01 VEN Introduction

download 01 VEN Introduction

of 20

Transcript of 01 VEN Introduction

  • 8/19/2019 01 VEN Introduction

    1/20

    1

    1

    Ventilation

    1 Introduction - Basic principles

    Vladimír Zmrhal (room no. 814)

    http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. OfEnvironmental

    Engineering

    2

    Principle of ventilation

    Ventilation

    is intentional supply of outdoor air into the buildings (cars,

    trains …)

    to dilute and remove indoor air contaminants

    affect the indoor air quality

    healthy buildings

    Good indoor air quality (IAQ) is necessary for maintaining

    health and high productivity !!!

  • 8/19/2019 01 VEN Introduction

    2/20

    2

    3

    Principle of ventilation

    Natural ventilation

    is driven by pressure differences across the building envelope,

    caused by wind and air density differences because of

    temperature differences between indoor and outdoor air 

    the flow of air through open windows, doors, grilles and

    other planned building envelope penetrations

    Mechanical (forced) ventilation

    intentional movement of air into and out of building using

    mechanical force

    is driven by fans

    4

    Terminology

    Nominal air exchange rate (ventilation rate)

    [1/h]

    Space air exchange rate

    [1/h]

    [m3/h]

    sS

    V I 

    =

    .

    e

    V I 

    V =

    s e c V V V ⋅ ⋅ ⋅

    = +

    V e … outdoor air volume air flow

    rate [m3/h]

    V c … recirculation air flow rate

    [m3/h]

    V r …interior volume of space [m3]

  • 8/19/2019 01 VEN Introduction

    3/20

    3

    5

    Terminology

    Outside air fraction

    [-]

    Percent outside air 

    [%]

     X oa= 100 % …means no recirculation of return air 

    . .

    e eoa

    s e c 

    V V  X 

    V V V ⋅ ⋅ ⋅

    = =

    +

    .

    100eoa

    e c 

    V  X 

    V V 

    ⋅ ⋅= ⋅

    +

    6

    Terminology

    Airflows

    1 Outside air 

    2 Supply air 

    3 Return air 

    4 Exhaustt air 

    5 Recirculated air 6 Indoor air 

    7 Transfer air 

    8 Mixed air 

    9 By-pass air 

  • 8/19/2019 01 VEN Introduction

    4/20

    4

    7

    Terminology

    Air-Handling Unit

    8

    Heat and Pollutants

    Sources of heat and pollutants

    internal

    - persons

    - electronic appliances, lighting, technology, electric motors

    - animals, biological processes in agriculture, … external

    - outdoor air

    - external climatic conditions

  • 8/19/2019 01 VEN Introduction

    5/20

    5

    9

    Indoor Contaminants

    CO2

    water vapour 

    combustion products

    tobacco smoke

    VOC

    aldehydes

    pesticides

    asbestos

    radon

    10

    Ventilation Requirements

    hygienic – for the people

    technological – for technology processes

    biological – agricultural processes

    micro-biological

    safety

    fire

  • 8/19/2019 01 VEN Introduction

    6/20

    6

    11

    Parameters of the pollutants

    Concentration of pollutants

    mass [mg/m3]

    volumetric [cm3/m3]

    ppm (parts per million) 1 ppm = 10-4 %

    number of particles in m3 – clean rooms

    Dimension of the particles

    a = 0 – 1 0 0 µm

    12

    Parameters of the pollutants

  • 8/19/2019 01 VEN Introduction

    7/20

    7

    13

    Conversion X [mg/m3]   Y [ppm]

    M …molecular weight of the gass [g/mol]

    Note:

    1000 ppm = 0,1 % vol.

    =  324,44[ppm] [mg/m ]Y X 

    Parameters of the pollutants

    14

    Mass Balance of the Ventilated Room

       

