.2.4 Oversizing Chillers

Oversizing of chillers more than 10-15% is notrecommended. Oversizing causes energy inefficiencyand shortened compressor life due to excessivecompressor cycling. Larger future load requirementsmay cause temporary oversizing of equipment whichwill require careful unit selection. It may be better toproperly size for the present load and add another unitlater for future expansion. It is also recommended usingmultiple units where operation at minimum load iscritical. Fully loaded equipment operates better andmore efficiently than large equipment running at ornear minimum capacity.

Hot gas bypass should not be a means to allowoversizing of chillers. Hot gas bypass should only beused where the equipment is sized properly for fullload but the load turn down is less than the minimumunloading capacity available.

2.7.2.5 Water (Fluid) Strainers

It is recommended that 40-mesh strainers be installedin the fluid piping as close to unit cooler as possible toprevent plugging or damage to the tubes.

29

�� ���

����

����

����

�������� ��

��� ���������

������ � �������

�����

�����

������ � �������

��� ���������

������� ����

����

����

�� ���

����

���� ������ � ��

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.7.3 Cooler Design Data Guidelines

2.7.3.1 Maximum—LCFT (Leaving Chilled FluidTemperature) is 50°F (10°C). The unit can startand pull down with up to 90°F (32.2°C)entering water temperature.

2.7.3.2 Minimum—LCFT is 38°F (3.3°C) for all unitmodels being applied to water applicationsusing standard coolers. Consult factory forother operating conditions below 38°F(3.3°C) or use ethylene or propylene glycol.

2.7.3.3 Operating Leaving TemperatureApplications using ethylene or propyleneglycol can be applied from 50 to 20°F (10.0to -6.7°C).

2.7.3.4 Minimum/Maximum Flow Rates Data andvessel fluid volume are found on page 31.

2.7.3.5a Two Pass Coolers are considered Standardand are used for most Air Conditioning andProcess Applications. They have a chilledfluid temperature difference range from 8°to 14°F (4.4° to 7.8°C).

2.7.3.5b Single Pass Coolers are used for NarrowTemperature Range Applications, and havea chilled fluid temperature difference rangefrom 3° to 10°F (1.7° to 5.6°C).

2.7.3.5c Three Pass Coolers are used for Wide RangeApplications, and have an effective chilleroperating chilled fluid temperaturedifference range from 10° to 20°F (5.6° to11.1°C).

2.7.3.6 Wide Range - Low Flow Chiller Operationcan be accomplished with a by-passrecirculation method of piping, to allow thechiller to operate with acceptable flow ratesas shown in Figure 26A. This is a suggestedarrangement and special engineering ofpiping, valving, and sensor locations isrequired to ensure proper operation.

2.7.3.7 For Extra Narrow and Wide RangeApplications a by-pass piping arrangementcan be used similar to Figure 26B. This is asuggested arrangement and specialengineering of piping, valving, and sensorlocations is required to ensure properoperation.

Figure 29A

Figure 29B

The mixed fluid temperature range through the cooler, for units with standard coolers, should not be less than 6°F(3.3°C).

This fluid mixes after the cooler.

30

�����

��!

����

���

�����

��!

����

��� ���

����

������� ���������

������,-��� ���������������� ��������,-��� ���������

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.7.4 Chilled Fluid Loop Volume (CFLV)Guidelines

Careful consideration needs to be given to the “ChilledFluid Loop Volume” (CFLV) or System / Inertia tomaintain an acceptable leaving fluid temperature.

Small Loop Volume Systems may have temperaturecontrol problems due to the small fluid volume in thesystem. This “System Inertia Problem” is exaggeratedat low load conditions and causes chiller to short cycle.The small fluid volume in the system will be pulled downto setpoint in a very short period of time, and the chillerwill be shut down. The chiller's anti-recycle timer limitsthe number of starts to three per hour. The system looptemperature will warm up during this off cycle and mayrequire cooling before the anti- recycle timer has timedout. Once the anti-recycle timer has timed out the unit

will re-start and the chiller will again load up possiblyto 100% and pull the loop down again repeating theshort cycle pattern.

The System Loop Volume should be sized to limit thetemperature rise that can occur during the off cycle.

Air Conditioning ApplicationsThe chilled fluid loop volume must be at least 3 gallonsper nominal ton of cooling (3.25 L per kW).

Process & Special Air Conditioning ApplicationsWhere leaving fluid temperature is often more critical,the chilled fluid loop volume should be increased to 6to 10 gallons per ton (6.5 to 10.8 L per KW).

Table 30A Quick Reference—Minimum Chilled Fluid Loop Volume*

Air Conditioning Applications Process Applications Model Gallons Liters Gallons Liters Gallons Liters

030 900 3406 1800 6813 To 3000 11355040 1200 4542 2400 9084 To 4000 15140050 1500 5677 3000 11355 To 5000 18925

*Values based on nominal capacity at 10°F (5.6°C) chilled fluid temperature range.

Type of Application Gal/Ton L/KW Gallons = Gal/Ton x ARI Capacity in TonsNormal Air Conditioning 3 3.25 Liters = L/KW x ARI capacity in KWProcess Cooling 6 - 10 6.5 - 10.8

Tanks for System Volume EnhancementIt may be necessary to install a tank in the system to provide sufficient system fluid volume, as shown below.

Figure 30A Single Loop System with Storage Tank to Increase Loop Volume

Figure 30B Primary and Secondary Loop Systems are normally used where the secondary system has variableflow and/or multiple loads. See example below.

31

'

'++ "++ �++ �++ �++ *++ .++�&++�0++���'+++ '�++ "+++ �+++ �+++ �+++��*+++

�� �* �* �* !* *

���* �* �* !* *

�� �* �* �* !**

*�� '"�* '0 *��&"� �" �+�� �. '"*0� '&0 ��.0�'�"�"1����

"

*

.

&

0

'+

'�

"+

�+

�+

�+

*+

��

*

'&

0

'"

'�

"'

"�

".

�+

*+

0+

'"+

'�+

'&+!�4

� �,>� ��

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

Vessel Water Connection Minimum Maximum Minimum MaximumCode Size (*) GPM GPM L/s L/s

Single Pass - Flooded CoolerF5 10" VIC 389 1946 24.6 122.8F6 10" VIC 481 2406 30.4 151.7G6 12" VIC 555 2777 35.0 175.2H6 12" VIC 671 3354 42.3 211.6K6 14" VIC 794 3970 50.1 250.4L6 14" VIC 994 4968 62.7 313.4

Two Pass - Flooded CoolerF5 8" VIC 201 939 12.7 59.2F6 8" VIC 243 1193 15.3 75.3G6 8" VIC 278 1389 17.5 87.6H6 10"VIC 344 1633 21.7 103.0K6 10"VIC 407 1936 25.7 122.1L6 10"VIC 507 2435 32.0 153.6

Three Pass - Flooded CoolerF5 6" VIC 135 606 8.5 38.5F6 8" VIC 164 733 10.4 46.3G6 8" VIC 192 861 12.1 54.3H6 8" VIC 227 997 14.3 62.9K6 8" VIC 284 1232 17.9 77.7L6 8" VIC 329 1535 20.7 96.8

* Non-Metric Compliant

ENGLISH I.P. UNITS AND S. I. UNITS

Figure 31

2.7.5 Flooded Cooler Water Side Pressure Drop

32

'

'++ "++ �++ �++ �++ *++ .++�&++�0++���'+++ '�++ "+++ �+++ �+++ �+++��*+++

�*

*�� '"�* '0 *��&"� �" �+�� �. '"*0� '&0 ��.0�'�"�"1����

"

*

.

&

0

'+

'�

"+

�+

�+

�+

*+

��

*

'&

0

'"

'�

"'

"�

".

�+

*+

0+

'"+

'�+

'&+!�4

� �,>� ��

�*

�.

�*�* �*

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

Vessel Water Connection Minimum Maximum Minimum MaximumCode Size (*) GPM GPM L/s L/s

Two Pass - CondenserD6 6" VIC 251 1146 15.8 72.3E6 8" VIC 291 1435 18.4 90.5E7 8" VIC 349 1495 22.0 94.3F6 8" VIC 409 1983 25.8 125.1G6 10" VIC 500 2262 31.6 142.7H6 10" VIC 602 2711 38.0 171.0

* Non-Metric Compliant

ENGLISH I.P. UNITS AND S. I. UNITS

Figure 32

2.7.6 Condenser Water Side Pressure Drop

33

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.7.1 Cooling Tower Control and Con-denser Application Design Data

2.7.7.1 Cooling Tower and Head Pressure Controlis imperative for proper trouble free chilleroperation. There are several methods oftower and head pressure that we will discussbelow.

2.7.7.2 Condenser Water Temperature shouldnever go below 60°F (15.6°C) and its rate ofchange should not be rapid. Rapid is definedas not exceeding 2°F (1.1°C) per minute. Ifthis cannot be guaranteed, then othercontrols such as tower dampers, tower sumpheater, 3-way tower bypass valve, 2-waytower throttling valve or variable speedcondenser pumping must be utilized. This isnecessary because a chiller operates in adynamic environment and is designed tomaintain a precise leaving chilled watertemperature under varying enteringconditions. The additional dynamics ofrapidly varying condenser water temperaturesubjects the machine to fluctuating pressuredifferentials across the cooler and condenser.This varies the refrigerant flow and,therefore, the capacity and efficiency of thechiller. If this occurs faster than the machinecan accommodate, the head pressure orsuction pressure will soon exceed their safetysetpoints and the machine will shut down.Through an optional analog output board,the microcomputer can control the bypassor throttling valve directly from condenserpressure, by sending a 0 to 10 VDC signal toa direct current, valve motor actuator.

The Dunham-Bush microcomputer canprovide a digital signal to enable the controlcircuit of the tower.

2.7.7.3 Condenser Water Regulating Valves are adesirable method of head pressure control,because they respond directly to changes inhead pressure and provide the most stablemethod of head pressure control. Stablehead pressure control allows the chiller tooperate at the best efficiency for the loadconditions.

2.7.7.4 Cooling Tower and Head Pressure Controlcan be attained via fan cycling if the tower israted at the same capacity as the chiller, andthe machine will operate at design conditionsunder heavy load. On multiple chillerinstallations, a single tower may be sized,for a multiple of the individual chillers. If thisis true and only one machine is running, the

2.7.7.6 Fan Cycling Tower Control is one methodof head pressure control, but this type ofcontrol does not work for all systems. Werecommend that the condenser water pumpcontrol through the unit interlock, in thechiller control panel, be used to enable anddisable the condenser water pumps. Wefurther recommend that the designercarefully evaluate the system to determine aprecise method of tower fan and water pumptemperature control for the most efficientmethod of head pressure control.

