03 Optical Internet

download 03 Optical Internet

of 77

Transcript of 03 Optical Internet

  • 7/31/2019 03 Optical Internet

    1/77

    John Strand1/18/2002

    1

    Optical NetworkingCS 294-3

    2/5/2002

    John Strand

    The Views Expressed In This Talk Are The Authors. They Do Not Necessarily Represent

    The Views Of AT&T Or Any Other Corporation Or Individual.

    AT&T Optical Networks Research [email protected]

    U. of California - Berkeley - EECS [email protected]

  • 7/31/2019 03 Optical Internet

    2/77

    John Strand1/18/2002

    2

    Outline

    Transport - Traditional TDM Networks

    Optical Networking

    Optical Networking & IP

    Concentrate On Intercity Networks Time Constraint Metro, Access Optical Networks More Complex, Less Mature

  • 7/31/2019 03 Optical Internet

    3/77

  • 7/31/2019 03 Optical Internet

    4/77

    John Strand

    1/18/2002

    4

    Basic DS-1 Signal Format

    F

    Bit

    TimeSlot

    1

    TimeSlot

    2

    TimeSlot

    3

    TimeSlot

    23

    TimeSlot

    24

    o o o o o o o o o o o

    1 bit 8 bits 8 bits 8 bits 8 bits 8 bits

    Designed To Carry 24 Full Duplex 64 Kilobit/sec Voice Circuits (DS-0s)

    Transmission Rate = 1.55 Megabits/Second (8000 frames/sec * 193 bits/frame)

    DS-1 Is A Protocol; T-1 Is A Specific AT&T Implementation Of This ProtocolFor Local Networks

    This Is The Traditional Building Block For Transmission Networks In U.S.

    193 Bits

  • 7/31/2019 03 Optical Internet

    5/77

    John Strand

    1/18/2002

    5

    What is SONET?

    Synchronous Optical Network standard

    Defines a digital hierarchy of synchronous signals

    Maps asynchronous signals (DS1, DS3) to synchronous format

    Defines electrical and optical connections between equipment

    Allows for interconnection of different vendors equipment

    Provides overhead channels for interoffice Operations,Administration, Maintenance, & Provisioning (OAM&P)

    SONETNetwork

    Element

    SONETNetwork

    ElementDigital

    TributariesDigital

    Tributaries

    SONET Interface

  • 7/31/2019 03 Optical Internet

    6/77

    John Strand

    1/18/2002

    6

    SONET Structure

    Byte-Interleaved Multiplexing

    Network OfSynchronizedClocks

    PRS: Primary SourceST2: Stratum 2ST3: Stratum 3

    Must Be

    Synchronized

  • 7/31/2019 03 Optical Internet

    7/77

    John Strand

    1/18/2002

    7

    Digital Signal HierarchiesMost Common Rates

    Capacity

    (DS-1 Equiv)

    DS: Digital SignalSONET: Synchronous Optical NETwork (US)SDH: Synchronous Digital Hierarchy (ITU)STS: Synchronous Transport SignalSTM: Synchronous Transfer ModeVC: Virtual ContainerVT: Virtual Tributary

    28 84 336 1344

    DS-1(1.544 Mb/s)

    Asynchronous

    ("Plesiochronous")[Non-Standardized]DS-3

    (45 Mb/s)

    5376

    VC-11 SDHSTM-4 STM-16VC-3 STM-1 STM-64

    VT1.5(1.7 Mb/s)

    SONETSTS-3(156 Mb/s)

    STS-12(622 Mb/s)

    STS-48(2500 Mb/s)

    STS-192(10000 Mb/s)

    STS-1(52 Mb/s)

    1

  • 7/31/2019 03 Optical Internet

    8/77

    John Strand

    1/18/2002

    8

    SONET Rates

    STS-1 OC-1 51.840

    STS-3 OC-3 155.520

    STS-12 OC-12 622.080

    STS-48 OC-48 2,488.320

    STS-192 OC-192 9,953.280

    STS-768 OC-768 39,813.120

    LevelOptical

    DesignationBit Rate(Mb/s)

    STS = SYNCHRONOUS TRANSPORT SIGNALOC = OPTICAL CARRIER

    (..result of a direct optical converions of the STS aftersynchronous scrambling - ANSI)

    EC (Not Shown) = ELECTRICAL CARRIER

  • 7/31/2019 03 Optical Internet

    9/77

    John Strand

    1/18/2002

    9

    SONET STS-1 Frame Structure

    SynchronousPayloadEnvelope

    (SPE)

    TOH

    Ptr

    87

    Bytes

    3

    Bytes

    SPE

    87 Columns

    P

    O

    H

    9

    Rows

    87

    Bytes

    3

    Bytes

    t

    t

    F

    I

    xe

    d

    S

    t

    uf

    f

    F

    I

    xe

    d

    S

    t

    uf

    f

    P

    O

    H

  • 7/31/2019 03 Optical Internet

    10/77

    John Strand

    1/18/2002

    10

    STS-N And STS-Nc(N = 3, 12, 48, 192)

    STS-N Formed By Byte-Interleaving N STS-1 Signals 3N Columns of Transport Overhead

    Frame Aligned Redundant Fields Not Used - eg APS, Datacomm

    N Distinct Payloads (87N Bytes) NOT Frame Aligned

    N Columns Of Path Overhead - All Used 2N Columns Of Fixed Stuff Bytes 84N Columns Of Information

