01 Pretreatment

46
2011 Synthesis Gas Seminar – Margarita Feed Pretreatment November 2–4, 2011

Transcript of 01 Pretreatment

Page 1: 01 Pretreatment

2011 Synthesis Gas Seminar – Margarita y gFeed PretreatmentNovember 2–4, 2011

Page 2: 01 Pretreatment

Feed Gas Treatment

P bl• Problem components

S lfHC Feed

Steam

HTS

SulfurChloridesOlefins

S SCl ClCoking

OlefinsPurification Pre Reformer Primary Reformer

Cl

CO2Reforming

SClH2

Cl

SynGas Seminar – Margarita – Nov 2-4,2011 Page 2

HT CO Shift LT CO Shift CO2 Removal Methanation

Page 3: 01 Pretreatment

Feed Gas Treatment

A ti t d C b • Activated Carbon –adsorption of H2S + organic S

• H d d lf i ti (HDS)• Hydrodesulfurization (HDS) –convert organic S to H2SC t i hl id t HClConvert organic chlorides to HCl

• Chloride Guard – remove HClZi O id Ad b H S• Zinc Oxide – Adsorb H2S

• ActiSorb® G 1 – Sulfur removal

SynGas Seminar – Margarita – Nov 2-4,2011 Page 3

Page 4: 01 Pretreatment

Activated Carbon: C8-6 / C8-77

ADVANTAGES DISADVANTAGE

• Low Cost • Capacity Affected by • Regenerable• Low Temperature

p y yHeavy Hydrocarbons

• Need for Frequent Low Temperature Operation

• Effective on Virtually

qRegeneration

• Emissions Control yall Sulfur Species during Regeneration

SynGas Seminar – Margarita – Nov 2-4,2011 Page 4

Page 5: 01 Pretreatment

Lead-Lag ReactorsRaw Natural Gas Feed

To Regeneration VentTo Regeneration Vent

RegenerationSteam

SynGas Seminar – Margarita – Nov 2-4,2011 Page 5

Purified Natural Gas

Page 6: 01 Pretreatment

Activated Carbon

A bi• Ambient temperature• Steam before initial use• Regenerate upflow with steam to vent (or hot

NG/fuel )C t l t /NG l it t t fl idi tiControl steam/NG velocity to prevent fluidization < 0.5 ft/sec (SLV)Evolution of hydrocarbons and sulfur duringEvolution of hydrocarbons and sulfur during regeneration may need to condense/capture regeneration steam and hydrocarbonsNo oxygen in steam if above 400ºF (205ºC)

• No oxygen > 200ºF (95ºC) without steam

SynGas Seminar – Margarita – Nov 2-4,2011 Page 6

yg ( )• Typical sulfur leakage: < 0.1 ppm

Page 7: 01 Pretreatment

Activated Carbon - Operation

S lf i i d d b 125 F• Sulfur capacity is reduced above 125oF • Typical operating cycle 7-14 days• Typical feeds: < 5 ppmv RSH

< 5 ppmv H2ST bl i• Troublesome contaminants:

Heavy hydrocarbons can reduce capacityCO2 ( 5 %) d i i ifi lCO2 (>5 %) can reduce capacity significantlyWater vapor can reduce capacity somewhat

SynGas Seminar – Margarita – Nov 2-4,2011 Page 7

Page 8: 01 Pretreatment

Activated Carbon - Operation

C i B R iCapacity Between RegenerationsSCF of Feed per Ft³ of C8-7

Sulfur Type ppm SCF/ft³1 3 260 0001-3 260,0003-5 130,000

H2S

1-3 260,0003-5 130,000

R-SH

COS passes throughRegen Cycle depends on

SynGas Seminar – Margarita – Nov 2-4,2011 Page 8

g y pbed volume and sulfur concentration

Page 9: 01 Pretreatment

Activated Carbon - Problems• Reduced capacity between regenerations• Reduced capacity between regenerations