2.7.7.6.1 Minimum—ECWT (Entering CondenserWater Temperature) is 60°F (15.6°C) to startthe unit, and maintain head pressure controlfor proper unit operation. The watertemperature change rate must be less than2°F (1.1°C) per minute to assure proper chilleroperating stability. This is necessary becauseit operates in a dynamic environment. Headpressure through water regulating controlvalves or bypass piping should be used wherelower ECWT is expected.

2.7.7.6.2 Maximum—ECWT (Entering CondenserWater Temperature) is 95°F (35°C) withoutloss of unit capacity or potential highcondensing temperature/pressure shutdown.The water temperature change rate must beless than 2°F (1.1°C) per minute to assureproper chiller operating stability. For highercondenser entering water temperature,consult the factory.

2.7.7.6.3 Unit Operating Efficiency and trouble freeoperation is greatly influenced by theentering condenser water temperature,proper flow, and the mean temperature ofthe condenser water.

tower is then oversized, relative to theindividual chiller needs, and head pressurecontrol becomes a challenge. On otherinstallations, the tower/chiller might beoversized to the design load and the machineand tower frequently cycle under light loads.Under these conditions, fan cycling mightresult in very rapid temperature swings,which creates a dynamic situation thatoccurs faster than the chiller control systemcan accommodate. Variable speed fans ormodulating valve control should be used tomaintain system stability.

2.7.7.5 Condenser Water Pump must be controlledby the chiller to ensure there is no condenserwater flow until start-up.

34

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.7.7.6.4 Minimum/Maximum Flow Rates Data andvessel fluid volume are shown on page 32.

2.7.7.6.5 Condenser Water Pressure Drop Data isshown on page 32.

2.7.7.6.6 Wide Condenser Water TemperatureRanges for units operating with 95° ECWT(35°C) and higher, and wider than 10°F(5.6°C) range, increases the unit condensingtemperature and decreases the unitefficiency. This situation is usually found inapplications with undersized condenserwater towers.

2.7.7.6.7 Narrow Condenser Water TemperatureRanges are desirable for unit efficiency,because it reduces the mean condensingtemperature.

2.7.8 Glycol Freeze ProtectionIf the chiller or fluid piping may be exposed totemperatures below freezing, glycol protection isrecommended if the water is not drained. Therecommended protection is 10°F (5.6°C) below theminimum ambient temperature in the equipment roomand around piping. Use only glycol solutions approvedfor heat exchanger duty. DO NOT use automotive anti-freeze.

If the equipment is being used for applications below38°F (3.3°C), glycol should be used to prevent freezedamage. The freeze protection level should be 10°F(5.6°C) lower than the leaving brine temperature.

% E.G.

By Mass °F °C

10 26.2 -3.2

15 22.2 -5.3

20 17.9 -7.9

25 12.7 -10.8

30 6.7 -14.1

35 -0.2 -17.8

40 -8.1 -25.8

45 -17.5 -27.5

50 -28.9 -33.8

Table 34A

FREEZE POINT

Ethylene Glycol

Table 34B

Propylene Glycol

FREEZE POINT

2.7.9 Water QualityCoolers used in these packages are made of steel, copperand brass and are suitable for operation with well-maintained water systems. However, if the water usedin cooler is corrosive, high in mineral content orentrained solids, the water can cause reducedperformance and even failure of heat exchangers.Therefore, it may be necessary to obtain the services ofa water treatment consultant and to provide andmaintain water treatment. This is particularly importantwith glycol systems.

See Maintenance Section 4.0 Paragraph 4.4 formaintenance of heat exchangers.

% P.G.

by Mass °F °C

10 26.1 -3.3

15 22.9 -5.1

20 19.2 -7.2

25 14.7 -9.7

30 9.2 -12.8

35 2.4 -16.6

40 -6.0 -21.3

45 -16.1 -27.0

50 -28.3 -33.8

35

������������������

����������������

�����

���1���������!�������

�� ���������

9� �����

���� �����

����!�����

����� ��������

���� ��������

�� ��������

�������������� ��

���� ��������

�� ��

�������

��� ����� ������

���� ��������

��� ��������!�����

�#����������� ��� ��

�������������

���� ����� ��

����� �����������

������������

��������������!�����

"'

"+

'0

'&

'.

'*

'�

'�

'�

'"

''

'+

0

&

.

*

"

'

�������������

������������������

���1���������!

�#�������

����� �������

��� �������

*

.

'�'�

'*

'.

'&

'0

"

"'

"+

&

0

'+

'�

''

'"

'

������ ����

�����

���������

����������

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)

2.8 Typical Refrigerant Piping

2.9 Electrical ConnectionsAll units are wired as completely as possible at thefactory prior to deliver. The connections which must bemade by the installer are to the main power source,control power source, starting equipment andinterlocking the satellite equipment. In connectingpower wiring to the unit, the following precautionsshould be taken:

• All field wiring is to be in accordance with theNational Electrical Code and state and local codes.

• All wiring is to be checked for damage and allterminal connections tested for tightness. Unit

terminal blocks are to be connected with copperconductors only, sized per ampacity listed on unitdata plate.

• The power supply should match the unitnameplate in volts, phase and Hertz. Voltage mustbe within ��10% of nameplate valve and voltageimbalance between phases must not exceed 2%.

• For minimum circuit ampacity and maximum fusesize, see Unit Nameplate.

36

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.1 Unit Electrical DataMotor Size (HP) 200 200 250 250 300 300 350 350 400 400 450 450 500 500Motor Class STD PREM STD PREM STD PREM STD PREM STD PREM STD PREM STD PREMCompressor Motor Code E E F F G G H H J J K K L L460/3/60 FLA 221 225 283 277 335 325 387 378 440 428 494 476 544 526

LRA 1580 1450 1644 1825 2197 2200 2501 2550 3110 2900 3550 3220 3900 3600Y-D START 527 483 548 608 732 733 834 850 1037 967 1183 1073 1300 1200S S START 442 450 566 554 670 650 774 756 880 856 988 952 1088 1052MFS 350 350 450 450 500 500 600 600 700 700 800 800 800 800MCA 280 285 358 350 423 410 488 477 554 539 622 599 684 662FL EFF 94.7 95.7 94.0 95.8 94.6 96.1 95.3 96.2 94.9 96.1 95.0 96.2 95.3 96.5

575/3/60 FLA 177 178 226 224 268 260 309 302 352 342 395 380 435 421LRA 1264 1160 1315 1440 1760 1760 2000 2040 2490 2320 2840 2600 3120 2900Y-D START 421 387 438 480 587 587 667 680 830 773 947 867 1040 967S S START 354 356 453 448 536 520 618 605 704 685 790 760 870 842MFS 300 300 350 350 450 450 500 500 600 600 600 600 700 700MCA 224 226 286 283 338 328 389 381 443 431 497 478 547 529FL EFF 94.7 95.7 94.0 95.8 94.6 96.1 95.3 96.2 94.9 96.1 95.0 96.2 95.3 96.5

2300/3/60 FLA 45.2 45 56 55 67 66 77.3 77 87.7 87 98.5 98 108.2 108LRA 326 340 364 380 459 485 520 580 575 616 653 691 738 766MFS 70 70 90 90 110 110 125 125 150 150 150 150 175 175MCA 57 57 70 69 84 83 97 97 110 109 124 123 136 135FL EFF 94.0 94.6 94.0 94.6 94.1 94.8 94.2 95.2 94.5 95.2 94.8 95.2 95.3 95.2

460V - oil pump MFS 15 15 15 15 15 15 15 15 15 15 15 15 15 15460V - oil pump MCA 13 13 13 13 13 13 13 13 13 13 13 13 13 134160/3/60 FLA 25 25 31 30.5 37.1 36.6 42.8 42 48.4 48 54.5 54 59.8 59

LRA 196 205 218 228 276 291 312 350 345 370 392 415 443 460MFS 40 40 50 50 60 60 70 70 80 80 90 90 100 100MCA 32 32 39 39 47 46 54 53 61 60 69 68 75 74FL EFF 94.0 94.6 94.0 94.6 94.1 94.8 94.2 95.0 94.5 95.2 94.8 95.2 95.3 95.6

460V - oil pump MFS 15 15 15 15 15 15 15 15 15 15 15 15 15 15460V - oil pump MCA 13 13 13 13 13 13 13 13 13 13 13 13 13 13400/3/50 FLA 259 232 323 285 390 335 450 389 512 441 580 491 — —

LRA 1620 1523 1680 1916 2240 2310 2540 2678 3150 3045 3580 3381 — —Y-D START 540 508 560 639 747 770 847 893 1050 1015 1193 1127 — —S S START 518 464 646 570 780 670 900 778 1024 882 1160 982 — —MFS 450 400 500 500 600 500 700 600 800 700 1000 800 — —MCA 329 295 409 361 493 424 568 491 645 556 730 619 — —FL EFF 94.6 94.7 94.0 94.8 94.2 95.1 94.3 95.2 94.3 95.1 94.6 95.2 — —

3300/3/50 FLA 32 32 40 40 48 48 56 55 63 62 71 70 — —LRA 186 195 204 212 270 285 280 320 305 350 374 400 — —MFS 50 50 70 70 80 80 90 90 110 100 110 110 — —MCA 40 40 50 50 60 60 70 69 79 78 89 88 — —FL EFF 93.0 93.6 93.0 93.6 93.1 93.8 93.2 94.1 93.8 94.4 94.0 94.4 — —

400V - oil pump MFS 15 15 15 15 15 15 15 15 15 15 15 15 — —400V - oil pump MCA 13 13 13 13 13 13 13 13 13 13 13 13 — —Oil Pump Data400/3/50 FLA 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6460/3/60 FLA 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7575/3/60 FLA 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72

Notes:a. 400V, 460V, and 575V units will be provided with control power

transformers in the starter for single power connection.b. 400/460/575 Volt Motors, the 84 dba Motor is standardc. 2300V and 4160V units will require a separate 460/3/60 service

for oil pump and control transformer.d. 3300V units will require a separate 400/3/50 service for oil

pump and control transformer.