    STS-Nc 3N Columns of Transport Overhead

    Frame Aligned Redundant Fields Not Used - eg APS, Datacomm

    Single Payload 1 Column Of Path Overhead 3N - 1 Columns Of Fixed Stuff Bytes 87N - N/3 Columns Of Information

  • 7/31/2019 03 Optical Internet

    11/77

    John Strand

    1/18/2002

    11

    MultiplexerOr Other

    PTE

    MultiplexerOr Other

    PTE

    Cross-Connect

    Cross-Connect

    Regenerator(derived clock)

    SONETPath

    Line

    Section

    SDHVirtual Container (VC)

    Multiplex Section (MS)

    Regenerator Section(RS)

    SONET/SDH Layering

    Key Feature: Basis Of Fault Management & Restoration Maintenance

  • 7/31/2019 03 Optical Internet

    12/77

    John Strand

    1/18/2002

    12

    Service Survivability Objectives

    Typical Commercial Networks

    New trends in IP services: supporting real-time application, e.g. voice and

    video, & mission critical data=> Require much faster restoration than traditional IP rerouting

    0.01

    0.1

    1

    10

    100

    1000

    Standard

    Voice

    Leased

    Lines

    Frame

    Relay

    IP

    Services

    RestorationTime

    Obje

    ctives(secs)

  • 7/31/2019 03 Optical Internet

    13/77

    John Strand

    1/18/2002

    13

    Network Outage AnalysisVoice Services

    EquipmentFailure

    Route Failure Backhoe, Flood, Train

    Wreck ~1/1000 km/year

  • 7/31/2019 03 Optical Internet

    14/77

    John Strand

    1/18/2002

    14

    Survivability 101

    Survivability Requires:

    A B

    CD

    X Y

    Spare Inter-Office Capacity

    Switch Fabrics To Put Failed Facility On This Capacity

    Control Logic To Identify Fault & Reroute Failed Circuits

    Fault Detection

    Protection: Pre-AllocatedRestoration: Dynamically Allocated

  • 7/31/2019 03 Optical Internet

    15/77

    John Strand

    1/18/2002

    15

    Effect Of Restoration TopologyRestoration Overbuild

    (Protection Capacity/Service Capacity)

    100%Degree 2Nodes

    50%Degree 3

    Nodes

    1/(N-1)Degree NNodes

    Degree = # Of Physically Diverse Routes

    "Ring"

    "Mesh"

  • 7/31/2019 03 Optical Internet

    16/77

    John Strand

    1/18/2002

    16

    Ring Example

    F

    CB

    D

    E

    A

    SONET: Bi-Directional Line-Switched Ring (BLSR)SDH: Multiplex Section Shared Protection Ring (MS-SPRING)

    S

    S

    S

    S

    S

    S

    S: Service

    P

    P

    P

    P

    P

    P

    P: Protection

    Original Circuit

    Protection Switch

    DifferentFibers ButSame Cable

  • 7/31/2019 03 Optical Internet

    17/77

    John Strand

    1/18/2002

    17

    Ring Example

    F

    CB

    D

    E

    A

    SONET: Bi-Directional Line-Switched Ring (BLSR)SDH: Multiplex Section Shared Protection Ring (MS-SPRING)

    S

    S

    S

    S

    S

    S

    S: Service

    P

    P

    P

    P

    P

    P

    P: Protection

    Original Circuit

    Protection Switch

    DifferentFibers ButSame Cable

    X

    Standardization: Physical Layer &Signaling Standardized

    Client State Information

    Not Standardized OAM Not Standardized

  • 7/31/2019 03 Optical Internet

    18/77

    John Strand

    1/18/2002

    18

    Public Switched Telephone Network(PSTN)

    COCO

    Toll Network

    Toll Connect TrunksInter-Toll Trunks

    Switches: Terminate Trunks

    Switch Individual Calls

    64 Kb/sec FDX Circuits

    CustomerPremises

    Equipment(CPE)

    CentralOffice Central

    Office

  • 7/31/2019 03 Optical Internet

    19/77

    John Strand

    1/18/2002

    19

    CPE

    Central

    Office

    Switch

    "POTS"

    PBX

    Private Line (PL)

    Basic Service Types

    POTS: Plain Old Telephone Service

    PSTN ~ 100 IntercitySwitches*

    * ATT Network

    Transport NetworkShared By Many

    Services ~10x As Many Offices*

  • 7/31/2019 03 Optical Internet

    20/77

    John Strand

    1/18/2002

    20

    Entering The Transport Network

    1o

    o

    o

    o

    28

    DS3 O

    C192

    POTS

    POTS: "Plain Old Telephone Service"VG: Voice GradePL: Private Line

    1 DS124

    OOOO

    OO

    64 kb/s 1.5 Mb/s 45 - 622Mb/s

    2.5 - 10Gb/s

    WDM

    BackboneFiber

    Network

    10 Gb WAN Ethernet SONET Framed - 9.953 Gb/s Asynchronous

    *

    1.5 Mb/s PL

    45 - 2500 Mb/s PL1Gb Ethernet

    1 - 10 Gb/s PL,10 Gb WAN Ethernet

    &VG PL

  • 7/31/2019 03 Optical Internet

    21/77

    John Strand

    1/18/2002

    21

    Transport Layer

    Service Routing

    Service Layer(e.g., POTS or PL)