Surface ContaminationIncomplete RegenerationIncomplete RegenerationHeavy Hydrocarbon Buildupo C5+ can reduce capacity 50%p yo Insufficient regeneration temperatureIncreased Inlet Sulfuro Adsorbent capacity is fixedo Cycle length is inversely proportional to S content5% CO2 can reduce capacity 50%5% CO2 can reduce capacity 50%3% H2O can reduce capacity 20-30%High inlet temperature - > 125ºF (50ºC) capacity falls off

SynGas Seminar – Margarita – Nov 2-4,2011 Page 9

g p ( ) p y

Page 10: 01 Pretreatment

Feed Gas Treatment

A ti t d C b d ti f H S d i S• Activated Carbon – adsorption of H2S and organic S• Hydrodesulfurization (HDS) –

t i S t H Sconvert organic S to H2SConvert organic chlorides to HCl

Chl id G d HCl• Chloride Guard – remove HCl• Zinc Oxide – Adsorb H2S• ActiSorb® G 1 – Sulfur removal

SynGas Seminar – Margarita – Nov 2-4,2011 Page 10

Page 11: 01 Pretreatment

Hydrodesulfurization

HDMaxHDMax®® 200 200 SeriesSeries

HDMaxHDMax®® 300300 SeriesSeriesHDMaxHDMax 300 300 SeriesSeries

CoMo on Alumina

SynGas Seminar – Margarita – Nov 2-4,2011 Page 11

NiMo on Alumina

Page 12: 01 Pretreatment

HDMax® Catalysts® ®Catalyst HDMax® 200 HDMax® 300

Wt % CoO 4.5 ---Wt% NiO --- 4.9Wt% MoO3 18.5 20.0Alumina Balance BalanceOperating Temp ºF 450-800 450-800

ºC 230 425 230 425• Converts all S species to H2S – downstream H2S trap

C t Cl i t HCl d t HCl t

ºC 230-425 230-425

• Converts Cl species to HCl – downstream HCl trap• Hydrogenates olefins• N t ff t d b h h d b

SynGas Seminar – Margarita – Nov 2-4,2011 Page 12

• Not affected by heavy hydrocarbons

Page 13: 01 Pretreatment

HDMax® Reactions

R SH H R H H SR-SH + H2 R-H + H2SRSR’ + 2 H2 RH + R’H + H2S

RS-SR’ + 3 H2 RH + R’H + 2 H2SCOS + H2 CO + H2S

C4H4S + 4 H2 C4H10 + H2S

Chlorides R-Cl + H R-H + HClChlorides R-Cl + H2 R-H + HCl

Olefins RnH2n + H2 RnH2n+2 + HeatNeeded when > 0.5% olefinsΔT = ~15-18ºF (8-10ºC) per 1% molar

SynGas Seminar – Margarita – Nov 2-4,2011 Page 13

Control ΔT with recycle or multi-bed with intercooler

Page 14: 01 Pretreatment

HDMax® - Operation

• TemperatureMin-Max = 450-800ºF (230-425ºC)T i l 650 750ºF (345 400ºC)Typical range = 650-750ºF (345-400ºC)Limits risk of hydrocarbon cracking

• Space Velocity: 1500-6000 /hSpace Velocity: 1500 6000 /h• Sulfiding

NG with 2-10 ppmv of sulfur no sulfiding requiredNG with 2 10 ppmv of sulfur, no sulfiding requiredOlefins in the feed – must be pre-sulfided

• Hydrogen RequirementHydrogen RequirementTypical H2 = 4-7 psia (0.3-0.5 bara) Olefins H2 = stoichiometric + 5-10% excess in the effluent