Legend:FLA - Full Load AmpsLRA - Locked Rotor AmpsMCA - Minimum Circuit AmpacityMFS - Maximum Fuse SizeFL EFF - Full Load EfficiencySS Start - Solid State Starting (Standard Starting Method)Y-D Start - Y Delta Starting (Optional Starting Method)

37

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.2 Electrical Field Connection DataMotor Size (HP) (Standard [S] and Premium [P]) 200 250 [S] 250 [P] 300 [S] 300 [P] 350 400 [S] 400 [P] 450 [S] 450 [P] 500Compressor Motor Code ES & EP FS FP GS GP HS & HP JS JP KS KP LS & LP

Unit Mounted - Solid State Starters ONLY460/3/60 Terminal Block # of Conductors (4) 2 2 2 2 2 2 2 2 2 2 2

"Standard" Wire Range #6-350 #6-350 #6-350 #6-350 #6-350 #6-350 #2-600 #2-600 #2-600 #2-600 #2-600Circuit Breaker Trip Amps 400A 400A 400A 600A 600A 600A 600A 600A 800A 800A 800A

"Optional" # of Conductors (4) 2 2 2 2 2 2 2 2 3 3 3Wire Range 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 #1-500 #1-500 #1-500

Fused Disconnect Rating in amps 400A 400A 400A 600A 600A 600A 600A 600A 800A 800A 800A"Optional" # of Conductors (4) 1 1 1 2 2 2 2 2 3 3 3

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #1-500 #1-500 #1-500575/3/60 Terminal Block # of Conductors (4) 2 2 2 2 2 2 2 2 2 2 2

"Standard" Wire Range #6-350 #6-350 #6-350 #6-350 #6-350 #6-350 #2-600 #2-600 #2-600 #2-600 #2-600Circuit Breaker Trip Amps 250A 400A 400A 400A 400A 600A 600A 600A 600A 600A 600A

"Optional" # of Conductors (4) 1 2 2 2 2 2 2 2 2 2 2Wire Range #6-350 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500

Fused Disconnect Rating in amps 400A 400A 400A 400A 400A 600A 600A 600A 600A 600A 600A"Optional" # of Conductors (4) 1 1 1 1 1 2 2 2 2 2 2

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600400/3/50 Terminal Block # of Conductors (4) 2 2 2 2 2 2 2 2 2 2 NA

"Standard" Wire Range #6-350 #6-350 #6-350 #6-350 #6-350 #2-600 #2-600 #2-600 #2-600 #2-600 NACircuit Breaker Trip Amps 400A 600A 400A 600A 600A 600A 800A 600A 800A 800A NA

"Optional" # of Conductors (4) 2 2 2 2 2 2 3 2 3 3 NAWire Range 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 #1-500 3/0-500 #1-500 #1-500 NA

Fused Disconnect Rating in amps 400A 600A 400A 600A 600A 600A 600A 600A 800A 800A NA"Optional" # of Conductors (4) 1 2 1 2 2 2 3 2 3 3 NA

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #1-500 #2-600 #1-500 #1-500 NA

Unit Mounted - Wye Delta Starters ONLY460/3/60 Terminal Block # of Conductors (4) 2 2 2 2 2 2 2 2 2 2 2

"Standard" Wire Range #2-300 #1-500 #1-500 #1-500 #1-500 #1-500 #1-500 #1-500 #1-500 #1-500 #2-600Circuit Breaker Trip Amps 400A 400A 400A 600A 600A 600A 600A 600A 800A 800A 800A

"Optional" # of Conductors (4) 2 2 2 2 2 2 2 2 3 3 3Wire Range 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 #1-500 #1-500 #1-500

Fused Disconnect Rating in amps 400A 400A 400A 600A 600A 600A 600A 600A CF CF CF"Optional" # of Conductors (4) 1 1 1 2 2 2 2 2 CF CF CF

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 CF CF CF575/3/60 Terminal Block # of Conductors (4) 2 2 2 2 2 2 2 2 2 2 2

"Standard" Wire Range #3-2/0 #2-300 #2-300 #2-300 #2-300 #1-500 #1-500 #1-500 #1-500 #1-500 #1-500Circuit Breaker Trip Amps 250A 400A 400A 400A 400A 600A 600A 600A 600A 600A 600A

"Optional" # of Conductors (4) 1 2 2 2 2 2 2 2 2 2 2Wire Range #6-350 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500

Fused Disconnect Rating in amps 400A 400A 400A 400A 400A 600A 600A 600A 600A 600A 600A"Optional" # of Conductors (4) 1 1 1 1 1 2 2 2 2 2 2

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600400/3/50 Terminal Block # of Conductors (4) 2 2 2 2 2 2 2 2 4 4 NA

"Standard" Wire Range #2-300 #1-500 #2-300 #1-500 #1-500 #1-500 #1-500 #1-500 #2-600 #2-600 NACircuit Breaker Trip Amps 400A 600A 400A 600A 600A 600A 800A 600A 800A 800A NA

"Optional" # of Conductors (4) 2 2 2 2 2 2 3 2 3 3 NAWire Range 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 3/0-500 #1-500 3/0-500 #1-500 #1-500 NA

Fused Disconnect Rating in amps 400A 600A 400A 600A 600A 600A CF 600A CF CF NA"Optional" # of Conductors (4) 1 2 1 2 2 2 CF 2 CF CF NA

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 CF #2-600 CF CF NA

Remote Mounted - Wye Delta Starters ONLY460/3/60 Terminal Block # of Conductors (4) 2 2 2 2 4 4 4 4 4 4 4

"Standard" Wire Range #6-250 #6-250 #6-250 #6-250 #4-500 #4-500 #4-500 #4-500 #4-500 #4-500 #4-500Circuit Breaker Trip Amps 400A 400A 400A 600A 600A 600A 600A 600A 800A 800A 800A

"Optional" # of Conductors (4) 2 2 2 2 2 2 2 2 3 2 3Wire Range 3/0-250 3/0-250 3/0-250 250-500 250-500 250-500 250-500 250-500 2/0-400 250-500 2/0-400

Fused Disconnect Rating in amps 400A 400A 400A 600A 600A 600A 600A 600A 800A 800A 800A"Optional" # of Conductors (4) 1 1 1 2 2 2 2 2 4 2 4

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600575/3/60 Terminal Block # of Conductors (4) 2 2 2 2 2 2 4 4 4 4 4

"Standard" Wire Range #6-250 #6-250 #6-250 #6-250 #6-250 #6-250 #4-500 #4-500 #4-500 #4-500 #4-500Circuit Breaker Trip Amps 250A 400A 400A 400A 400A 400A 600A 600A 600A 600A 600A

"Optional" # of Conductors (4) 1 2 2 2 2 2 2 2 2 2 2Wire Range #6-350 3/0-250 3/0-250 3/0-250 3/0-250 3/0-250 250-500 250-500 250-500 250-500 250-500

Fused Disconnect Rating in amps 400A 400A 400A 400A 400A 600A 600A 600A 600A 600A 600A"Optional" # of Conductors (4) 1 1 1 1 1 2 2 2 2 2 2

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600400/3/50 Terminal Block # of Conductors (4) 2 2 2 4 4 4 4 4 4 4 NA

"Standard" Wire Range #6-250 #6-250 #6-250 #4-500 #4-500 #4-500 #4-500 #4-500 #4-500 #4-500 NACircuit Breaker Trip Amps 400A 600A 400A 600A 600A 600A 800A 600A 800A 800A NA

"Optional" # of Conductors (4) 2 2 2 2 2 2 3 2 3 3 NAWire Range 3/0-250 250-500 3/0-250 3/0-500 250-500 250-500 2/0-400 250-500 2/0-400 2/0-400 NA

Fused Disconnect Rating in amps 400A 600A 400A 600A 600A 600A 800A 600A 800A 800A NA"Optional" # of Conductors (4) 1 2 1 2 2 2 4 2 4 4 NA

Wire Range #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 #2-600 NANotes: 1. All field wiring used to connect the Chillers must be Copper.

2. Wire sizes 250 and larger are Kcmil.3. Remote mounted Medium Voltage Starters provided with Buss-Bar connections.4. Number of conductors per pole.

NA = Not AvailableCF = Consult Factory

38

9����������� ��������1�� �����"�����9�������

���������

�� ����������

���������

�� ����������

+""������������&

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.3 Power Wiring Diagram: Typical Solid State Unit Mounted Starter

39

○ ○

+""�������*����&

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.3 Power Wiring Diagram: Typical Solid State Unit Mounted Starter

40

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.4 Power Wiring Diagram: Typical Wye-Delta Unit Mounted Starter

41

○ ○

������������ ����!

'� &�0*

���

���

��

��

���

���

���

��

��

����

���

��

��

���

���

�����

���������

��������

�������

������

�������

�������

�����

�������

�����������

�������

����

����� �

�����

������

�������

�����

��� �

�����

�������

���������

�������

�����������

�����������

�����

�� ���

�������

+""�������&����&

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.4 Power Wiring Diagram: Typical Wye-Delta Unit Mounted Starter

42

+""�������'����&

'��

"��

'&'.

0��&��

������������� ��'"����

������������ ��

��������� ��"

�1������������������

9'

��������� ��'

���� �

.�+�

'"���

''����

&

����'

'

� �

"

'

��

��

��

�"

�'

�+

�0

�&

�.

�*

��

��

��

�"

�'

�+

"0

"&

".

"*

"�

"�

"�

""

"'

"+

'0

'&

'.

'*

'�

'�

'�

'"

''

'+

0

&

.

*

"

'

"

'� '�

"� "�

�"

�+

� �

��� �

� �!

" '

"��

'� '*

��)

��P

�*

�.

�&

��

������� �������� ��

'+��'+��"

���

*�� '��

'�� �

*����"

.��

'+�

." � �

.�+

�'

��� ������

���

"+ �.

''"+ '"���

"���

������� ���

��

��

��

��

*�

*�

'� '��

.�

.�

���

���

*��

.��

'���

'+!����

�� ��

�"������� �� ������ ����

����������

��

'+ '� '�

�������)��

"�

"&"� "��

"��"�

�� ���

����� "&

"*

'��

"��

������ �� ���� ��0��+�

�����������

�������������

"���'

�������

����� �� ��

".

������ �� ���������

��������� �� ���

&� &�� ��

�� ������ ����

��� ����

"

�����0��0�

�'+� '+��

�* �"���

��� ������ ��

��������

"���" '+"'+'

��������������

�� ����!

''����

������ ��' "

� �

������ ��'+

� �� �����)����

�� ��

'

Q'"���

'+��

'���

'��� '���

'���'��

'�� �'

�� ������

�� ������

'���'"��

��������� ���

�����"�'

���R���

*�

�'

'��

"��

���

���

���

&��

0��

�"

"

��

��

' " � *

'".

'

��������0

'��

���

'+��

''��

.��

*��

���

"��

��

��

�+

���

�!

"+ "'P����

����

��� ��� ���� ������ �� �

'+�

����

��� '+����

&��

�*

�.