  • 7/31/2019 03 Optical Internet

    22/77

    John Strand

    1/18/2002

    22

    Outline

    Transport - Traditional TDM Networks

    Optical Networks

    Optical Networking & IP

  • 7/31/2019 03 Optical Internet

    23/77

  • 7/31/2019 03 Optical Internet

    24/77

    John Strand

    1/18/2002

    24

    Intercity Fiber Network

    About 50,00 Route Miles Of Fiber Cable

  • 7/31/2019 03 Optical Internet

    25/77

    John Strand

    1/18/2002

    25

    40 - 120 km(80 km typically)

    Up to 10,000 km(600 km in 2001 basic commercial products)

    OA OA

    l1

    l2

    l3

    lN

    WDM

    Mux

    R

    R

    R

    R

    WDM

    DeMux

    Frequency-registeredtransmitters

    Receivers

    WDM: Wavelength Division MultiplexOA: Optical Amplifier

    All-Optical AmplificationOf Multi-Wavelength Signal!!!

    Optical Amplifier/WDM Revolution

  • 7/31/2019 03 Optical Internet

    26/77

    John Strand

    1/18/2002

    26A. Willner

  • 7/31/2019 03 Optical Internet

    27/77

    John Strand

    1/18/2002

    27

    In Each Direction:

    12 Fibers 36 Regenerators

    120 km

    OAOA120 km 120 km

    OC-48OC-48

    OC-48OC-48OC-48

    OC-48OC-48OC-48

    OC-48OC-48

    OC-48OC-48OC-48

    OC-48

    OC-48OC-48DS3OC3/12

    DS3

    OC3/12

    DS3

    Optical Amplifier/WDM Revolution

    12 fibers 1 fiber; 36 regenerators 1 optical amplifier

    WDM: Wavelength Division MultiplexOA: Optical Amplifier

    ConventionalTransmission - 20 Gb/s

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE

    40km 40km 40km 40km 40km 40km 40km 40km 40km

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE

    DS3

    DS3

    1310

    RPTR

    1310

    RPTR

    1310

    RPTR

    1310

    RPTR

    1310

    RPTR

    1310

    RPTR

    1310

    RPTR

    1310

    RPTR

    LTE

    LTE1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTE LTE1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE1310

    RPTR1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    1310RPTR

    LTELTE

    Economic Advantage Is Distance Dependent

    Intercity: Compelling

    Metro: Depends On Dark Fiber Availability

  • 7/31/2019 03 Optical Internet

    28/77

    John Strand

    1/18/2002

    28

    320

    1996 1998 2000 2002 2004

    20

    80

    1280

    5120

    Gb s

    Single Fiber Capacity

    Source: K. Coffman & A. Odlyzko, Internet Growth: Is There A Moores Law For Data Traffic? (research.att.com/~amo)

    Capacity = (Bits / *Bandwidth(Bandwidth/

    Moore's

    Law

  • 7/31/2019 03 Optical Internet

    29/77

    John Strand

    1/18/2002

    29

    1300 1400 1525 1565 1600

    LCSS+S

    ++

    Fiber loss

    Single Fiber CapacityBandwidth

  • 7/31/2019 03 Optical Internet

    30/77

    John Strand

    1/18/2002

    30

    (nm)

    (THz)199.0

    1505 1510

    192.0193.0194.0196.0 195.0

    15551530 1535 1540 1545 1550 1560 1565

    C-Band

    4 THz

    ~ 125 GHz/nm

    50 GHz Spacing

    (For OC48)

    100 GHz Spacing

    (For OC192)

    (80 ) x (2.5 GHz/ ) = 200 GHz

    (40 ) x (10 GHz/ ) = 400 GHzx2

    Single Fiber CapacityBandwidth/ C Band

  • 7/31/2019 03 Optical Internet

    31/77

    John Strand

    1/18/2002

    31

    Proprietary(20-400 Gb/s)

    OTS OTS OTS OTS OTS OTS

    (OTS: Optical TransportSystem)

    Transport Layer Model

    Packet

    Packet

    Packet

    Packet

    1/0 DCS

    1/0 DCS

    1/0 DCS

    1/0 DCS

    4E

    4E

    4E

    4E

    3/1 DCS

    3/1 DCS

    3/1 DCS

    3/1 DCS

    3/3 DCS

    Layer (DACS III)

    DACS III DACS III

    DACS IIIDACS III

    ATM/IP

    ATM/IP

    ATM/IP

    ATM/IP

    DS1(1.5 Mb/s)

    DS3(45 Mb/s)

    DS3(45 Mb/s)

    OC48+(2.5+ Gb/s)

    ADMADMADM

    ADM

    ADM

    ADMADM

    Fiber Conduit/

    Sheath

    3/1 DCSLayer

    SONET ADMLayer

    Core ATM/IPLayers

    ServiceLayers

    MediaLayer

    LA

    CHCG

    LA

    LA

    LA

    LA

    LA

    LA

    PHNX

    PHNX

    PHNXCHCG

    CHCG

    CHCG

    CHCG

    CHCG

    Wavelength PathCrossconnect

    Wavelength Mux SectionCrossconnect

    Hard-

    Wired

  • 7/31/2019 03 Optical Internet

    32/77

    John Strand

    1/18/2002

    32

    DWDM

    Optical Cross-Connect (OXC)Alternatives

    DWDM

    D

    WDM

    WavelengthPath

    Cross-Connect

    More Bits Per Port Multivendor & Restoration Issues

    Fewer Bits Per Port Compatible With Opaque Architecture Better For Restoration

    WIXC

    Would Go Here

    Could Have Either Optical Or Electrical Fabric

    WavelengthMultiplexSection(WMS)Cross-

    Connect

    ADMs

    SDCS

    OtherService

    Equipment

    OC48OC192

    OC48OC192

    Line Rate(Proprietary)