    τ τ τ  ⋅ ⋅ ⋅

    + = +s r source exhaust supply    storage

    G d V c d V c d V dc  

  • 8/19/2019 01 VEN Introduction

    8/20

    8

    15

    τ   → ∞; steady state

    solution

    τ  ⋅

    G d    τ  ⋅

    + sV c d    τ  ⋅

    = V c d    + r V dc 

    τ  

    τ  

    τ  

    ⋅ ⋅

    ⋅ ⋅ ⋅

    = =− −

    + − =

    =

    + −

    ∫ ∫0   0

    s s

    s r 

    c    r 

    s

    G GV 

    c c PEL c  

    G V c V c d V dc  

    dc V d 

    V Gc c 

    Mass Balance of the Ventilated Room

    16

    τ τ  

    + − + −

    =   ⇒   =+ − + −

    0 0

    ln lns s

    r s s

    G Gc c c c  

    V V V V G GV V c c c c  V V 

    τ τ  − − = + + −

    0   1r r 

    V V 

    V V 

    s

    Gc c e c e

    ( ) ( )τ τ τ  

      = − + + −   − − −

    2

    0 0 02 2r r r G V G V G V  V 

    c c c c c c  

    Mass Balance of the Ventilated Room

  • 8/19/2019 01 VEN Introduction

    9/20

    9

    17

    Concentration of the pollutant

    Time τ  ττ  τ   [h]

        C   o   n   c   e   n    t   r   a    t    i   o   n       c

         [   g    /   m    3    ]

    V→→→→ 0 m3/h

    V1

    V2 = 2V1

    V

    G = const.

    18

      s i r 

    source exhaust storagesupply 

    Q d V c t d V c t d V c dt  τ ρ τ ρ τ ρ  ⋅ ⋅ ⋅

    ⋅ + ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

    Thermal Balance of the Ventilated Room

  • 8/19/2019 01 VEN Introduction

    10/20

    10

    19

    c  …specific heat of the air = 1010 [kJ/kgK]

     ρ  …density of the air = 1.2 [kg/m3]

    t →∞; steady state

    Q d τ  ⋅

    sV ct d   ρ τ  ⋅

    + i V ct d   ρ τ  ⋅

    = r V cdt   ρ +

    ( )i s

    QV 

    c t t  ρ 

    =−

    Thermal Balance of the Ventilated Room

    20

    Limit Concentrations

    Maximum permission concentration (MPC)

    … in any time !!

    for  τ  →∞ and steady state

    ≤max c MPC  

    ⋅= +

    max s

    Gc c 

  • 8/19/2019 01 VEN Introduction

    11/20

    11

    21

    Permission exposure limit PEL

    for  τ  →∞ and steady state

    WHY ?

    =−  p

    GV 

    PEL c  

    Návrh větrání

    ?!=c PEL

    22

    Limit Concentrations

    Permission exposure limit PEL

    …where τ  = 8 hours

    0

    1avg c c d 

    τ  

    τ    τ  

    τ  = ∫

    ( )τ  τ  

    ⋅ ⋅

    − ⋅

    ⋅ ⋅

    = − − − + + ⋅

    0

    11   I avg s s

    G Gc c c e c  

    I  V V 

    ≤,8avg c PEL

  • 8/19/2019 01 VEN Introduction

    12/20

    12

    23

    Average concentration for periodical pollutant generation

    ( )τ   τ  τ  

    ⋅ ⋅

    ⋅ ⋅

    =

    = − − − + +

    ∑   0,1

    1 11   i i 

    nI i i 

    avg i s s i  i tot i  

    i i 

    G Gc c c e c  

    I  V V 

    1

    8 hoursn

    tot i  i 

    τ τ  =

    = =∑

    Limit Concentrations

    24

    Limit Concentrations

    <

    max 

     prům

    c MPC  

    c PEL

    !

  • 8/19/2019 01 VEN Introduction

    13/20

    13

    25

    Example 1

    Permanent pollutant generation Ventilation strategy:

    1)   c max,1 > MPC

    c avg,1> PEL

    !!! V e   ↑↑↑↑

    2)   c max,2 < MPC

    c avg,2 

    < PEL

    OK

    26

    Example 2

    Variable pollutant generation Ventilation strategy:

    1)   c max,1 < MPC

    c avg,1> PEL

    !!! V e   ↑↑↑↑, τ  ττ  τ   ↓↓↓↓

    2)   c max,2 > MPC

    c avg,2 < PEL

    !!! V e   ↑↑↑↑ , τ  ττ  τ   ↓↓↓↓

  • 8/19/2019 01 VEN Introduction

    14/20

    14

    27

    Example 3

    Periodical pollutant generation Ventilation strategy:

    c max < MPC …OK

    c avg > PEL …!!!