�&

�0

*+

*'

*"

�0

�+

�'

�"

"+

�������� �����

'���

' �

���

����

&� &�� &�0�������������

"+

P

� �� ������

'�

����

0� 0�� 0�

"+

*�*��

*��"+

���

���������������� ����!

"0

������������

�� ��

'0P

"+

����� ����������

'+� *�� '+*

���'+. '+&

�� ����!

����������

*���.''��''�''��

������

��� ���.�0��

�*+�

����� ��

�� ��'�

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.5 Typical Control Wiring Diagram

43

+""�������"����&

'��

"��

���

���

*������������������������ ������ ����� ���������'����� �� ����������������

�������������������� ������������ ����� �������������������������� ���� ���

����������������� ������������������������ ���� �� �������������������

��������������� ��� �������� ����������������� ������� ��"���������������������������� �� �������� � �������� �����������

�� ��

���

.�

**

*.

*&

�� ��

*�

*�

*�

**

*.

*&

*0

.+

.'

' ������������� �� �������

'� �������������

"� �����������������

�� ��

*�

*��

&�

���

�!

."

.�

���+�������������������� ��� ���� �'+� ������ ���������� ���������� �

���

���

���

���

0�

*�

������ �� ����� ������ ��� �� � ������ �

��� �� � ������

������� �������������� ������� ��

����������! �

�� ��� ���� �� ������

��� ��� �

��������� ��� ����������

������ �����

������������ ��

������� �������� ��

��� ������� ��

� �����������

��������� ����������

���� 1�� �� �1�

�� ���� ������

���������� ��

������

��� ������

����������

���

�����

��

����

����

���

���� ����� ������

����� ������������

����� ��

������� ������ �

����

�����

����������

����������

'� ������������� ������� � ���

����������� ������� ������������������"����������������������

���!����

�������������

�!

���

���

���

*�

*0���

���

�!

�!

*�

.+

.'

*�

*�

��������� ��������� ��*��

�� ��

�� ��

�� ��

�� ��

.��

Q�

���

" ����� ������ ��������

���

''��

'"��

&+

.0

�!

�S��

�S��

������

�����������

�� ��

�� ��

9����������������S"

���������� ��

''�������� ��������� �� ������������ ���� �� ����� ��+��������

��������������������#�����������S'+����������

������ ��������� ��' ������� �������S"����������� ������� ������������� ������� ���

�� ���� �''���� ����+�+�����'+�+����)���+���������������� ������������

���������� ��������� ����'+�+��� ���

������������

&'. �

�!

������������

0���S'�

�'

�'

�'

�'

�� ��

�'

�'

�'

�'

*�

&"

�'

'���

���

'++!

���

P ������������

��� �������� ������ �� ����� ����������� ����"+�/�"'�

��� ���T������ ����� ��������+���

��� ���T������ ����� ��������+���� ��''���

�� �

�����'++=�

�����+=�

���

�!

������ ����S��

Q

� �

��� ���������

����� �������

������� ������ ��

�� ��

�� ��

�� ��

���

���

���

*�

'

"

�� ��*�

�� ��

�'�� ��

���

�!

'+���S"�

'����������� ���������

� ����������

�� �����

���'����

��

��

��

��

*���

&�

�� ������������&.��'+'�'+&

���������

�!

'+�������������� ���������������� �������������������������������������� �

��������

����������

�+�"++������

�+��++������

�+��++������

���

���

�������������� ������������������� ������ ���� ��� ��������� ���������

� �� ��

��'"���

��� ��� �����������

"�+�

"���

��"+���

�� ������ ��

.�

.�

.*

..

.&

.0

&+

&'

&"

&�

&�

&�

&*

&.

&&

&0

0+

0'

0"

0�

0�

0�

��� ���������� ��� ����

�+

�'

���������S"�"����

���������S'�'����

��

���������������������������

���������

�� ��

������� ������������ ������������������������������ ������������������ �������������� ���!� � ������ ������� ���������������� ���"��������������������� ��������� ���'�������������!� � �������

������� ���� �������

����� ������� ��� ���������������!� ����������

��� ��� ����

9.

9*

9�9"

9� ��������������� ��

�����

!� �����

���&�

��"�"

'.

'"���

'&

�����������

������ ���1��������

���������1��������

�����������

���������������� ���

����������������

������

�� ����� � ���

����

"+++����

����

�� ����� �

�������

"*�+�����

'' ����������

������������� �������

����

��1����������

�����)��+�����

� ����

�����������

������ ����

'

�"

&

*

.

0

'+

���1������

+�'

"��

"��+=

�� ���� ��

��!��� �� '�

"+

�� ����������

������� ������ ���

���������

�����������

�����)��+���������������

�� ���� ��

��!��� ��

����������1����������

������ ����

+�+

�����+�+

"+�+=�

+�+

���� ���

'+�+=

"��+�����

� �������

� ����������

'"

����

���1������

*�

&.

0

'0++����

'''+

'�

'*�0+�����

�������+�'

�� ���� �

�3�

"��+='�0+�����

�����

"+�+=

'�&+�����

���� ������� ���

+�+

'+�+=

"+�����

"+++���� '0++����

+�++�+

���� ���

'*+�����'0+�������������'*

�� ����� � ���

'++

0.

0*

00

0&

'+"

'+'

'+�

'+�

'+�

'+*

�����3�

''��������������=�� �������� ����������� � ����������� ����� ���

'"���������������������� ����������������� ������ �������� ����"+���������������� �� ����� �������9������ �������'0�/�"+�

��� ������� ����� �� ����������������������������� ���� �*��� ������� ����� ������ ����������� ��������

'������������� �� ��������������������

���

�Q�

�Q�

�������'* '��'+����� ''�++�����

�� ����

�� ��

�� ��

�Q�

���

� �

� ���

��

���� ��

�� ��

�� ��

�� ��

��

��

'���������� �������������� �� ���������������������� ����������������� ��������������������������������������� ��������������������������������� ���������������������� ���!����������� �� �

�� ��

�� ��

�� ��

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.5 Typical Control Wiring Diagram

44

+""������������&

''��

"��

�� ����'

�� ���*�

�� �����

�� ����������

���������

�""���!��� �� ����� ���

.��

������9�

������

�����������

���������S�

��������S�

�S'�'.��

9�����������

�� ���

�� ������ ����

�� "

�� ����������

���������

&��

'"���1��

�""��� �� ��

���

&� �!�,

��

���

������ ���

���������

' "

�� ����������

���������

��"�"�����

�������� ���

�� ����������

���������

�' ���������

�����

� ��� ������ ������ ���

���

�� �

����

������9*

�!

& "

���������

�� ����������

� �

���

�!

���

������� �����

� �

�������� ��

.�

*�

�'

*�

�!

���

�!

��������

���������������

� ��

����������� ������

* �

� ��

�'

.�

.�

*�

�������

���

Q�

���������S"

'���

�"����

Q�

�S'�

���

�S"�'���

���

�S��'*��

Q�

���

����

���������� ���

�� ����������

�*

���������

"

"��"�"�����

������9*

��������!

���

"����

��� �

��� �

"+

� �����"

����������� ���

� � ��

���������

�� ����������

��������!��� ���

9����������������S�

�����������

��� ����� ���

���������

�� ����������

"��

���

�����������

������9�

����������� ��

�Q���������+��������������+�'+���

����������� �� ��������9������9�"

������� ��

'.

'&

��

�'

&�

'"���

���������� ���

0��

��� ��!�

������ ��

'�

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.5 Typical Control Wiring Diagram: Options

45

�� ��T

����������������������� ���������������������������� ������� ������������������ ��������� � �������������������������������

��������� �������������������������������� ������ ���� ������������ �� ��������

�������$��$����������������������������� � ��������������������� �

'�

"�

��

����� �� ������������ �� ������ �������

����� �������������������� ����!�������� ��������� �������� ������������������������� ��������� ���������� �� ��� ���T�'"�����'+������������������������������������"�+������

���������� ����� ��������+����

���������� ������������������������'*������������������'��������������)��� .������ �������� ����''����������

''����Q1�'+=�� �' ��

*�

��� ���������� ����������)������� �� ���������� ��������) ��������� ������� ���

�������� ��������� ����������������������� �������� �������������&���� ���������������� ����!�������

������������� ��T�'�"

�� ���

��� ����

��+�����

��� ��

+�������� ������

����

�������

�� ����

��� ��

���

��

"�����������)��� ��

"���������� �� ��

� )�����"+?�������Q�

� )�����"+?���������

� �� �����)���� ��

.0��Q�

�����'

�.

����

�+

��

�� ����'

�.

�+

��

������ �� ����1���� �

P������ ��*

������ �� ���������

��������+1����

����������)��� ��

� �� �����)���� �� ����

"+

"'

"+

'0

"+

'�

��� '"

'�

''

0

'+

" ��'

���

"

' �

'

��)�

S'+���P

S'+���P

S'+���P

"+

'�

'�

'+

''����

���

� �� ��

"

'

����������

��Q�

'+�������

�� ����!�� ��&

��� ��

'+&

'+.

'+*

�� ������������

�� ����!

������� ��

����'+"

'+�

'+�

'+'

&+

�'

&�

+�����

�� ������ ��

��Q�

����

+�'+���

��

���������� ��

�� ����

� ������ ����� ����

���������������� �������������� �����

�������)���� ����������� �������� ������ ����������� � ���������������� �������� ��������� ����������)���� ��������� ������� �������������

��)������� )��������������������1��

0���������+""'*�

+""������������&

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○2.0 INSTALLATION (CONT.)2.9.6 Typical Optional Interconnection Wiring Diagram

46

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

3.1 General Operation StatementThe unit operation section of this manual is dividedinto mechanical and control system operation, forclarity. Refer to Section 4 for control information.

3.2 System Water Flow RateThe quantity of chilled water being circulated can bemeasured quite accurately (±5%) by determining thewater pressure drop through the cooler and readingGPM from cooler pressure drop curve, Figure 31.Connect reliable pressure gauges to cooler entering andleaving water connections and read pressure differencewith chilled water pump in operation. Condenser waterflow rate can be measured in the same way, using Figure32. An alternate method of determining GPM is tomeasure pressure difference from pump inlet to outletand read GPM from pump curve.

3.3 Seasonal Shut-down Procedure3.3.1 If the unit is to be shut down for a prolonged

period (a month or more), the power supplyto the unit may be de-energized to conserveenergy.

3.3.2 The cooling tower may be drained to avoidfreezing. If the unit is located in an area wherethe ambient temperature constantly remainsabove freezing, the condenser need not bedrained. It is better to leave the condenserand cooler filled with water during shutdownperiod. If the unit is located where ambienttemperature will be below freezing, drain allwater thoroughly, removing all vent and drainplugs from both heads of each vessel, andblow out tubes with compressed air.