    Line Rate(Proprietary)

  • 7/31/2019 03 Optical Internet

    33/77

  • 7/31/2019 03 Optical Internet

    34/77

    John Strand

    1/18/2002

    34

    Opaque Wavelength Path Crossconnect

    Optical transport system(1.55 mm) Optical transport system(1.55 mm)

    Standard

    cross-office optics(1.3 mm)

    FibersIn

    FibersOut

    l-Mux

    Add ports Drop ports

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    Transparency= node-bypass

    Wavelength PathCrossconnect

    (Optical orElectronicInterior)

  • 7/31/2019 03 Optical Internet

    35/77

    John Strand

    1/18/2002

    35

    LineModules

    Transparent

    Switch Modules(STS-1 Granularity)

    Power,Cooling

    OpticalModules

    ProcessorModule

    ProcessorModule

    TimingModule

    640 Gbps,To 48 Tbps

    Opaque Wavelength Path Crossconnect(Electrical Fabric)

  • 7/31/2019 03 Optical Internet

    36/77

    John Strand

    1/18/2002

    36

    MUX

    MUX

    TxRx

    TxRx

    TxRx

    LR

    SRSR LR

    Tx

    Tx

    Tx

    Rx

    Rx

    Rx

    MUX

    SRLR Tx Tx Tx

    Rx Rx Rx

    LR SR

    TxRx

    TxRx

    DEMUX

    FixedWavelength

    FixedWavelength

    Todaysswitches aresurroundedwith OEO>

    70% of system

    cost

    Fixed wavelength

    transponders arerequired for eachinput and outputfiber

    DWDM

    DWDM

    DWDM

    DWDM

    Fixed l Lasers in Optical Switches

  • 7/31/2019 03 Optical Internet

    37/77

    John Strand

    1/18/2002

    37

    Si substrate

    Microlens

    Free-rotatingswitch-mirror array

    Switch reconfigured by actuating selected micromirrors

    Input fibers

    Siliconsubstrate

    L. Y. Lin, E. L. Goldstein, and R. W. Tkach, Free-space micromachined optical switches with

    sub-millisecond switching time for large-scale optical crossconnects, IEEE Photonics

    Technology Letters, April 1998, pp. 525-528.

    An Early MEMS DeviceFree-Space Micromachined Optical Switch (FS-MOS)

    Switch Time < 1 ms

    8x8 is 1 cm x 1 cm

    Opportunities To Extend ToSignificantly Larger ArraysOn A Single Substrate

    Measured Switching TimesUnder 1 ms (500 s)

    3-D MEMS (2 degrees of

    Freedom) seems to be the

    Currently preferred architecture

  • 7/31/2019 03 Optical Internet

    38/77

    John Strand

    1/18/2002

    38

    An 8 x 8 Switch

    Chip size: 1 cm x 1 cm

    Source: L-Y. Lin

  • 7/31/2019 03 Optical Internet

    39/77

  • 7/31/2019 03 Optical Internet

    40/77

    John Strand

    1/18/2002

    40

    OTS System Length

    560 Km

    80 km 80 km 80 km 80 km 80 km 80 km80 km

    OA OA OA OAOA OA

    ADM

    ADM

    oo

    o

    DWD

    M

    ADM

    ADM

    o

    o

    o

    DWD

    M

    7 x 25 dB Spacing

    Optical Transport System (OTS)

    Key Variables:

    Distance Between OA's Number of Spans

  • 7/31/2019 03 Optical Internet

    41/77

    John Strand

    1/18/2002

    41

    Transponder

    OpticalAmplifier

    Mux/Demux

    Fiber (Installed)

    Utilization (%) 50 100 50 100# Spans (80 km) 3 3 7 7

    Domains Of TransparencyTransponder Costs In Traditional Systems

  • 7/31/2019 03 Optical Internet

    42/77

    John Strand

    1/18/2002

    42

    Domains Of TransparencyUltra Long-Haul (ULH) Economics

    .. ..Standard

    DWDM

    OA/OADMTransponder

    A B C D

    OTS Type

    1 3 5 7 9

    No. Of Standard OTS Systems (5 span) In Series

    1.25

    1.5

    1.75

    2

    Utilization(%)

    0

    100

    ULH/StandardCost Ratio ULH

    Wins

    Standard

    Wins

    ~500 km

    Typical ULH Technology Enhancements:

    Strong Forward Error Correction

    Raman Amplification

    Dynamic Power Management

    More Expensive Terminals & OAs

    Fewer Transponders

    At Intermediate Locations

    ~5000 km

    Ultra-LongHaul (ULH)