SynGas Seminar – Margarita – Nov 2-4,2011 Page 14

Naphtha H2 = 15-20%

Page 15: 01 Pretreatment

Sulfiding Reactions

S lfidiSulfidingCoO + 0.11H2 + 0.89H2S CoS0.89 + H2

MoO3 + 2H2S MoS2 + 3H2O3NiO + H2 + 2H2S Ni3S2 + H2O

DesulfidingCoS0.89 + 0.89H2 Co + 0.89H2S

MoS2 + 2H2 Mo + 2H2S2 2 2

Ni3S2 + 2H2 2Ni + 2H2S

SynGas Seminar – Margarita – Nov 2-4,2011 Page 15

Page 16: 01 Pretreatment

H2S to Sulfide CoO1.00E+01

1 00E-01

1.00E+000.1 Bar H2 Partial Pressure

1 Bar H2 Partial Pressure

5 Bar H2 Partial Pressure

1 00E 03

1.00E-02

1.00E-01 10 Bar H2 Partial Pressure

1.00E-04

1.00E-03

1.00E-06

1.00E-05

1.00E-08

1.00E-07

150 200 250 300 350 400 450 500 550

SynGas Seminar – Margarita – Nov 2-4,2011 Page 16

150 200 250 300 350 400 450 500 550

Temperature, oC

Page 17: 01 Pretreatment

H2S to Sulfide NiO1.00E+03

1.00E+02

0.1 Bar H2 Partial Pressure1 Bar H2 Partial Pressure5 Bar H2 Partial Pressure10 Bar H2 Partial Pressure

1 00E+00

1.00E+01

1.00E-01

1.00E+00

1.00E-02

1.00E-04

1.00E-03

150 200 250 300 350 400 450 500 550

SynGas Seminar – Margarita – Nov 2-4,2011 Page 17

150 200 250 300 350 400 450 500 550

Temperature, oC

Page 18: 01 Pretreatment

H2S to Sulfide MoO31 00E+01

1.00E+00

1.00E+01

0.1 Bar H2 Partial Pressure1 Bar H2 Partial Pressure5 Bar H2 Partial Pressure

1.00E-02

1.00E-015 Bar H2 Partial Pressure10 Bar H2 Partial Pressure

1 00E-04

1.00E-03

1.00E-05

1.00E 04

1.00E-07

1.00E-06

150 200 250 300 350 400 450 500 550

SynGas Seminar – Margarita – Nov 2-4,2011 Page 18

150 200 250 300 350 400 450 500 550

Temperature, oC

Page 19: 01 Pretreatment

HDS Special Consideration• Cracking Potential• Cracking Potential

Carbon laydown and ΔP buildup• If sulfur is low < 2 ppm• If sulfur is low - < 2 ppm

Minimize H2 recycle – possibly < 1%Keep inlet temperature < 700ºF (370ºC)Keep inlet temperature < 700ºF (370ºC)

• No contact with air/O2 after on line or sulfidedNo contact with air/O2 after on line or sulfided

• Shutdown Maintain with inert gas (could be N2, H2, NG)If Olefins in the feed, purge with inert gas during

SynGas Seminar – Margarita – Nov 2-4,2011 Page 19

shutdown

Page 20: 01 Pretreatment

Feed Gas Treatment

A i d C b d i f H S d i• Activated Carbon – adsorption of H2S and organic S

• H d d lf i ti (HDS)• Hydrodesulfurization (HDS) –• convert organic S to H2S• Convert organic chlorides to HCl• Convert organic chlorides to HCl

• Chloride Guard – remove HCl• Zinc Oxide Adsorb H S• Zinc Oxide – Adsorb H2S• ActiSorb® G 1 – Sulfur removal

SynGas Seminar – Margarita – Nov 2-4,2011 Page 20

Page 21: 01 Pretreatment

Cl Guard – ActiSorb® Cl 2

Alkali ≥ 6.5%LOI ≤ 7.0%Alumina BalanceDensity 45 lbs/ft3

0 72 k /L0.72 kg/L

SynGas Seminar – Margarita – Nov 2-4,2011 Page 21

Page 22: 01 Pretreatment

ActiSorb® Cl 2

Chl id i h LTS• Chlorides are a very strong poison to the LTS• Reacts with ZnO: ZnO + 2HCl ZnCl2 + H2O

Z Cl bli 500ºF (260ºC)ZnCl2 sublimes ~500ºF (260ºC)