NOTE: Simply draining is not sufficient.Stagnant water may cause serious corrosion.

3.3.3 It is recommended that an oil sample be takenfrom the compressor and submitted forlaboratory analysis. Dunham-Bush offers thisservice in its Oil Kare Program. This analysisshould be done at the beginning and end ofeach operating season, or every six months ifthe unit is used year round.

3.4 Seasonal Start-up ProcedureWhen the unit is to be started up after being shut downfor a prolonged period:

3.4.1 Check unit for evidence of rust or corrosion.Clean surfaces and repaint as necessary.Repair insulation if necessary.

3.0 OPERATION: MECHANICAL SYSTEM

3.4.2 Energize power supply to unit. Unit must beenergized for 24 hours in order to warm upoil sump before starting. Control circuit powerswitch should be off during this period toprevent compressor operation. Clean waterside heat transfer surface of condenser andcooler by removing heads and brushingtubes.

3.4.3 Check water circuits to see that cooling toweris ready for operation, and both circuits arefilled. Start pumps and check for correct flowrates in both cooler and condenser.

3.4.4 Turn control circuit power switch on, turncompressor switch on, and press reset oncomputer keyboard. Compressor will startafter start-up clock times out and leavingwater temperature will be automaticallycontrolled. Check refrigerant charge andcheck for normal suction and dischargepressures.

3.4.5 Have a trained service mechanic check thefunction of all control setpoints. Check signallights for proper operation.

3.4.6 Take oil sample from the sump and submit itfor laboratory analysis.

3.5 Safety Relief ValvesEach pressure vessel is protected by a safety relief valveas required by ASME Code. The condenser and separatorhave a dual manifold. One valve in this manifold isactive, the other standby. If the active valve starts toleak, simply screw the manifold valve to the oppositeextreme, which will activate the standby valve. Localcodes may require that all safety relief valves be pipedto the outdoors. Never install a hand valve in a safetyrelief vent line.

3.6 Refrigerant CycleFollowing is the normal sequence of operation for aunit installed in a typical air conditioning system andserved by a cooling tower. Refer to Section 2.8 for atypical piping schematic for a ���

� 030-050 unit. The

large screw compressor discharges warm, high-pressuregas into an oil separator. The gas then travels througha dicharge check valve (1) into the condenser wherethe gas is condensed outside tubes, rejecting heat tocooling tower water flowing inside the tubes. The liquidrefrigerant drains to the bottom of the condenser andexits into the liquid line. The refrigerant flows by aservice valve (2), through a modulating ball valve (3),which is driven by a modutrol motor (4) and by acharging valve (5). The motor adjusts the valve to

47

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○3.0 OPERATION: MECHANICAL SYSTEM (CONT.)

maintain an appropriate level in the cooler, determinedby a liquid level float switch (6), and measurement ofcompressor discharge superheat.

From the modulating valve, liquid/vapor refrigerantflows into the flooded cooler, where it boils, coolingthe water flowing inside the cooler tubes. Vapor fromthe boiling refrigerant flows up the suction pipe througha suction check valve (7) into the compressor where itis compressed and starts the cycle again.

3.7 Oil System3.7.1 Oil Supply SystemThe compressor’s oil is supplied from a sump in the oilseparator by an external pump. This oil is used toactuate the slide valve and lubricate the bearings, rotors,and seals in the compressor. Section 2.8, typical pipingschematic, illustrates oil from the oil separator sumpfeeds through an isolation valve (8), a suction strainer(9), and the oil pump (10). From there it passes througha filter (11), another isolation valve (12), and into thecompressor’s main oil port. The oil pressure is controlledby a pressure regulator (13).

Electric resistance heaters are located in the oil sump inthe oil separator and serve to vaporize excess refrigerantthat would otherwise dilute the oil during shutdownby heating the oil to a suitable temperature. The heatersmust be energized a minimum of 24 hours prior to startup of the unit.

Two oil sump sight glasses are provided. During normaloepration or shutdown, the bottom glass shouldindicate oil. The top glass should always be empty.

3.7.2 Oil Return SystemThe oil separator discharges a very small amount of oilmist along with refrigerant. This oil is carried throughthe condenser and into the cooler. As shown in Section2.8, typical piping schematic, oil-rich refrigerant isreturned from the cooler through taps in the coolershell through an oil return valve (14), filter drier (15),and isoaltion valve (16). From there it passes througha check valve (17) which prevents back flow, through asight glass (18) for observing oil return rate and into ajet pump (19). The jet pump receives high-pressuregas from the discharge line through a hot gas valve(20). This forces the oil-rich mixture from the coolerinto the compressor.

3.8 Hydraulic Capacity ControlSystem(See Section 2.8, Typical Piping Schematic)

The compressor has a hydraulic control system to supplythe proper force necessary to actuate the capacitycontrol slide valve, thereby regulating compressor

loading. It is controlled by the unit’s microcomputer,which provides signals to solenoid valves on load/unloadblock assembly (21). The signals are provided to theload solenoid valve (B) or unload solenoid valve (A) toprovide pressure to move the slide valve. Needle valvesare located on load/unload block assembly (21) forfactory adjustment of control rates.

3.9 Freeze PreventionIf water (or brine) is allowed to freeze within the tubesand heads of the cooler or condenser, severe damagewill result; split and leaking tubes and cracked andleaking heads. Since this damage can be extremely costlyand is not covered by warranty, it is important to bemindful of freeze prevention. Three cases deserveparticular attention:

3.9.1 Standby at Low AmbientTemperatures

If the unit is to stand idle at ambient temperatures below32°F, the water should be drained from cooler andcondenser. A head should be removed from each vesseland the tubes blown dry with compressed air. Gravitydraining the vessel through drains in heads may not besufficient, stagnant water may cause serious corrosion.If cooler or condenser are served with a glycol solution,make sure the freeze temperature of the solution islower than expected minimum ambient temperature.

3.9.2 In OperationFreezing of water in cooler tubes is a possibility if chilledwater flow stops and if the low suction pressure cutout(normally set for 58 psig, or 32°F saturation) and thelow water temp cutout both fail. If the chilled waterflow switch and pump interlock are properly applied(See 2.5.1.1 and 2.5.1.2) the unit has four protectivedevices which must all fail to produce freezing of thecooler in operation. While this is unlikely, it is importantto see that all these devices are functional and properlycalibrated.

3.9.3 During MaintenanceIn transferring refrigerant within the unit, or reclaimingrefrigerant from the unit for maintenance purposes, itis possible to freeze cooler or condenser tubes.Remember that whenever the pressure in a vessel isreduced below 58 psig, if water is not flowing, it ispossible to freeze tubes. For this reason, it is a goodprecaution to have water flowing in both vesselswhenever transferring or reclaiming refrigerant.

48

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○4.0 OPERATION: SYSTEM CONTROL

4.1 Wiring DiagramRefer to Section 2.9 for Electrical Information and typicalwiring diagrams for a ���

� 030-050. This may not be an

accurate representation of your unit. It is best to use thewiring diagram mounted in the package control panel. Acopy of that diagram is furnished with the unit owner'smanual.

4.2 Typical System ControlIn order to start a unit, the following conditions must bemet:• chilled water pump running• chilled water flow switch made• customer control contact (optional) closed• control switch and compressor switch on• circuit breakers on• all safety conditions satisfied• reset pressed on microcomputer keypad• the compressor has not started within the last 20

minutes• leaving chilled water temperature 2°F or more above

setpoint• oil sump temperature is greater than 70°F.

The microcomputer starts the oil pump by energizing 4CP.Oil pressure and standby discharge pressure are thenmonitored to insure that a differential of at least 26 psigis maintained for 5 seconds. The capacity indicator mustalso unload to less than 8% before the microcomputerenergizes 2CR, which starts the compressor motor.

When the compressor starts, the microcomputer monitorsleaving water temperature, ramp schedule, and loadlimiting to control load and unload solenoids. Therefrigerant level sensor and discharge temperature are usedto control the refrigerant modulating motor (See 4.4.8).When minimum compressor capacity exceeds system loadand water temperature falls below setpoint, thecompressor and oil pump shut down.

4.3 Microcomputer ControllerThis unit is controlled by a microcomputer controlsystem. The system is composed of four microcomputerboards, a display board and analog and digital sensors.The following sections describe the system and how tooperate it.

The display board has a 20-key keypad and a 2 x 40 LCDdisplay, refer to Figure 49. The keypad and display can beused to determine the status of the compressor, oil pump,and refrigeration system. Various setpoints can also bedisplayed and altered.

The status of the machine can also be monitored by acomputer terminal either locally or remotely by a modem.The terminal must be able to handle RS232communications. For more information, order Form

#6372.

4.3.1 To Display Data From the Menu1. Press the MENU key.2. Use the up or down arrow keys to select the type of

information desired. The main menu items are:DATE & TIME SETCONTROL POINTSANALOG SENSORSDIGITAL SENSORSSETPOINTS A & BHOLIDAYSALARMSAUTHORIZATION

3. Press the ENTER key.4. Use the up or down arrow keys to select the desired

data. For control points, additional data can be viewedwith the right and left arrow keys.

NOTE: When displaying analog sensors, the PAGE MODEkey can be pressed to display two new analog inputs aftereach arrow key is pressed. Press PAGE MODE again toreturn to displaying one new analog input.

4.3.2 To Reset All Control Points toComputer Control

1. Press the RESET key. The display will show RESET ALLCPs to COM MODE? N Y

2. Press the right arrow key to select Y.3. Press the ENTER key. The reset will not be accepted if

a lockout control point is active. Resolve the problemand reset again.

4.3.3 To Display Alarms1. Press the MENU key.2. Use the up or down arrow to select ALARMS.3. Press ENTER.4. The day, time, and alarm code is displayed. Alarm 1 is

the most recent alarm.5. Press the down arrow to view previous alarms.6. Check the computer instruction label to obtain the

name of the alarm. A typical label is shown in Figure50. If the data label is not available, display the digitalinput that corresponds to the alarm number. If thedigital input name SPARE is not available, the labelmust be used.

4.3.4 To Become Authorized1. Select AUTHORIZATION on the main memo. Press

ENTER.2. If the current status shown is VIEW, press the

authorization code (64) on the number keys.3. Press ENTER. The current status will change to PROG

(program) if accepted.