  • 7/31/2019 03 Optical Internet

    43/77

    John Strand

    1/18/2002

    43

    TDRs TDRs

    TDRs

    Contained Domain of Transparency

    Issues:Transmission Engineering Concerns Especially For Non-Tree Topologies

    Fault Detection & Localization

    Without Wavelength Conversion Becomes Separate Single- Networks

    Single-Vendor For The Forseeable Future

    Optical Domain Circuit Switch

  • 7/31/2019 03 Optical Internet

    44/77

    John Strand

    1/18/2002

    44

    Refs: A. Chiu, J. Strand, R. Tkach, "Issues for Routing In The Optical Layer",

    IEEE Communications (2001)

    J. Strand (ed.), IETF I-D "Impairments And Other ConstraintsOn Optical Layer Routing", draft-ietf-ipo-impairments-01.txt

    Launch

    Power

    (PL)

    Length Of All-Optical Path

    Other

    System

    Parameters

    Operating Region

    Distance Before OEO RegenLimiting Factors

    PL Launch PowerSNRmin Min SNRPMD Polarization Mode DispersionB Bandwidth of DPMD PMD Parameter (fiber dependent)ASE Amplified Spontaneous

    Emission

    ASE Constraint

    ~ PL/SNRmin

    NonlinearitiesPMD Constraint~ (B * DPMD)

    -2

    In Large All-Optical Domains Each Vendor Trades Off The

    Design Parameters Differently This Makes Routing In Multi-Vendor

    Networks Difficult To Standardize

  • 7/31/2019 03 Optical Internet

    45/77

    John Strand

    1/18/2002

    45

    Outline

    Transport - Traditional TDM Networks

    Optical Networking

    Optical Networking & IP

    Concentrate On Intercity Networks Time Constraint Metro, Access Optical Networks More Complex, Less Mature

  • 7/31/2019 03 Optical Internet

    46/77

    John Strand

    1/18/2002

    46

    Voice & Other

    TDM-Based Services

    Data Services

    (Mostly IP-Based)

    Optical Layer

    Media Layer

    DS1 (1.5 Mb/Sec)

    DS3 (45 Mb/Sec) -STM-4 (622 Mb/Sec)

    STM-16c (2.5 Gb/Sec) -STM-64c (10 Gb/Sec)

    Proprietary(20 Gb/Sec - 400+ Gb/Sec)

    IP Transport

    Transport For IP -Defining Functionality

    Of These Interfaces

    Digital Transmission

    Layer

    Wideband & Broadband

    DCS Layers

    IP For Transport -Introducing IP Functionality

    Into The Optical Layer

  • 7/31/2019 03 Optical Internet

    47/77

    John Strand

    1/18/2002

    47

    Voice & Other

    TDM-Based Services

    Data Services

    (Mostly IP-Based)

    Optical Layer

    Media Layer

    DS1 (1.5 Mb/Sec)

    DS3 (45 Mb/Sec) -STM-4 (622 Mb/Sec)

    STM-16c (2.5 Gb/Sec) -STM-64c (10 Gb/Sec)

    Proprietary(20 Gb/Sec - 400+ Gb/Sec)

    IP Transport

    Transport For IP -Defining Functionality

    Of These Interfaces

    Digital Transmission

    Layer

    Wideband & Broadband

    DCS Layers

    IP For Transport -Introducing IP Functionality

    Into The Optical Layer

  • 7/31/2019 03 Optical Internet

    48/77

    John Strand

    1/18/2002

    48

    Non-IP

    Services

    IP Router

    IP

    Services

    Non-IP

    Services

    OXC

    OLXCOffice Architecture

    Big Fat RouterOffice Architecture

    IP For TransportReplacing The OLXC With A Router

  • 7/31/2019 03 Optical Internet

    49/77

    John Strand

    1/18/2002

    49

    Ports & Assumed CostsOLXC $x Per OC48IP Router $y Per OC48

    Through (

    Terminating (1

    IP Router

    OLXC

    OLXCOffice Architecture

    IP Router

    Big Fat RouterOffice Architecture

    IP For TransportComparing The Architectures

    OLXC Architecture Less Expensive If:

    OLXC Cost x

    Typical Values:

    = 0.8

    x/y

  • 7/31/2019 03 Optical Internet

    50/77

    John Strand

    1/18/2002

    50

    Label Switched Path's (LSP's) Are LOGICAL, NOT PHYSICALNeed Not Occupy Bandwidth

    Specific LSPs Change At Each MPLS Node:

    z End-to-end connection defined at set-up

    Physical Transmission System

    SONET (STS-N) OCh

    Etc.

    LSP

    X

    LSP

    Y

    LSP s

    LSP t

    LSP u

    LSP a

    LSP s

    LSP t

    MPLS Transport Hierarchy

    IPMPLS

    X s

  • 7/31/2019 03 Optical Internet

    51/77

    John Strand

    1/18/2002

    51

    MPLS Tunneling

    LSP 7

    LSP 11

    LSP 42

    LSP 3

    LSP 88

    POP 3PUSH

    77

    SWAP 7=>11

    PUSH 42

    1142

    SWAP 42 => 88

    1188

    POP 88

    SWAP 11=>3

    3

    "Virtual" Muxing - No Utilization Penalty

    This Is A Key Driver For Replacing TDM

  • 7/31/2019 03 Optical Internet

    52/77

    John Strand

    1/18/2002

    52

    TDM Multiplexing

    DS1

    DS3

    STS-48

    DS3

    DS3STS-48

    Tunneling Using MPLS LSP's Is Analogous To TDM Multiplexing

  • 7/31/2019 03 Optical Internet

    53/77

    John Strand

    1/18/2002

    53

    From MPLS To GMPLS

    LSP 7

    LSP 11

    LSP 42

    LSP 3

    LSP 88

    POP 3PUSH

    77

    SWAP 7=>11

    PUSH 42

    1142

    SWAP 42 => 88

    1188

    POP 88

    SWAP 11=>3

    3

    Implicit Label

    ( 1)