    !!! V e ↑↑↑↑, τ  ττ  τ  ↓↓↓↓

    28

    Hygienic aspects

    Adition of the pollutants

    for two and more chemical substance

    + + + ≤1 2 1

    1 2

    ... 1n

    n

    c c c 

    PEL PEL PEL

    + + + ≤1 2

    1 2

    ... 1n

    n

    c c c 

    MPC MPC MPC  

    = + + +1 2

    1 2

    ; ...   n

    n

    G G GV 

    PEL PEL PEL

  • 8/19/2019 01 VEN Introduction

    15/20

    15

    29

    The pollutants with independent effect

    = = =1 2

    ,1 ,2 ,

    1 2

    ; ; ...   ne e e nn

    G G GV V V 

    PEL PEL PEL

    ( ),1 ,2 ,max ; ; ...e e e e nV V V V  =

    Hygienic aspects

    30

    Mauna Loa

    (Havaj)> 380 ppm

    Carbon dioxide CO2

  • 8/19/2019 01 VEN Introduction

    16/20

    16

    31

    Example1

    Example 1: Pettenkoffer‘s criterion

    1 people exhale 0.42 m3/h of air 

    Concentration of CO2 in exhaled air is 4 % vol.

    Concentration of CO2 in outdoor air CCO2 = 0.035 % vol. = 350 ppm

    Max. concentration of CO2 in the room Cmax = 0.1 % vol. = 1000 ppm

    Calculate volume air flow rate of outdoor air Ve = ? [m3/h]

    32

    Pettenkofer‘s criterion

    Max von Pettenkofer (1818 - 1901)

    main metabolite: CO2 a water vapour

    CO2 production depends on activity level - 16 dm3/h CO2 for

    unsleeping person (10 dm3/h when sleeping)

    CO2 concentration in indoor environmentsinforms about quality of ventilation

    CL = 0.1 vol. % = 1000 ppm

    → Pettenkofer criterion

    25 m3/h per person

  • 8/19/2019 01 VEN Introduction

    17/20

    17

    33

    • 360 - 400 ppm: concentration in outdoor air 

    • 800 - 1 000 ppm: recomended indoor air concentration

    • 1 200 až 1 500 ppm: maximum (real) indoor air concentration

    • > 1 500 ppm: tideness, sleepiness, lethargy, headache…

    • < 5 000 ppm: maximum safety concentration without health risk

    • > 5 000 ppm: sickness, higher pulsation (sick building syndromme -

    SBS)

    • > 10 000 ppm: health hazards

    • > 40 000 ppm: dangerous to live

    1 000 ppm= 0,1% obj .

    Carbon dioxide CO2

    34

    Ventilation Requirements

  • 8/19/2019 01 VEN Introduction

    18/20

    18

    35

    Ventilation Requirements

    Space Occupancy

    [m2/person]

    Required air flow rate

    [m2/h.person]

    Office spaces 10 36

    Land-scape office 15 36

    Classroom 2 29

    Kidergarten 2 30

    Conference room 2 36

    Department store 7 23

    EN 15251 - Indoor environmental input parameters for design and

    assessment of energy performance of buildings- addressing indoor 

    air quality, thermal environment, lighting and acoustics

    36

    Ventilation Requirements

    ASHRAE

    10 cfm = 17 m3/h

  • 8/19/2019 01 VEN Introduction

    19/20

    19

    37

    Health Risk

    Group 1 Group 2 Group 3

    Risk of death or

    sickness

    Risk of respiratory

    sickness

    Risk of less important

    sickness or discomfort

    Radon Fungi Temperature

    Carcinogenic VOC Allergens Noise

    Asbestos Dust particles Lighting

    Passive smoking (ETS) NOx Non-carcinogenic VOC

    CO (high concentrations) Ozone CO (low concentrations)

    38

    Example 2

    Example 2: Calculation of volume air flow rate

    Mass flow of pollutant   G = 0.2 kg/h of FexOy

    Permission exposure limit   PEL = 0,015 g/m3

    Concentration in outdor air    c s = 0

    Calculate volume air flow rate   V = ?

  • 8/19/2019 01 VEN Introduction

    20/20

    39

    Example 3

    Example 3: Calculate time τ  ττ  τ  of ventilation after accident of NH3 in

    machine room.

    Volume of the machine room V r = 500 m3

    Amount of escaped NH3   m = 1.2 kg

    Max. permission concentration MPC = 0.036 g/m3

    Ventilation rate   I = 5 h-1

    How long it takes achieving of MPC …

    τ  ττ  τ  = ?

    40

    Thank you for your

    attention