R i N 2O 2HCl 2N Cl H O• Reaction Na2O + 2HCl 2NaCl + H2O

• Operating Temperature = 70-850ºF (20-450ºC)• Vapor Phase or Liquid Phase• Cl pickup = 8-10% wt.• Typically a layer on top of the ActiSorb® S 2

SynGas Seminar – Margarita – Nov 2-4,2011 Page 22

Page 23: 01 Pretreatment

Feed Gas Treatment

A i d C b d i f H S d i• Activated Carbon – adsorption of H2S and organic S

• H d d lf i ti (HDS)• Hydrodesulfurization (HDS) –• convert organic S to H2S• Convert organic chlorides to HCl• Convert organic chlorides to HCl

• Chloride Guard – remove HCl• Zinc Oxide Adsorb H S• Zinc Oxide – Adsorb H2S• ActiSorb® G 1 – Sulfur removal

SynGas Seminar – Margarita – Nov 2-4,2011 Page 23

Page 24: 01 Pretreatment

Zinc Oxide – ActiSorb® S 2

SynGas Seminar – Margarita – Nov 2-4,2011 Page 24

Page 25: 01 Pretreatment

ActiSorb® S 2

H S Z O Z S H OH2S(g) + ZnO(s) ZnS(s) + H2O(v)

• An ADSORBENT, not a catalyst• ZnO is consumed by H2S containing gas• Not regenerable• Must be replaced when it no longer adsorbs Sulfur

• Typical performance 40-60 ppbv (Zn-ZnS equilibrium)• With Pre-Reformer recommend bottom layer of

ActiSorb® 305 to achieve < 10 ppb

SynGas Seminar – Margarita – Nov 2-4,2011 Page 25

Page 26: 01 Pretreatment

Component ppmv TemperatureH2S ≤ 100 See graphH2S ≤ 100 See graph

Limited, Short-term Capacity for Organic Sulfurs

RSH / RS-SR' < 10 >600ºF (315ºC)COS < 10 >700ºF (370ºC)COS 10 700 F (370 C)RSR' < 10 >750ºF (400ºC)Thiophenes 0

• For temporary, unavoidable circumstances• If feed has organic sulfurs hydrotreat with CoMo or NiMo

Thiophenes 0

SynGas Seminar – Margarita – Nov 2-4,2011 Page 26

If feed has organic sulfurs, hydrotreat with CoMo or NiMo

Page 27: 01 Pretreatment

ActiSorb® S 2 Capacity for H2SH2S

AmbientVolume Optimized

(Wgt Per 

fur Pickup 

Sulf

Gas Hourly Space Velocity (V / V / h)

SynGas Seminar – Margarita – Nov 2-4,2011 Page 27

Gas Hourly Space Velocity (V / V / h)  

Page 28: 01 Pretreatment

Sulfur Adsorption

• Fresh ZnOFresh ZnO

• Surface adsorption (gas diffusion)

• Solid diffusion

• Saturated

SynGas Seminar – Margarita – Nov 2-4,2011 Page 28

Page 29: 01 Pretreatment

Axial Profile of Sulfur Level

Saturated Solid Diffusion Gas Diffusion Fresh Catalyst

Saturated With Sulfur

T f B d Middl f B d B tt f B d

SynGas Seminar – Margarita – Nov 2-4,2011 Page 29

Top of Bed Middle of Bed Bottom of Bed

Page 30: 01 Pretreatment

ActiSorb® S 2 Capacity for H2SH2S

AmbientVolume Optimized

(Wgt Per 

fur Pickup 

Sulf

Gas Hourly Space Velocity (V / V / h)

SynGas Seminar – Margarita – Nov 2-4,2011 Page 30

Gas Hourly Space Velocity (V / V / h)  

Page 31: 01 Pretreatment

ZnO Optimization

P f l f• Performance results from:

Physical Integrity

ZnO Content – active ingredient

Density of finished product

Surface Area – better diffusion

SynGas Seminar – Margarita – Nov 2-4,2011 Page 31

Page 32: 01 Pretreatment

High and Low Surface Area

5

3

4

Low Surface Area ZnO

2

3

1

00 20 40 60 80 100

High Surface Area ZnO

SynGas Seminar – Margarita – Nov 2-4,2011 Page 32

% Bed

Page 33: 01 Pretreatment

ZnO Problems• ΔP buildup• ΔP buildup

Surface contaminationo Solids in the feedo Solids in the feedo Cracking in the feed heater coilZnCl2 formationZnCl2 formationo Affects structure o At >500ºF (>260ºC) can move downstream; corrosion( )CO2 + ZnO ZnCO3 (Zinc Carbonate)o Forms rapidly 200-500ºF (95-260ºC)o Weakens the physical structureo Reduces amount of Zn available to form ZnS

SynGas Seminar – Margarita – Nov 2-4,2011 Page 33

o Decomposes at >500ºF (>260ºC)

Page 34: 01 Pretreatment

Comparing Adsorbents

ActiSorb S ZnO "C" ZnO "D"

Size 4.8 mm 4 mm 3.2 mmShape Pellets Pellets SpheresWt% ZnO 90 100 85Density, lbs/CF 78 68 78 Performance*:Wt% S Pickup 26.9 19.6 19.0S Pickup, lbs/CF 22.5 19.7 14.2

SynGas Seminar – Margarita – Nov 2-4,2011 Page 34

Page 35: 01 Pretreatment

System Design Choices – 1 Vessel

Medium / High Temperature – Single BedCobalt Moly / ZnO Hydrogenation of Sulfur to H2S

Ad• Advantages– Lowest initial cost system

Handles ALL sulfur species

RAW GAS

– Handles ALL sulfur species and not sensitive to changes

• Disadvantages

CoMo

– CoMo “Thrown” Away– Lower Capacity than a 2-bed

system

ZnO

system– Plant must shut down to change-

out PURIFIED GAS

SynGas Seminar – Margarita – Nov 2-4,2011 Page 35

Page 36: 01 Pretreatment

System Design Choices – Lead/Lag

Medium / High Temperature – Dual BedCobalt Moly / ZnO Hydrogenation of Sulfur to H2S

• AdvantagesRAW GAS • Advantages– Handles ALL sulfur species

and not sensitive to changes

RAW GAS

g– Increased Sulfur Capacity

50%Ch “O th R ”

CoMoCoMo

– Change “On the Run”• Disadvantages

– CoMo “Thrown” Away

ZnO ZnO

– CoMo Thrown Away– Increased Cost in

vessels/material

SynGas Seminar – Margarita – Nov 2-4,2011 Page 36

PURIFIED GAS

Page 37: 01 Pretreatment

System Design Choices: 3-Bed

Medium / High Temperature – 3 Bed SystemCobalt Moly / ZnO Hydrogenation of Sulfur to H2S

• Advantages• Advantages– Handles ALL sulfur species– CoMo life maximized

RAW GAS

CoMo life maximized– Increased Sulfur Capacity– Change “On the Run”ZnO ZnO

C M • Disadvantages– Highest Cost in

vessels/material

CoMo

vessels/material

PURIFIED GAS

SynGas Seminar – Margarita – Nov 2-4,2011 Page 37

Page 38: 01 Pretreatment

Feed Gas Treatment

A i d C b d i f H S d i• Activated Carbon – adsorption of H2S and organic S

• H d d lf i ti (HDS)• Hydrodesulfurization (HDS) –• convert organic S to H2S• Convert organic chlorides to HCl• Convert organic chlorides to HCl

• Chloride Guard – remove HCl• Zinc Oxide Adsorb H2S• Zinc Oxide – Adsorb H2S• ActiSorb® G 1 – Sulfur removal

SynGas Seminar – Margarita – Nov 2-4,2011 Page 38

Page 39: 01 Pretreatment

ActiSorb® G 1

HydrodesulfurizationHydrodesulfurizationHydrodesulfurizationHydrodesulfurizationand Sulfur Adsorption and Sulfur Adsorption