4.3.5 To Alter Setpoint Data1. You must be authorized and in the PROG mode. See

section 4.3.4.2. Select SETPOINTS A & B on the main menu. Press

ENTER.3. Use the up or down arrow keys to select the setpoint

49

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○4.0 OPERATION: SYSTEM CONTROL (CONT.)

to be changed. Press ENTER. A cursor will flash overthe setpoint A value.

4. a) If you want to change setpoint A, press in thedesired new value and press ENTER. If the new valueis within limits, it will be stored in memory. The cursorwill then move to setpoint B.b) If you do not want to change setpoint A, pressENTER.

5. Repeat #4 for Setpoint B.

4.3.6 To Calibrate Temperature andPressure Sensors

NOTE: Temperature and pressure calibration should onlybe done by a qualified refrigeration technician.NOTE: For units with SI display option, the criticaltemperature and pressure calibration values are stored inthe setpoints corresponding to the sensor names ornumbers. Enter calibration values in the setpoints.1. You must be authorized and in the PROG mode. See

Section 4.3.4.2. Display the analog sensor to be calibrated on the top

line of the display.3. Press ENTER to show ZERO CALIBRATION value.4. Use an accurate gauge to measure the analog value

when it is stable and near design conditions.5. Determine the revised zero calibration required as

follows: Meter Reading - AI Display + Zero Calibration= New Zero Calibration. The new zero calibrationmust be rounded to the nearest whole number.

6. Press ENTER to place the cursor on the zero calibrationvalue.

7. Enter the new value from #5. Negative values are

entered by pressing LOWER FUNCTION +/- before thenumber.

8. Press ENTER to store the revised zero calibration.For example, if a suction pressure gauge shows 58psig and the computer displays 60.3 psig with a zerocalibration of -1, then new calibration would be 58 -60.3 + (-1) = -3.3 (-3). So the zero calibration shouldbe changed to -3.

4.3.7 To Set Date and Time1. You must be authorized. See Section 4.3.4.2. Select DATE & TIME SET on the main menu. Press

ENTER to display current date and time.3. Press ENTER key to move cursor to each date/time item.4. As each item flashes, use the number keys to enter

revised data if necessary. The day of week, SUNdaythrough SATurday, is selected by number keys 1through 7, respectively.

5. Press ENTER to continue. The last ENTER will storethe new date and time.

WARNING: Setting the clock will cause a system reset.The entire unit will shut down and start over again. If thechange was started inadvertently, press MENU key beforecompleting the change.

4.3.8 To Display Data Without AccessingMenu

1. Press LOWER FUNCTION.2. Press function desired (blue sub-script)3. Press item number to be displayed.4. Press ENTER.

EX: To display analog input #5, press LOWERFUNCTION, ANALOG SENSOR, 5, ENTER.

�����

���

������

�����

�����

������

�� ����

������

� � �

��

��

����� �������

�����

������

���������

��������

����������

���

� �

��������

����

Figure 49 Microcomputer Keypad

50

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

(4.3.9 To Revise Schedules1. See Section 4.4.25 - Unit Schedule of Operation

(Optional)

4.3.10 To Set Holidays1. You must be authorized to make changes to Holiday

settings. See Section 4.3.4.2. Up to eight holiday ranges can be set (H1 - H8). Select

the HOLIDAYs item from the main menu and pressENTER.

3. Use the up or down arrow to select the holiday numberto change. Press ENTER.

4. Press ENTER to obtain a cursor over Start month. Enterrevised month number and press ENTER.

5. Enter revised Start day number and press ENTER.6. Repeat 4 and 5 for End month and day.

When a holiday is active, the Time and Date screen showthe holiday number (H1 - H8) that is active rather than thecurrent day of week. The Holiday numbers are used inSchedules to modify machine operation (See 4.4.25).

4.4 Control And Safety Functions

4.4.1 Chilled Water Pump Interlock andFlow Switch (CWP AND CWFS)

The flow switch is field installed, which is used to ensurechilled water flow before the unit is allowed to start. Failureduring operation will cause the compressor and oil pumpto shutdown. A water flow alarm will be generated andRESET must be pressed to clear the alarm. NOTE: Theflow switch or pump interlock cannot be used for normalcontrol of the unit. (See 4.4.2).

NOTE: If the switch is located a long distance from theunit or the wiring is routed near high voltage wiring,shielded cable should be used. Ground the shield to theunit sub-panel.

4.4.2 Customer Control InterlockControl contacts from an external controller can be usedto enable or disable operation of the unit. The wiringdiagram specifies the terminals to which the contacts mustbe wired. To enable the unit, the contacts must be closed.To disable the unit, the contacts must be opened.

4.4.3 Anti-Recycle Timer(Microcomputer)

The compressor motor requires an anti-recycle time delaywhich prevents restart for 20 minutes after a start. Thepurpose of this feature is to avoid frequent starts whichtend to elevate the motor winding temperature and imposeundue wear on contactors. The microcomputer will notrestart the compressor motor until the 20 minutes haveelapsed. COFF is displayed when the compressor controlpoint (1CP) is addressed, and when other conditions forcompressor start are satisfied. See Section 3.2.

4.0 OPERATION: SYSTEM CONTROL (CONT.)

Figure 50 - Microcomputer Instruction Label

51

4.4.4 Load Control (Microcomputer)The microcomputer controls the leaving water temperaturewithin a narrow deadband by pulsing load and/or unloadsolenoids on the compressor. The load and unloadsolenoids position the slide valve within the compressorto control its capacity. The microcomputer determines adesired level of loading and varies pulse durationdepending on difference between load target and actualload. The load target is varied based on rate of approachto desired temperature preventing significant temperatureoscillations. The current limit function (see Section 4.4.6)overrides the temperature control.

The status of the compressor can be observed by displayingthe compressor control point (1/CONTROL POINT). One ofthe following messages will be displayed:

COMP 1 LUBE Lubrication cycleCOMP 1 LOAD Automatic loadCOMP 1 HOLD Automatic holdCOMP 1 UNLD Automatic unloadCOMP 1 OFF Off on temperature or

customer controlCOMP 1 COFF Off on timer (C lock off)COMP 1 LOFF Manual off or safety

shutdown

4.4.5 Ramp Control (Microcomputer)Another feature of the microcomputer is ramp control,which is the ability to vary load time of the machine fromstart. Often when the machine is started, the water in thechilled water circuit is warm, and the unit will go to fullload quickly. With ramp control, the user can program thecomputer so that it loads at a predetermined rate. This isa valuable tool, since it can help reduce power consumptionand demand charges. Two variables are used to definethe ramp profile: Ramp rate and start point. Ramp ratedefines the length of time the unit takes to load from startpoint to full load. Start point is the percent of full load atwhich the ramp begins. The ramp rate A setpoint can beset anywhere from 0.1 to 0.4, smaller values producingslower loading rates. The ramp start B setpoint can be setanywhere between 10 and 50%. The compressor will loadquickly to this value and then follow the ramp slope fromthere. See Table 4 for ramp rates at various settings.

Table 4 - Ramp Rates for Several Setpoints (in Minutes)

Ramp Start Point SetpointRate

Setpoint 10% 20% 50%.1 30 27 17.2 15 13 8.3 10 9 5.4 8 7 4

4.4.6 Current Limiting (Microcomputer)A maximum desired current is specified by amp limit Bsetpoint for the compressor. Above the B setpoint, thecompressor will not load. If the amps rise above the Asetpoint, the computer will give an unload command tothe compressor until the current drops below the Asetpoint. The amp value in the A setpoint should be 10%of RLA higher than the B setpoint.

4.4.7 Hot Gas Bypass (Factory-installedoption)

When hot gas bypass has been supplied with the package,an output from the computer controls the solenoid. Thesolenoid is turned on if the slide indicator of the compressordrops below the hot gas bypass B setpoint. If the slideindicator then climbs above the hot gas bypass A setpoint,the solenoid is turned off. Typical setpoints are 10% forthe B setpoint and 25% for the A setpoint.

4.4.8 Refrigerant ManagementThe liquid line ball valve is controlled by a modulatingmotor (4MTR). The mod motor is positioned by themicrocomputer, which is responding to cooler refrigerantlevel via a liquid level transducer, and compressor dischargesuperheat by means of the discharge pressure andtemperature measurements. If cooler level is sensed to below by the transducer, the mod motor is driven open. Ifthe level is high, the mod motor drives the valve closed. Adrop in discharge superheat below a value determined bythe microcomputer causes the modulating valve to close,lowering the liquid level in the cooler.

4.4.9 High Sump Temperature AlarmIf sump temperature rises above the sump temperaturelimit (145°F) for 4 minutes, an alarm is generated. Thecompressor is locked off and the alarm light is turned on.Resolve the problem and press RESET.

4.4.10 Control Power LossThe microcomputer can be set up to start automaticallyor manually after a power failure to the microcomputer.The power loss B setpoint is factory set to 0.0 to allowautomatic start after a control power loss. To select manualreset, set power loss B setpoint to 1.0. In this case, apower loss alarm will be stored by the microcomputer andRESET must be pressed to start.

4.4.11 Low Pressure Cut-off(Microcomputer)

This function protects the unit from operating atabnormally low cooler refrigerant pressure. Themicrocomputer will shut down the compressor whencooler pressure falls below the low pressure setpoint andturn on the alarm pilot light. A low pressure alarm will berecorded by the microcomputer. Reset by pressing theRESET button on the microcomputer. Standard setpointis 58 psig for water systems.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○4.0 OPERATION: SYSTEM CONTROL (CONT.)

52

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

4.4.12 Cooler Freeze Shut-off(Microcomputer)

If the leaving chilled water temperature drops below thefreeze setpoint, the microcomputer will shut down theunit and store the freeze alarm. After solving the problem,press RESET on the microcomputer to clear the alarm.

4.4.13 High Pressure Cut-off(Microcomputer)

This function protects the compressor from operating atabnormally high discharge refrigerant pressures. Themicrocomputer will shut down the compressor whendischarge pressure reaches the high pressure set-point,and turn on the alarm indicator lamp on the control box.The high discharge pressure alarm will be recorded by themicrocomputer. Reset by pressing the RESET button onthe microcomputer. Typical setpoint is 250 psig.

4.4.14 Low Oil Pressure Alarm(Microcomputer)

A low oil pressure alarm is triggered by one of the followingconditions: 1) The compressor is on and oil pressure isless than 25 psig for 10 seconds, or 2) The oil pump is onand the compressor has not started within 1 minute.

If either of the above conditions occur, the microcomputerwill lock off the compressor and oil pump, and turn onthe alarm light. The low oil pressure alarm code will bestored in the microcomputer. When the problem isresolved, press RESET to clear the alarm. See Section 5.6.2regarding oil change.