    Implicit Label

    ( 2)

    STS-192 ( 1) STS-192 ( 2)

    GMPLS: Generalized MPLS

  • 7/31/2019 03 Optical Internet

    54/77

    John Strand

    1/18/2002

    54

    1. Select source, destination, and service

    Label Request Message

    Label Mapping Message

    2. OSPF determines optimal route3. RSVP-TE/CR-LDP establishes circuit

    Source: Sycamore OFC2000

    GMPLS In An OXC Network

    Vision:

    Provisioning Time: Weeks To Milliseconds

    Greatly Simplify Process

    ISSUE: Standards Lagging Need - Proprietary Control Planes

    Are Being Deployed Rapidly

  • 7/31/2019 03 Optical Internet

    55/77

    John Strand

    1/18/2002

    55

    GMPLS VisionMany Technologies - One Network

    FS: Fiber SwitchedLS: Lambda Switched

    PS: Packet Switched

    FA: Forwarding Adjacency

  • 7/31/2019 03 Optical Internet

    56/77

    John Strand

    1/18/2002

    56

    GMPLS Overlay Network Model

    Overlay Network Optical Network (OXC) computes the path Network Level Abstraction For IP Control Plane

    ~~~

    ~~~

    ~~~

    Router Router~~~ ~~~

    Connection

    Requests, etc.

    UNI

    OpticalNetwork

  • 7/31/2019 03 Optical Internet

    57/77

    John Strand

    1/18/2002

    57

    GMPLS Peer Network Model

    Peer Network

    Router computes the path(Routers have enough information about the characteristics of the opticaldevices/network)

    Link-level abstraction For IP Layer Control Plane

    Router Router

    ~~~

    ~~~

    ~~~

    ~~~

    ~~~

    Topology &

    Capacity Information

    Network

    Signalling

    OpticalNetwork

  • 7/31/2019 03 Optical Internet

    58/77

    John Strand

    1/18/2002

    58

    Canarie OBGPCurrent View of Optical Internets

    Big Carrier Optical Cloud using MPLS

    and IGP for management of wavelengths

    for provisioning, restoral and protection

    Customers buy managed

    service at the edge

    Optical VLAN

    Customer

    ISP

    AS 1

    AS 2

    AS 3

    AS 1AS 4

    BGP Peering is

    done at the

    edge

    B. St. Arnaud

    C i OBGP Vi i

  • 7/31/2019 03 Optical Internet

    59/77

    John Strand

    1/18/2002

    60

    Canarie OBGP Vision

    Dark Fiber

    Customer Owned

    Dark Fiber

    School

    University

    X

    Multi Home Router

    Dark Fiber

    Mapped to

    Dim

    Wavelength

    ISP A

    ISP B

    ISP Controlled

    Optical Switch

    Aggregating Router

    ISP Controlled

    Optical SwitchCustomer Controlled

    Optical Switch

    UniversityY

    IGP

    IGP

    IGP

    IGP

    BGP

    OiBGP

    OBGP OBGP

    OBGP

    BGP neighbors

    B. St. Arnaud

  • 7/31/2019 03 Optical Internet

    60/77

    John Strand

    1/18/2002

    61

    Optical Interworking ForumServices Concept

    Bandwidth On Demand - Connection Request

    Over UNI Specifying QoS Desired - Overlay Model

    OVPN - Dedicated Subnet Configured By

    Customer - Peer Model

    Customers buy managed

    service at the edge

    Optical VLAN

    Customer

    ISP

    AS 1

    AS 2

    AS 3

    AS 1AS 4

    BGP Peering is

    done at the

    edge

  • 7/31/2019 03 Optical Internet

    61/77

  • 7/31/2019 03 Optical Internet

    62/77

    John Strand

    1/18/2002

    63

    Examples of Network views View from any domain of the rest of the network via a link state

    protocol

    Domain 1ReachableAddress list

    Domain 3ReachableAddress list

    Domain 4ReachableAddress list

    Domain 5ReachableAddress list

    Domain 2ReachableAddress list

    Protection 1:N, N=3Available BW = SRLG =

    Protection 1+1Available BW = SRLG =

    Protection 1:N, N=10Available BW = SRLG =

    Protection 1:N, N=7Available BW = SRLG = Protection 1+1

    Available BW =

    SRLG =

    Protection 1+1

    Available BW = SRLG =

    Protection 1+1Available BW = SRLG =

  • 7/31/2019 03 Optical Internet

    63/77

    John Strand

    1/18/2002

    64

    Initial OIF NNI Target

    User controlDomain

    Control DomainA

    Control DomainCUNI UNI

    NNINNI

    Control DomainB

    firewall

    firewall

    L2/L3

    L2/L3

    LoadBalancer

    LoadBalancer

    User controlDomainfirewall

    firewall

    L2/L3

    L2/L3

    LoadBalancer

    LoadBalancer

    Single carriers network

    User controlDomain

    firewall

    firewall

    L2/L3

    L2/L3

    LoadBalancer

    LoadBalancer

    NNI

    Why Single Carrier Multi-Domain First?