In a Single CatalystIn a Single CatalystIn a Single CatalystIn a Single Catalyst

SynGas Seminar – Margarita – Nov 2-4,2011 Page 39

Page 40: 01 Pretreatment

ActiSorb® G 1

Cu 1.5% wtMo 3.5% wtZnO BalanceSurf Area 30m²/gSurf Area 30m /gDensity 75-85 lbs/ft³

1 2 1 4 kg/L

• Same ZnO lbs/ft³ as ActiSorb® S 2 S S C it

1.2-1.4 kg/L

Same S Capacity• HDS activity even after S saturation

L ti it f Ol fi h d tiSynGas Seminar – Margarita – Nov 2-4,2011 Page 40

• Low activity for Olefin hydrogenation

Page 41: 01 Pretreatment

System Design Choices: 1 VesselSingle Bed – Optimized use of Actisorb G-1

RAW GAS

Option 1 - Lower Cost for Same Time On-stream (no

RAW GAS

Same Time On stream (no CoMo required)

Option 2 Up to 30 50% longer

CoMo

G 1G-1 Option 2 - Up to 30-50% longer Life with fixed reactor volume (replace CoMo with G-1)

ZnOG-1G 1

PURIFIED GAS

SynGas Seminar – Margarita – Nov 2-4,2011 Page 41

Page 42: 01 Pretreatment

System Design Choices – Lead/Lag

RAW GAS

Dual Bed – Optimized use of Actisorb G-1

O ti 1 L C t fOption 1 - Lower Cost for Same Time On-stream (no CoMo required)

CoMoCoMo

q )

Option 2 - Up to 30-50% longer Life with fixed reactor volumeG-1 G-1ZnO ZnO Life with fixed reactor volume (replace CoMo with G-1) G-

1G-

1

G-1 G-1

SynGas Seminar – Margarita – Nov 2-4,2011 Page 42

PURIFIED GAS

Page 43: 01 Pretreatment

System Design Choices: 3-Bed

3 Bed System – Actisorb G-1

EliminateRAW GAS

Eliminate The CoMo Vessel RAW GAS

ZnO ZnO

(new designs or replacement)

G-1 G-1CoMo

SynGas Seminar – Margarita – Nov 2-4,2011 Page 43

PURIFIED GASPURIFIED GAS

Page 44: 01 Pretreatment

CO2 and COS

Z O h bl i h COS d CO i h f d• ZnO has some trouble with COS and CO2 in the feedH2S + CO2 COS + H2O

• Higher CO2 means higher COS• Small amount of H2O helps – COS hydrolysis

COS + H2O CO2 + H2S

• ActiSorb® G 1 can solve the problem

SynGas Seminar – Margarita – Nov 2-4,2011 Page 44

Page 45: 01 Pretreatment

ActiSorb® G 1 and COS

Wi h C M /NiM• With CoMo/NiMoCOS + H2 H2S + CO Hydrogenation

COS + H2O H2S + CO2 Hydrolysis• Leaving equilibrium COS• In ZnO H2S + ZnO ZnS + H2O

• ActiSorb® G 1 has Hydrogenation/Hydrolysis to the bottom of the bed and continuous H2S adsorption

• As H2S concentration decreasesso does COS equilibrium

SynGas Seminar – Margarita – Nov 2-4,2011 Page 45

• With H2S concentration ~50 ppb, COS eq = ~0

Page 46: 01 Pretreatment

Feed Pretreatment

A iS b® 200/300 i lf d• ActiSorb® 200/300 to convert organic sulfur and chloride to H2S + HCl

• T HCl ith A tiS b® Cl 2 h d f Z O• Trap HCl with ActiSorb® Cl 2 ahead of ZnO• Trap H2S with ActiSorb® S 2 to 40-60 ppb

Wi h CO /COS A iS b® G 1 li i COS• With CO2/COS use ActiSorb® G 1 to eliminate COS• For a pre-reformer polish to < 10 ppb S with

A tiS b® 305ActiSorb® 305

QUESTIONS?

SynGas Seminar – Margarita – Nov 2-4,2011 Page 46