4.4.15 Sump Heater ControlThe two oil sump heaters are controlled by the 4CR relay.When the oil pump is turned on, the sump heaters are de-energized (4CR is energized). When the oil pump turnsoff, 4CR is de-energized if sump temperature is less thanHeater Temperature setpoint B (130°F). If sumptemperature rises above Heater Temperature setpoint A(135°F), 4CR is energized and the heater turns off.

4.4.16 Compressor Starter FailureA compressor starter failure is generated if any of thestarter safety contacts open. The contacts must be wiredin series and connected to the control panel as shown onthe wiring diagram. Safety devices on the starter mayinclude compressor overload, under-voltage/phase failure,ground fault, shorted SCR detector, etc. When one of thesecontacts opens, digital input 5 turns on and the compressoris locked off on a compressor starter alarm. The alarmlight is turned on. Resolve the problem and press RESET.

4.4.17 Compressor Power Control (NoStop Alarm)

The control power relay feeds power to the compressorcontrol circuit. After power-up, the relay is closed to allownormal compressor control.The computer will open this relay if it detects that the

compressor contactor auxiliary switch stays closed for 15seconds when the computer is commanding thecompressor to be off. The computer determines that theauxiliary switch is closed if the compressor contactor digitalinput (typically #1) is displaying ON rather than OFF. ANo-Stop alarm would then be stored in the alarm history.This would indicate that either a hardware problem isforcing the compressor to run when it should not or thatthe contactor status is not being monitored correctly.

When the problem is resolved, press the RESET key to allowthe machine to start.

4.4.18 Sensor Alarm ShutdownIf the computer measures an analog value that is farbeyond normal operating values, the compressor isshutdown. The computer then stores the alarm codecorresponding to the specific sensor that caused the alarm.Any of these alarms indicate a problem in the analogmeasurement system. After the problem is resolved, theRESET key must be pressed.

The following is a description of each sensor alarm:

1) Leaving water temperature error is triggered if sensorreads higher than 190°F for 10 seconds.

2) Suction pressure transducer error is activated if sensorreads less than -20 psig for 10 seconds. It is alsotriggered if leaving water temperature is less than 60°Fand suction pressure reads higher than 150 psig for10 seconds.

3) Discharge pressure transducer error is triggered ifdischarge pressure reads higher than 390 psig or lowerthan 5 psig for 10 seconds.

4) Oil pressure transducer error is generated if the sensorreads higher than 350 psig, or lower than 5 psig, or ifdifferential is greater than 120 psid for 5 seconds.This alarm will also trigger if the oil pump is off andoil differential is outside of the 0±5 psid band for 5minutes.

5) Sump temperature sensor error is triggered if thesensor reads higher than 280°F or lower than 0°F for10 seconds.

4.5.19 Slide Valve Error (Microcomputer)A slide valve error will be generated if the feedbackpotentiometer measures a value below -10% or above110% for 56 seconds. The alarm will also trigger if the oilpump is running with the compressor off and the slidereading does not fall below 8% within 56 seconds. Whenthis alarm occurs, the compressor will be locked off andthe alarm light turned on. Check for proper operationand calibration of the potentiometer and load/unloadsolenoids. Clear the alarm by pressing RESET.

4.0 OPERATION: SYSTEM CONTROL (CONT.)

53

4.4.20 Liquid Line Mod Motor Error(Microcomputer)

A mod motor error will be generated if the feedbackpotentiometer measures a value that is more than 8% awayfrom the target value for 1 minute. This indicates thatthere is a problem with the mod motor or feedbackpotentiometer reading. When this alarm occurs, thecompressor will be locked off and the alarm light turnedon. Clear the alarm by pressing RESET.

4.4.21 Oil Pump Starter Error(Microcomputer)

The microcomputer monitors the oil pump starter withtwo digital inputs (#6&7). If the oil pump overload relayopens (digital input 6 turns on), the oil pump starter erroris triggered. This error is also triggered if the oil pumpauxiliary switch does not close (digital input 7 turns off)within 5 seconds of a pump start command. If this alarmoccurs, the compressor will be locked off and the alarmlight turned on. Clear the alarm by pressing RESET.

4.4.22 Chilled Water Reset (Optional)If desired, the chilled water temperature can be raisedautomatically by a 0-5 VDC analog signal provided by anexternal controller. The reset signal must be between 0VDC and 5 VDC, with 0 VDC being no reset and 5 VDCbeing maximum reset. The maximum temperature reset(increase) desired must be stored in CWR MAX setpoint B.For example, to raise the chilled water setpoint from 44°Fto 50°F (6.0 difference) with a 5 VDC input, a 6.0 is storedin CWR MAX setpoint B.

CAUTION: The voltage input must not exceed 5.0 VDC.Shielded cable should be used for the signal wires withthe shield connected to ground only at one end.

4.4.23 Demand Limiting Input (Optional)If demand limiting is desired, a 0 to 5 volt DC signal mustbe supplied to the Demand Limit terminals shown on thewiring diagram. The ground lead of the signal should beconnected to Ground Terminal and the positive lead shouldbe connected to the Demand Limit Terminal.

Supplying 0 volts will have no limiting effect, and 5 voltswill have maximum limiting. The Demand Limit setpointis used to determine the maximum amount of limiting thevoltage supplied to Demand Limit analog input will have.If the Demand Limit setpoint is set to 0.0, there will be nolimiting, and if set to 10.0, there will be maximum limiting.The Demand Limit setpoint can be set anywhere between0.0 and 10.0 depending on the amount of Demand Limitdesired.

The Demand Limit works by automatically lowering theHOLD and UNLOAD amp limits for the compressors. Thisdoes not change the amp limit setpoints. Themicrocomputer takes the signal supplied to the DemandLimit analog input, the value held in the Demand Limit

setpoint, and the amp limit setpoints to calculate theamount of limiting to take place. To calculate the valuefor the Demand Limit setpoint for a desired DemandLimiting current with 5 volts supplied to Demand Limitanalog input, use the following equation:

((Amp Limit (B)-Desired Limit Current)/Amp Limit setpoint(B)) x 10

This Demand Limiting will only unload compressors. Itwill not turn them off.

CAUTION: Do not feed in a voltage higher than 5.0 VDC.Shielded cable should be used for the 5 volt signal withthe shield connected to ground only at one end.

4.4.24 Pressure Load LimitingIf the suction or discharge pressure gets close to thepressure limits, the microcomputer performs load limitingto reduce the possibility of a low pressure or high pressuretrip. When suction pressure drops below the low pressurelimit plus 4 psig or if discharge pressure rises above thehigh pressure limit minus 10 psig, the compressor will notbe allowed to load. If suction pressure drops below thelow pressure limit plus 2 psig or if discharge pressuresrises above the high pressure limit minus 5 psig, thecompressor will unload.

4.4.25 Unit Schedule of Operation(Optional)

If a seven day time schedule of unit operation is desired,the internal real time clock of the microcomputer can beused. When the SCHEDULE control point is ON, thecompressor is allowed to operate. The following procedureis used to modify the operating schedule.

1. Perform the authorization procedure (See 4.3.4).2. Press MENU key.3. Use Up and Down to select CONTROL POINTS.4. Press ENTER.5. Use Up and Down to select SCHEDULE control point.6. Use the right arrow key to display the first schedule.

The standard display screen would show:CP 17 SCHEDULE GRP:1 SCH:1 0000 2400 DAYS:*** ALL DAYS ***This indicates that control point 17 named SCHEDULEis controlled by schedule group (GRP) #1. The firstschedule (SCH:1) turns on at 0000 hours and off at2400 hours (military time) every day of the week. Thusit is on all the time.

7. To change this schedule, press ENTER. The cursor willflash over the turn-on time.

8. Use the number keys (0-9) to enter the revised turn-on time using military format.

9. Press ENTER. The cursor will move over to the turn-off time.

10. Use the number keys to enter the turn-off time inmilitary format.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○4.0 OPERATION: SYSTEM CONTROL (CONT.)

54

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

11. Press ENTER. The cursor will move to DAYS duringwhich this schedule is active.

12. To change the days for this schedule, press one ormore of the following number keys: 0 - Clear allcurrent days; 1 - Sunday(S); 2 - Monday(M); 3 -Tuesday(T); 4 - Wednesday(W); 5 - Thursday(R); 6 -Friday(F); 7 - Saturday(A); 8 - *** ALL DAYS ***.

13. Press ENTER. If "ALL DAYS" was not selected, the cursorwill move to HOLS where holiday numbers 1 - 8 maybe entered. If a holiday is not entered, this schedulewill be off during a holiday time range.

14. Press ENTER. The revised schedule number is nowstored.

15. To add another schedule, press the right arrow keyand repeat steps 7-14.

16. To delete a schedule, clear all of the days by pressing0 at Step 12.

The schedule group turns on when any of the individualschedules turns on. The turn-on time must be earlier thanthe turn off time.

Example: If a unit is to operate at all times except betweenthe hours of 1:00 AM and 6:00 AM, the following scheduleswould be entered:CP 17 SCHEDULE GRP:1 SCH:1 0000 0100 DAYS: *** ALLDAYS ***CP 17 SCHEDULE GRP:1 SCH:2 0600 2400 DAYS: *** ALLDAYS ***

Another example: A typical building may require coolingfrom 6:00 AM to 7:00 PM Monday - Friday and from 7:00AM - 3:00 PM on Saturdays and on Holidays #1 and #2.The schedules would be entered as follows:CP 17 SCHEDULE GRP:1 SCH:1 0600 1900 DAYS: MTWRFCP 17 SCHEDULE GRP:1 SCH:2 0700 1500 DAYS: AHOLS:12

4.4.26 Low Chiller Flow AlarmA low flow alarm will be generated if the oil pump isoperating and flow switch digital input is OFF. Thecompressor and oil pump will be locked off and the alarmlight turned on. After resolving the problem, press RESET.

4.4.27 External Shutdown (No-RunAlarm)

A No-Run alarm is generated if the computer tries to start(or run) the compressor but the compressor is held off byan external control or fault. The computer determinesthat the compressor is not operating if the digital inputfrom the compressor contactor does not indicate that thecontactor is pulled in, or if the compressor amps fall belowa minimum value.

4.4.28 Low Discharge Superheat (DSH)Alarm

A low discharge superheat alarm is triggered if thecompressor has been on for 10 minutes and DSH is belowthe minimum for 4 minutes. If this occurs, themicrocomputer will lock off the compressor, turn on thealarm light, and store the low DSH alarm code. When theproblem is resolved, press RESET to clear the alarm.