    Standards Lag Deployment - Vendor Proprietary Control Planes

    Rapid & Unpredictable Technological Change Makes It Unlikely

    That Standards Will Keep Up

    Uncertain Business Model

    Initial Multi-Carrier NNI Likely To Be LEC/IXC (JLS Opinion)

    oif2001.639 - Application-Driven Assumptions And Requirements

  • 7/31/2019 03 Optical Internet

    64/77

    John Strand

    1/18/2002

    65

    1. Significant Differences In Technology, Economic Trade-Offs, & Services Supported

    2. Likely To Be Multi-Vendor

    3. Proprietary Or Customized IGP's Are Likely

    4. Significant Operational Autonomy Information Trust, Not Always Policy Trust Domains Likely To Require Control Of The Use Of Their Resources

    5. Routing Carrier-Specific NMS May Be Involved High Unit Costs, Long Connection Times Make Economics An Important Consideration

    6. Conduit & Fiber Cable Sharing Make SRG Information AcrossDomains Complex - Will Frequently Not Be Available

    Metro/Core Characteristics

    KY J

    Metro Metro

    Metro

    A

    X

    oif2001.639 - Application-Driven Assumptions And Requirements

  • 7/31/2019 03 Optical Internet

    65/77

    John Strand

    1/18/2002

    66

    1. Significant Differences In Technology, Economic Trade-Offs, & Services Supported

    2. Likely To Be Multi-Vendor

    3. Proprietary Or Customized IGP's Are Likely

    4. Significant Operational Autonomy Information Trust, Not Always Policy Trust Domains Likely To Require Control Of The Use Of Their Resources

    5. Routing Carrier-Specific NMS May Be Involved High Unit Costs, Long Connection Times Make Economics An Important Consideration

    6. Conduit & Fiber Cable Sharing Make SRG Information AcrossDomains Complex - Will Frequently Not Be Available

    Metro/Core Characteristics

    KY J

    MetroY Metro

    Metro

    A

    oif2001.639 - Application-Driven Assumptions And Requirements

  • 7/31/2019 03 Optical Internet

    66/77

    John Strand

    1/18/2002

    67

    ZA J K L

    N P Q

    S T U

    M RB Y

    Routing Costs: A(nodes) + B(distance)

    Large A Small B

    Small A Large B

    1. Proprietary Or Customized IGP's Are Likely

    2. Information & Policy Trust Not Likely To Be An Issue

    3. Vendor-Specific Technologies & Constraints Not Captured In Standards Are Likely(E.g., All-Optical, Tunable Lasers, Adaptive Wavebands)

    Multi-Vendors In Backbone - Characteristics

    A Z

    N P Q

    S T U

    M R

    B Y Opaque

    Network(Vendor A)

    ExpressDomain of

    Transparency

    (Vendor B)

    J K L

    N P Q

    S T U

    M R

    LJ K

    IP Transport

  • 7/31/2019 03 Optical Internet

    67/77

    John Strand

    1/18/2002

    68

    Voice & Other

    TDM-Based Services

    Data Services

    (Mostly IP-Based)

    Optical Layer

    Media Layer

    DS1 (1.5 Mb/Sec)

    DS3 (45 Mb/Sec) -STM-4 (622 Mb/Sec)

    STM-16c (2.5 Gb/Sec) -STM-64c (10 Gb/Sec)

    Proprietary(20 Gb/Sec - 400+ Gb/Sec)

    IP Transport

    Transport For IP -Defining Functionality

    Of These Interfaces

    Digital Transmission

    Layer

    Wideband & Broadband

    DCS Layers

    IP For Transport -Introducing IP Functionality

    Into The Optical Layer

  • 7/31/2019 03 Optical Internet

    68/77

    John Strand

    1/18/2002

    69

    0%

    20%

    40%

    60%

    80%

    100%

    EOY 1997 EOY 19991997-99Growth

    Private Line

    Internet

    U.S. Voice

    Other PublicData Networks

    Traffic On U.S. Long Distance Network1997 1999

    Source: K. Coffman & A. Odlyzko

  • 7/31/2019 03 Optical Internet

    69/77

  • 7/31/2019 03 Optical Internet

    70/77

    John Strand

    1/18/2002

    71

    US Domestic Backbone (Mid-99)

    268,794 OC-12 Miles

    Transport Layering

  • 7/31/2019 03 Optical Internet

    71/77

    John Strand

    1/18/2002

    72

    Voice & Other

    TDM-Based Services

    Data Services

    (Mostly IP-Based)

    Optical Layer Optical Transport Systems (DWDM, OA,OADM)

    "Optical Cross-Connects"

    Media Layer

    Fiber

    Conduit

    DS1 (1.5 Mb/Sec)

    DS3 (45 Mb/Sec) -OC-12 (622 Mb/Sec)

    OC-48c (2.5 Gb/Sec) -OC-192c (10 Gb/Sec)

    Proprietary(20 Gb/Sec - 400+ Gb/Sec)

    Transport Layering

    Digital Transmission Layer

    ADM's

    Rings

    Wideband & Broadband

    DCS Layers XXX

    XFunctionality& Value Added

    Transport For IP

  • 7/31/2019 03 Optical Internet

    72/77

    John Strand

    1/18/2002

    73

    Price - $/OC48/month

    Availability How Quickly Where

    Displacement Of Internal ISP Costs Interfaces

    Cost Of Reliability Buffer Capacity Peak Loads Traffic Shifts Traffic Growth

    Network Management

    Differentiators

    Availability QoS

    Rapid Provisioning

    Optical Network InterworkingHeterogeneous Technologies Metro/Core Other Backbone Providers