4.4.29 Proactive Warning ContactThe Proactive Warning Contact closes if the unit is beingload limited due to high discharge pressure, low suctionpressure, or high compressor motor amps. The contactalso closes if the refrigerant leak detector option senseshigh refrigerant levels in the air.

4.4.30 Condenser Flow AlarmThe condenser water flow switch is optional. If the switchis installed, the flow must be established within 20 secondsof a compressor start.

It is highly recommended that the condenser pumpinterlock contacts be used in the control circuit of the pumpstarter to enable pump operation.

4.4.31 Chiller Pump InterlockThe chiller pump interlock can be used to enable the chillerpump control circuit. This output is controlled by theinternal unit operation schedule or the unit control contacts(digital input #3). The output is turned off if thecompressor is shut down on an alarm.

4.4.32 Ice Build ModeCaution: Ensure proper glycol concentration for ice buildapplication.

If the ice build contacts are closed (8 DI turns ON), theunit will go to full load until leaving brine reaches the IceBuild setpoint (6A). Then the unit will shut down until thecontacts are opened (8 DI turns OFF).

4.0 OPERATION: SYSTEM CONTROL (CONT.)

55

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○5.0 MAINTENANCE

5.1 GeneralAs with all mechanical equipment, a program of regularinspection, cleaning and preventive maintenance bytrained personnel will contribute greatly to the longsatisfactory service life of this product. Some of this carecan easily be provided by owner personnel. However, aDunham-Bush authorized service mechanic should inspectthe unit at least annually and evaluate unit performance.

5.2 Periodic InspectionRead essential temperatures and pressures periodically tosee that they indicate normal operation. It is a good ideato record these readings on a log sheet. See sample, Section5.8. If any abnormal operation is observed, try to determinecause and remedy it. See Troubleshooting Guide, Section5.7.

5.3 Monthly InspectionCheck cooling tower water treatment system. Wipe downexternal surfaces of unit. Shut unit down, open maindisconnect, inspect control panel, checking for loose wires,burned contacts, signs of overheated wires, etc. Restartunit and check performance of controls. Put compressorin manual control and time rate of loading and unloading.Adjust needle valves as necessary to get load and unloadtime of 40±20 sec., then return to automatic control.Check subcooling for proper refrigerant charge level. SeeCharging, Section 4.6.

5.4 Water Side Cleaning of VesselsSee Section 1.4.3 Condensing Water Treatment

The effects of fouling of the cooler or condenser heattransfer surfaces can be detected by recording full loadperformance data on the log sheet. The best measure ofperformance of cooler and condenser is approach, whichis the difference between leaving water temperature andsaturated refrigerant temperature at the pressure in thevessel. At full load, read suction and discharge pressureson the computer. Then use a pressure temperature chartto find saturated temp. for each. Read leaving chilled watertemperature on the computer. Read leaving condenserwater temperature with a field installed thermometerwhich must be used if the water temperature option isnot installed. Then calculate approaches as follows:

Condenser Approach = T sat condenser - T lvg cond. waterCooler Approach = T lvg chilled water - T sat cooler

If the approach for either vessel increases by more than2°F above the approach recorded at clean conditions, thetubes should be cleaned. It is generally advisable to cleanthe water side surfaces at least annually and more often ifseverely foul water is used. This cleaning can be donechemically or physically. In chemical cleaning, a causticsolution is pumped through the heat exchanger, whichattacks dirt, slime and mineral deposits and flushes thenaway. Chemicals can be recommended by water treatmentspecialists, but it is important to rinse the systemthoroughly after cleaning to remove the chemicals beforethey attack the metal surfaces.

Vessel tubes may be physically cleaned by first drainingthe water, then removing the heads and brushing eachtube individually with a tube cleaning brush until clean.For best results, always remove both heads before cleaningthe tubes. Replace the heads, being careful to properlyposition gaskets, and refill the system with water.

Head gaskets need not be renewed after each headdisassembly operation. Gaskets should and must berenewed if they are physically disfigured or otherwisedeteriorated. (New gaskets are available from the factory.See Repair Parts List.) INSPECT CAREFULLY.

5.5 Electrical MalfunctionThe unit has two devices designed to protect thecompressor motor from electrical malfunctions: motoroverload relay and undervoltage relay (optional).

If the undervoltage relay trips, it is a sign of trouble withincoming power. If it trips again after resetting, call yourelectric utility to investigate the problem. If the customer-supplied fuses or motor overload relay trips, this is a signof possible motor trouble. DO NOT reset and try to runcompressor again. Call authorized service representativeto check for motor trouble. Resetting these safety devicesand repeated starting could turn a minor motor probleminto a costly major motor burnout.

5.6 Charging

5.6.1 Refrigerant ChargeThe ���

� unit is given a complete charge of refrigerant

at the factory unless ordered uncharged. The amountnecessary to charge the unit can be found in the physicalspecifications, Table 1. If the unit must be charged on thejob-site, a qualified refrigeration mechanic must do it.

To verify proper refrigerant charge, check refrigerant liquidsubcooling while unit is operating at full load. At full load,read discharge pressure on the computer. Then use apressure-temperature chart to find saturated temperature.Read liquid line temperature leaving the condenser withfield installed temperature sensor. Then calculate liquidsubcooling as follows:

Subcooling = Saturated discharge temperature - liquidline temperature

The subcooling is to be between 8 and 10°F. If refrigerantis to be added, it should be added while operating at fullload through the charging valve on the cooler feed lineuntil the proper subcooling is obtained.

5.6.2 Oil ChargeThe proper oil charge is in the unit as supplied from thefactory. If for some reason, the compressor runs low onoil, the microcomputer will shut off the motor on a low oilpressure alarm before any damage is done. In the eventof a low oil shutdown, call a D/B authorized service agentto correct the problem. DO NOT ADD OIL TO THE SYSTEM.

The upper sightglass in the condenser sump should neverindicate an oil level.

56

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○5.0 MAINTENANCE (CONT.)

5.7 Troubleshooting

5.7.1 Unit will not start

1. Main power off.

2. No control power.

3. Undervoltage relay open

4. Chiller flow switch open.

5. Customer control off.

6. Compressor switch open.

7. Microcomputer shutdown, notreset.

8. Oil sump temperature is lessthan 70°F.

1. Cooling not required

2. Computer’s time delay active.

3. Undervoltage relay open.

4. Flow switch open.

5. Compressor switch open.

6. Burned out signal light.

7. Wiring problem.

1. Insufficient refrigerant charge

2. Bypass valve closed.

No voltage on unit.

Control switch on, only highvoltage present.

Pilot light on relay off.

Chiller pumps off, no flow.

Unit control digital input is OFF.

Switch OFF.

Compressor control pointindicated LOFF.

Low oil sump temperature.

Cooler leaving water temp. lessthan 2°F above setpoint.

Control point indicates COFF.

Chiller pumps off, no flow.

Unit control digital input is OFF.

Switch OFF.

Check voltage across light.

Other indications not satisfied.

Condenser refrigerant sightglassbare.

Check main disconnect switch and main linefuses

Check control transformer fusing or customersupplied source.

Check for power supply problems (low voltage,phase imbalance). When corrected, press resetbutton.

Start pumps, check flow switch.

Close contact.

Turn switch on.

Check alarm status. Correct problem. Pressreset button.

Check oil sump heater, and temperaturesensor. Wait for oil to heat up.

Apply load.

Wait 15 minutes max.

Start pumps, check flow switch.

Close contact.

Turn switch on.

Check signal light bulbs.

Check wiring against drawing.

See Refrigerant Charge - 5.6.1.

Adjust valve

5.7.2 Compressor will not start when reset button is pushed. Checked lights: None

Possible Causes Indication Corrective Action

5.7.3 High sump oil temperature

57

1. Inadequate feed to cooler

2. Inadequate refrigerant charge

3. Fouling of water side of cooler

4. Inadequate chilled water flow

5. Fouling of water side ofcondenser.

1. Low oil level in compressor

1. Operating setpoint too low

2. Load changing too rapidly.

1. Compressor loads/unloads toofast or slow.

2. Ramp rate incorrect

5.7 Troubleshooting (cont.)

5.7.4 Low suction pressure

5.7.7 Freeze warning

Possible Causes Indication Corrective Action

5.7.8 Improper capacity control

Low suction pressure indicationon computer and light on.

Low suction pressure indicationon computer and light on.

Low suction pressure indicationon computer and light on.

Low suction pressure indicationon computer and light on.

High discharge pressureindication on computer andlight on.

Oil low in sight glass on oilseparator

Freeze light on. Indication oncomputer

Freeze light on. Indication oncomputer

Observe amps while manuallyloading and unloading.

See 4.5.6.

Check to see that liquid line ball valve isopen.

See information on charging in Section 5.6.

At high load, check cooler approach. (See5.4). If approach is more than 2 F aboveclean value, fouling is probably the trouble.Clean tube bundle. See 5.4.

Measure pressure drop across vessel anddetermine gpm from fig. 4. If gpm is low,check chilled water pump, valves andstrainers.

At high load, check condenser approach (see5.4) If approach is more than 2 F abovestart-up conditions, fouling is probably thetrouble. Clean tube bundle (see 5.4).

Call a D/B Authorized Service Agent to correctthe problem.

Check leaving water setpoint onmicrocomputer.

Load on package must drop at reasonablerate for automatic control to work properly.

Adjust needle valves for 40 second load/unload rate when loading/unloading withmicrocomputer in manual control mode.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○5.0 MAINTENANCE (CONT.)

5.7.6 Low oil pressure

58

A SUCTION PRESSURE

B SATURATED SUCTION TEMPERATURE

C OIL TEMPERATURE

D DISCHARGE TEMPERATURE

E DISCHARGE PRESSURE

F SATURATED DISCHARGE TEMPERATURE

DISCHARGE SUPERHEAT (D-F)

G OIL PRESSURE

NET OIL PRESSURE (G-E)

H CONDENSER REFRIGERANT OUT TEMPERATURE

NET SUBCOOLING (F-H)

I COOLER WATER IN

J COOLER WATER OUT

COOLER APPROACH (J-B)

K CONDENSER WATER IN

L CONDENSER WATER OUT

CONDENSER APPROACH (F-M)

GPM CONDENSER

GPM COOLER

PRESSURE DROP ACROSS OIL FILTERS MAX. 5#

COMPRESSOR MOTOR VOLTAGE AND AMPERAGE

5.8 Sample Log Sheet

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○5.0 MAINTENANCE (CONT.)

���� Pressure/Temperature Log

SERIAL #_______________________ MODEL #________________________ DATE ________________________

COMPRESSOR SLIDE VALVE POSITION ______% ______% ______% ______% ______%