    Flexible Bandwidth

    Asymmetric Circuits Concatenated Links Virtual Concatenation Inverse Multiplexing

    Additional Customer Restoration Options Re-Provisioning Customer Control

    Speed Options

    Sub-OC48 Functionality

    Layer 1 Interface Enhancements

    Customer Drivers Possible Solution Elements

    Transport For IP

    Restoration Refresher

  • 7/31/2019 03 Optical Internet

    73/77

    John Strand

    1/18/2002

    74

    OpticalLayer

    ServicesLayers

    DigitalTransmission

    Layer

    DCS

    Layers

    Restoration RefresherKey Trade-OffRestoration Granularity Unit Capacity Cost

    Connection

    STS-1 => STS-12

    STS-48+

    l or Fiber

    Services Layer (IP) Can Restore Exactly The Right Connections

    Optical Layer More Economical If Large Bundles Of Connections Need

    To Be Restored

    ISP P i R l ti hi

  • 7/31/2019 03 Optical Internet

    74/77

    John Strand

    1/18/2002

    75

    ISP Peering Relationships

    PeerPeer (Frequently) No $$

    CustomerProvider EXPENSIVE

    T t F IP

  • 7/31/2019 03 Optical Internet

    75/77

    John Strand

    1/18/2002

    76

    A Z

    R

    C X

    B Y

    Toll Switching Hierarchy Internet ISP Hierarchy

    Local ISP

    Regional ISP

    Tier 1 ISP

    Transport For IPReducing The BGP Hop Count

    Hi-Usage

    Trunks Optical

    Direct Connects

    Typical Transit Cost (Telia): $1K - 10K / Mbps /Year

    References

  • 7/31/2019 03 Optical Internet

    76/77

    John Strand

    1/18/2002

    77

    References T. E. Stern & K. Bala, Multiwavelength Optical Networks, Addison-Wesley, 1999

    J. L. Strand, Optical Network Architecture Evolution, chapter in I. Kaminow and T. Li (eds.),

    Optical Fiber Telecommunications IV, Academic Press, to appear March 2002 R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective,

    San Francisco: Morgan Kaufmann, 1998.B. Mukherjee, Optical Communications Networks, New York: McGraw Hill, 1997.

    R. H. Cardwell, O. J. Wasem, H. Kobrinski, WDM Architectures and Economics in Metropolitan Areas",Optical Networks, vol. 1 no.3, pp. 41-50

    O. Gerstel and R. Ramaswami, "Optical Layer Survivability: A Services Perspective",IEEE Communications Magazine, vol. 38 no. 3, March 2000, pp. 104-113.

    R. D. Doverspike, S. Phillips, and Jeffery R. Westbrook, "Future Transport Network Architectures",IEEE Communications Magazine, vol. 37 no. 8, August 1999, pp. 96-101.

    R. Doverspike and J. Yates, "Challenges for MPLS in Optical Network Restoration", IEEE CommunicationsMagazine, vol. 39 no. 2, Feb. 2001, pp. 89-96.

    M. W. Maeda, "Management and Control of Transparent Optical Networks", IEEE J. on Selected Areas InCommunications, vol. 16, no. 7, Sept. 1998, pp. 1008-1023.

    J. L. Strand, J.; A. L. Chiu, , R. Tkach,.Issues For Routing In The Optical Layer, IEEE Communications Magazine,

    2/2001, vol. 39, no. 2, pp. 8187

    John Strand, Robert Doverspike, Guangzhi Li, Importance of Wavelength Conversion In An Optical Network,

    Optical Networks Magazine, vol. 2 No. 3 (May/June 2001), pp. 33-44

    R. W. Tkach, E. L. Goldstein, J. A. Nagel, J. L. Strand, Fundamental limits of optical transparency,

    OFC '98, pp. 161 -162

    S R l t U S W b Sit

  • 7/31/2019 03 Optical Internet

    77/77

    Some Relevant U.S. Web Sites

    Tier 1 Inter City Service Providers

    AT&T http://www.att.com MCI Worldcom http://www.wcom.com

    Sprint http://www.sprint.com

    New Entrants Qwest http://www.qwest.com

    Level3 http://www.Level3.com

    Frontier http://www.frontiercorp.com

    Williams http://www.williams.com

    Major Equipment Providers Lucent http://www.lucent.com

    Alcatel http://www.alcatel.com

    Nortel http://www.nortel.com

    Cisco http://www.cisco.com

    NEC http://www.nec.com

    New Equipment Vendors Ciena & Lightera http://www.ciena.com

    Cisco & Monterey http://www.montereynets.com

    Avici http://www.avici.com

    Juniper http://www.juniper.net

    Sycamore http://www.sycamore.com

    Government Sites: FCC http://www.fcc.gov

    NTIA http://www.ntia.doc.gov

    Standards Organizations

    ITU http://www.itu.int T1 http://www.t1.org

    OIF http://www.oiforum.com

    IETF http://www.ietf.org

    ATM Forum http://www.atmforum.com

    New Business Models Band-X http://www.band-x.com

    Arbinet http://www.arbinet.com